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Linear Noisy Measurements

> Signal: x; € R”
> Measurements: y € R™ of xq via the linear acquisition model
y = Ax, + e, (1)

where
A € R™" js a Gaussian measurement matrix
e € R™ models measurement noise with ||e|, < n for somen >0
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Linear Noisy Measurements

> Signal: x; € R”

> Measurements: y € R™ of xq via the linear acquisition model

y = Ax, + e, (1)

where
A € R™" js a Gaussian measurement matrix
e € R™ models measurement noise with ||e|, < n for somen >0

Gaussian assumption
> classical benchmark setup in CS

> |t allows us to determine the sampling rate of a convex program (i.e., the

number of required measurements for successful recovery) by calculating
the so-called Gaussian mean width



The signal structure 6/33

As for the signal xq
> sparsity hardly satisfied in any real-world application

> but sparse representations using specific transforms
~» Gabor dictionaries, wavelet systems or data-adaptive representations

Synthesis formulation

There exists a matrix D € R™? and a low-complexity representation z, € R? such
that xo can be “synthesized” as

Xo =D -z,

» D =|[d,,...,dy] is the dictionary
> its columns are the dictionary atoms.
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Synthesis basis pursuit for coefficient recovery

Z:=argminlizll; st |ly-ADz|, <. (BP>")

zeRd

D € R™d

» when n = d, for instance D = Id (or any B.O.S) ~» classical basis pursuit
can recover any s-sparse vector z; w.h.p. if A is sub-Gaussian with

m > s - log(2n/s)
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Synthesis basis pursuit for coefficient recovery

Z :=argminlizll; st |ly-ADz|, <. (BP)

zeRd

D € R™d

» when n = d, for instance D = Id (or any B.O.S) ~» classical basis pursuit
can recover any s-sparse vector z, w.h.p. if

m > s - log(2n/s)

> in practice n < d, redundant D
~» representations not necessarily unique
~» can’t expect to recover a specific representation via (BPgoef)

One should be interested instead in:

Synthesis basis pursuit for signal recovery

X=D- (argmin zl]l; st |ly—ADz|, < 77). (BP;ig)

zeRd

- -
—_—

=Z
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In the noiseless case (i.e., when e = 0 and n = 0),
> it might be the case that  Z # {zo) (coefficient recovery fails)
> but hope that X=D Z={x,) (signal recovery successes)



Synthesis basis pursuit for coefficient/signal recovery 10/33

In the noiseless case (i.e., when e = 0 and n = 0),
> it might be the case that  Z # {zo) (coefficient recovery fails)
> but hope that X=D-Z={x) (signal recovery successes)

Questions

(Q1) When coefficient recovery # signal recovery?

(Q2) How many measurements are required for coefficient recovery? signal
recovery?

(Q3) In case of coefficient and signal recovery, what about robustness to
measurement noise?
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[Rauhut, Schnass and Vandergheynst 2008]

[Casazza, Chen, and Lynch, 2019]

X Address the coefficient recovery and not the signal one
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[Rauhut, Schnass and Vandergheynst 2008]

[Casazza, Chen, and Lynch, 2019]

X Address the coefficient recovery and not the signal one
X Uniform results over all s-sparse coefficient vectors
X Rely on strong assumptions on D: RIP, NSP, incoherence ...

X Forget about redundant representation systems ~» highly coherent and with
many linear dependencies

X Square-root bottleneck: The Welch bound reveals that incoherence can only
be satisfied for s < Vn.
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[Rauhut, Schnass and Vandergheynst 2008]

[Casazza, Chen, and Lynch, 2019]

X Address the coefficient recovery and not the signal one
X Uniform results over all s-sparse coefficient vectors
X Rely on strong assumptions on D: RIP, NSP, incoherence ...

X Forget about redundant representation systems ~» highly coherent and with
many linear dependencies

X Square-root bottleneck: The Welch bound reveals that incoherence can only
be satisfied for s < Vn.

> Need for local and non-uniform approach: signal-dependent analysis is
crucial for redundant representation systems

> Avoiding strong assumptions on the dictionary

> Distinguishing signal and coefficient recovery
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2. A primer on convex geometry



A key quantity: Minimum conic singular value 13/33

Consider the generalized basis pursuit

minf(x) st |ly—Ax]|, <n, (BP,’;)

XeRN

f: R" - R is convex, supposed to reflect the “low complexity” of the signal x,.

[Chandrasekaran et al. 2012, Tropp 2015]

A deterministic error bound for (BP!)

