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Abstract

We study character varieties of symmetric knots and their reductions

mod p. We observe that the varieties present a different behaviour ac-

cording to whether the knots admit a free or periodic symmetry.
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1 Introduction

Character varieties of 3-manifold groups provide a useful tool in understanding
the geometric structures of manifolds and notably the presence of essential sur-
faces. In this paper we wish to investigate SL2-character varieties of symmetric
hyperbolic knots in order to pinpoint specific behaviours related to the presence
of free or periodic symmetries. We will be mostly concerned with symmetries of
odd prime order and we will concentrate our attention to the subvariety of the
character variety which is invariant by the action of the symmetry (see Section 4
for a precise definition of this action and of the invariant subvariety).

As already observed in [5], the excellent component of the character variety
containing the character of the holonomy representation is invariant by the
symmetry, since the symmetry can be chosen to act as a hyperbolic isometry of
the complement of the knot. Hilden, Lozano, and Montesinos also observed that
the invariant subvariety of a hyperbolic symmetric (more specifically, periodic)
knot can be sometimes easier to determine than the whole variety. This follows
from the fact that the invariant subvariety can be computed using the character
variety of a two-component hyperbolic link. Such link is obtained as the quotient
of the knot and the axis of its periodic symmetry by the action of the symmetry
itself. Indeed, the link is sometimes much “simpler” than the original knot,
in the sense that its fundamental group has a smaller number of generators
and relations, making the computation of its character variety feasible. This
is, for instance, the case when the quotient link is a 2-bridge link: Hilden,
Lozano, and Montesinos studied precisely this situation and were able to recover
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a defining equation for the excellent components of several periodic knots up to
ten crossings.

In what follows we will be interested in the structure of the invariant subva-
riety itself and we will consider not only knots admitting periodic symmetries
but also free symmetries. Our main result shows that the invariant subvariety
has in general a different behaviour according to whether the knot admits a free
or periodic symmetry.

Theorem 1. If K has a periodic symmetry of prime order p ≥ 3, then X(K)
contains at least (p− 1)/2 components that are curves and that are invariant by

the symmetry.

On the other hand, for each prime p ≥ 3, there is a knot Kp with a free sym-

metry of order p such that the number of components of the invariant character

variety of Kp is bounded, independently of p.

The main observation here is that the invariant subvariety for a hyperbolic
symmetric knot, or more precisely the Zariski-open set of its irreducible char-
acters, can be seen as a subvariety of the character variety of a well-chosen
two-component hyperbolic link, even when the symmetry is free.

To make the second part of our result more concrete, in Section 7 we study an
infinite family of examples all arising from the two-component 2-bridge link 622
in Rolfsen’s notation (with 2-bridge invariant 10/3). Our construction provides
infinitely many knots with free symmetries such that the number of irreducible
components of the invariant subvarieties of the knots is universally bounded.

The invariant subvarieties of periodic knots over fields of positive charac-
teristic exhibit a peculiar behaviour. It is well-known that for almost all odd
primes p the character variety of a finitely presented group resembles the char-
acter variety over C. For a finite set of primes, though, the character variety
over p may differ from the one over C, in the sense that there may be “jumps”
either in the dimension of its irreducible components or in their number. In
this case we say that the variety ramifies at p. The character varieties of the
knots studied in [8] provide the first examples in which the dimension of a well-
defined subvariety of the character variety is larger for certain primes. Here we
give an infinite family of periodic knots for which the invariant character variety
ramifies at p, where p is the order of the period. In this case, the ramification
means that the number of 1-dimensional components of the invariant subvariety
decreases in characteristic p. This gives some more insight in the relationship
between the geometry of a knot and the algebra of its character variety, namely
the primes that ramify.

The paper is organised as follows: Section 2 is purely topological and de-
scribes how one can construct any symmetric knot starting from a well-chosen
two-component link. Section 3 provides basic facts on character varieties and
establishes the setting in which we will work. In Section 4 we introduce and
study invariant character varieties of symmetric knots. The first part of The-
orem 1 on periodic knots is proved in Section 5 while in Section 6 we study
properties of invariant character varieties of knots with free symmetries. The
proof of Theorem 1 is achieved in Section 7, where an infinite family of free pe-
riodic knots with the desired properties is constructed. Finally, in Section 8 we
describe how the character varieties of knots with period p may ramify mod p.

2



2 Symmetric knots and two-component links

Let K be a