(@) Itn =0,

exact recovery of xo by solving BP! _, < 1. (A;D,(f. X)) >0

min

(b) In addition, any solution X of (BP!) satisfies

21

X0 — X[, < A D, (f.x0))

A

min (
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Consider the generalized basis pursuit

minf(x) st |ly—Ax]|, <n, (BP,’;)

XeRN

f: R" - R is convex, supposed to reflect the “low complexity” of the signal x,.

[Chandrasekaran et al. 2012, Tropp 2015]

A deterministic error bound for (BP!)

(@) Itn =0,

exact recovery of xo by solving BP! _, < 1. (A;D,(f. X)) >0

min

(b) In addition, any solution X of (BP!) satisfies

21

X0 — X[, < A D, (f.x0))

A

min (

> A (A;D,(f, x0)) can be NP-hard to compute
» But there exists an estimate in the sub-Gaussian case!
» Through the Gordon’s Escape Through a Mesh theorem



From the minimum conic singular value to the conic mean width /s

(A; DA(f, Xq)) by the conic mean width w, (D(f, X))

Control of A

min

Let K C R" be a set. For g ~ N(0, Id) a standard Gaussian random vector,
(a) The (global) mean width of K is defined as w(K) := E [suppck(g, h)].
(b) The conic mean width of K is given by w, (K) := w(cone(K) n 8" 1).

V.

[Amelunxen, Lotz, McCoy, Tropp (2014)]

Sharp phase transition

In the noiseless case, BP! _:
fails w.h.p. when succeeds w.h.p. when

m < w2 (D(f, xo)) m 2 w2 (D(f, xo))

Take-nhome messages on the generalized BP

> Robust signal recovery via the generalized basis pursuit (BP,’;) S
characterized by the minimum conic singular value 1. (A; D, (f, Xo)).

> The required number of sub-Gaussian random measurements can be
determined by the conic mean width of f at xo w5 (D(f, xo)).

> w2 (D(f, xy)) gives a phase transition for the recovery success via (BP;), in
the noiseless case.
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3. Coefficient & Signal recovery
Sampling rate for coefficient recovery
Convex gauge for signal recovery
Sampling rate for signal recovery
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zeRd

Z:=argminlizll; st |ly-ADz|, <. (BPgoef)J

Need to control A_. (AD; D (lIll1 ,Z))

Theorem (Coefficient recovery)

Let D € R™¢ be a dictionary and z, € RY such that x, = Dz, € R", be the
unique representer of X, of minimal €' -norm

Arin (D; DA(II-ll1 ,2¢1)) > 0.

min
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zeRd

Z:=argminlizll; st |ly-ADz|, <. (BPgoef)J

Need to control A_. (AD; D (lIll1 ,Z))

Theorem (Coefficient recovery)

Let D € R™¢ be a dictionary and z, € RY such that x, = Dz, € R", be the
unique representer of X, of minimal €' -norm

Ain (D; DA(IIl4 » 21)) > 0.
Then Yu > 0, with probability > 1 — e ¥"/2: if
m > mq = (W, (D - D(IIls ; 2¢1)) + u)® + 1, (3)
then any solution z to the program (BPfloef) satisfies

2n
Ly (D Dr (1Ml 1 200)) - (VM =1 = Vmp = 1)

”Zf1 B 2”2 <

(4)

o

Ain (AD; DA(IFl1 - 261)) > Ay (D; DA(IHl1 » 21)) - inf {[AXIl2 - X € DDAy . 20) NS}

min



Sampling rate for coefficient recovery 17/33

(a) No assumption on the dictionary D and the coefficient representation z,1,
except for

/lmin (D1 D/\(”lh » Z 1 )) >0
which is

> a necessary condition for the theorem to hold true
> involved to ensure

(b) w2(D - D(|||ls ; z,1)) drives the sampling rate for coefficient recovery
by ( ).

(c) Lastly, the error bound shows that coefficient recovery is robust to
measurement noise, provided that A . (D; D, ([-ly,z.1)) > 0;
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Recall: synthesis basis pursuit for signal recovery

X=D- (argmin lzlly st |ly—ADz|, < 77)- (szig)

zeRd
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Recall: synthesis basis pursuit for signal recovery

X=D- (argmin lzlly st |ly—ADz|, < 77)- (szig)

zeRd

Lemma (Gauge formulation)

Assume thaty = Ax, + e, with ||e|l> < n. Let D € R™¢ be a dictionary. Then,

X = argmin poee(X) st ly - Axll, <7

XeRN

Lemma (Descent cone)

Let xo € ran(D). For any zy1 € Zp (¢'-representers of x, in D),

D, (Po-sd,Xo) = D - Du(IHlly,200)  and  D(ppss, Xo) = D - D(|Illy , z¢1).




Sampling rate for signal recovery 19/33
Theorem (Signal recovery)
Let D € R™ be a dictionary with x, € ran(D) and pick anyzq € Zp.
Yu > 0, with probability > 1 — e /2 . jf

m>my = (w,(D-D(|Illy;2,)) + u)‘2 41, (5)

then any solution X to the program (BP,S;EO) satisfies

N 2
o — ®

2= Um—1- ymo =1
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Theorem (Signal recovery)
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V.

(b) But the set of minimal ¢'-representers is not required to be a singleton: The
descent cone in the signal space may be evaluated at any possible z,1 € Z;1.
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Theorem (Signal recovery)
Let D € R™ be a dictionary with x, € ran(D) and pick anyzq € Zp.
Yu > 0, with probability > 1 — e /2 . jf

m>my = (w,(D-D(|Illy;2,)) + u)‘2 41, (5)

then any solution X to the program (BPZEO) satisfies

A 2
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(a) Again, w2(D - D(|||| ; z,1)) drives the sampling rate

v

(b) But the set of minimal ¢'-representers is not required to be a singleton: The
descent cone in the signal space may be evaluated at any possible z,1 € Z;1.

(c) Phase transition of signal recovery at m.



Sampling rate for signal recovery 19/33
Theorem (Signal recovery)

Let D € R™ be a dictionary with x, € ran(D) and pick anyzq € Zp.
Yu > 0, with probability > 1 — e ¥ /2 - f

m>my = (w,(D-D(|Illy;2,)) + u)‘2 +1, (5)
then any solution X to the program (BP;jEO) satisfies
A 2n
”XO - X”z < '
Vm—1— vme =1
(a) Again, w2(D - D(|||| ; z,1)) drives the sampling rate

(b) But the set of minimal ¢'-representers is not required to be a singleton: The
descent cone in the signal space may be evaluated at any possible z,1 € Z;1.

(6)

v

(c) Phase transition of signal recovery at m.

(d) No minimal conic singular value involved! (even 0 is allowed!)
~» In the case of simultaneous coefficient and signal recovery, the
robustness to noise of (BPff’ef) and (BP;?,) might still be different.
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4. Upper Bounds on the Conic Gaussian Width



How to evaluate the conic mean width w2(D - D(||/l1 ; Z¢1))? 2133

v/ Tight and informative upper bounds for simple dictionaries such as
orthogonal matrices

X Involved for general, possibly redundant transforms
X We cannot use classical argument based on polarity Indeed,
X A bound based on a local condition number is too pessimistic
| D]
w2(D - D(Illy s 201)) < -

— i (D3 D(I1l4 5 2¢1)) (
=:C

w2 (D(y ; 2er)) + 1)




A geometric bound instead

1. Decompose the cone into its lineality and its range C = C, & Cgr
wa(C) < wi(C)+ wi(Cg)+1

2. The lineality C, is the largest subspace contained in the cone, so
W/?((CL) =~ dlm(CL)

3. The range is finitely generated, line-free, and
contained into a circular cone of circumangle a < /2

~» new bound on the conic mean width for such cones

22 /33
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Decomposition of the descent cone of the gauge pp.s¢ 23/33

Let D € R™ be a dictionary and let x, € ran(D) \ {0}.

Let C := Z)A(pD.Bg,xo) = D - D(|||l1 ; z,+) denote the descent cone of the gauge
at xp.

Let z,1 € I'I(Zﬂ) be any minimal £'- -representer of X in D with maximal support
and set S = supp(z,1) as well as s = #S.
Assume s < d.

Then we have:
(a) The lineality space of C has a dimension less than s — 1 and is given by

C. = span(S - sign(z, ;) - d; — D - sign(zp) : i € S). (7)

(b) The range of Cis a -polyhedral a-cone given by:

Cr = cone(ri~ :j € S°) with r;= = PcL(£5-dj— D -sign(z)). (8)




Circumangle for pointed polyhedral cone 24/33

Proposition: Circumangle and circumcenter of polyhedral cones

Let x; € 8" for i € [k] and let C = cone(Xy,..., Xx) be a nontrivial pointed
polyhedral cone. Finding the circumcenter and circumangle of C amounts to

solving the convex problem:

cos(a) = sup inf (0, x;).
9B ic[k

v/ possible to numerically compute the circumangle of pointed polyhedral

cones.
# the minimum conic singular value is intractable in general




Cmw for k-polyhedral cone contained into a-circular cones 25 /33

For < > 5, the conic mean width of a <-polyhedral cone contained into an
a-circular cone C in R" is bounded by

W(a, k,n) <tana - \/2Iog(k/@)—|— L —I—L.

\/2 log (k/ \/ﬂ) s

> the bound does not depend on the ambient dimension n,
# in contrast to the conic width of a circular cone.
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If s < d -3, we obtain that

W, (D (Posg, Xo)) < 5 +

tana.(\/zlog(z(f/;_:))ﬂ




Consequence for the sampling rate 26 /33

If s < d - 3, we obtain that
t 210 (2(d—§))+1
ana - gl ——
Ver

4
Corollary

The critical number of measurements my satisfies

W/Z\(@A(PD-Bg,Xo)) <S5+

Mo < 5 + tan®a - log(2(d — 5)/ V2n). (9)

v

The sampling rate is mainly governed by
> the sparsity s of maximal support £'-representations of xo in D

> the “narrowness” of the remaining cone Cgr, which is captured by its
circumangle a € [0,7/2)
> The number of dictionary atoms only has a logarithmic influence.

NB: comparable to the mean width of a convex polytope, which is mainly determined
by its diameter and by the logarithm of its number of vertices.



Examples

D Xy € R" mz
(1 0 0 0
0O 1 0 O
D=d=|, 4 1 o s-sparse vector | 2slog( /Non) | v
0 0 0 1,
Convolutional dictionary 2-sparse (new)
1 1 0O O 1 -1 0 0
o 1 1 0 o0 1T -1 0 T
D=, o + 7 o o 1 1 (100...01) 2 4+ 2log(4n) o
1 0O O 1 -1 0 0 1
Total gradient variation Numerical evaluation
D=V s-gradient sparse v

s - log®(n)

PNz,
0O
o

lllllll
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5. Numerical experiments



Phase transition for coefficient recovery
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(i) wi(D - D(|Ills ; z,1)) accurately describes the sampling rate of (BP, %)
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w2(D D) ~ 82

w?(D) ~ 87

=
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m

n = 256 .51 d = 1024, s = 16 —z}l
~ ‘ | | | 'l
n = 256 —Xy d =1024, s = 16 —z2

) obeys a sharp phase transition in the number of measurements m

coef

(i) Need of a non-uniform theory across the class of all s-sparse signals:

Wi (D D(Ily 5 21)) # wi(D - D(IIly 5 27)) and w (DIl 5 271)) = wa(D(IIk 5 21))
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(iv) w2(D(IIlls ; Z¢1)) does not describe the sampling rate of (BP;°7). Indeed,

w2(D - D(|Ily;2%)) < or > w2(D(|Ily ; 2%))

~» Sparsity alone is not a good proxy for the sampling complexity of (Bpggeg)

(v) The local condition number «, , , might explode



Phase transition for signal recovery
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Phase transition for signal recovery 31/

(Vi) (BPZEO) obeys a sharp phase transition in the number of measurements

However, a recovery of a coefficient representation via solving (BP;O:%) is
impossible in all three examples, even for m = n.

(vii) Forany 2, € Zy, wi(D - O(||lls ; z,)) accurately describes the sampling
rate of (BP®Y,).

n=0
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(Vi) (BPZBO) obeys a sharp phase transition in the number of measurements

However, a recovery of a coefficient representation via solving (BP,C;O_GS) is

impossible in all three examples, even for m = n.

(vii) Forany 2, € Zy, wi(D - O(||lls ; z,)) accurately describes the sampling
rate of (BP>Z,).

(vii) For any other sparse representation z ¢ Z,1, w>(D - D(|||; ; z)) does not
describe the sampling rate of (BP2,).

- Indeed, observe that we have wf(D - D(Illy ; zj)) = nin all three examples.
- |1z1llp = 85 = ||z2]|y, but different phase transitions locations
- Although [|z}1llo < I125lo, we have that

w2(D - D(Il1;21)) > w2(D - D1 ; 2%))

~» Sparsity alone is not a good proxy for the sampling rate of £'-synthesis )
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(ix) f mz w2(D-D(|ll; ; z¢1)) signal recovery via (BP;,) is robust to
measurement noise.

(x) IfA_.
recovery.

However, if A . (D; D, (lllly,z,)) > 1, the contrary holds true.

32 /33

(D; D, (l]l1,z,)) < 1, coefficient recovery is less robust than signal
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> Coefficient/signal recovery via ¢'-synthesis with Gaussian measurements

> The sample complexities driven by w2 (D - D(]|-|; ; z,1)) lead to phase
transitions

> Tight geometric upper-bound of w2 (D - D(||||1 ; /1))
> [llustration by extensive numerical XP

> Sparsity alone is not a good proxy for the sampling rate of ¢'-synthesis
> Need of a non-uniform theory across the class of all s-sparse signals
> Robustness may differ between the recovered signal and coefficient
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> Robustness may differ between the recovered signal and coefficient

Thank you!



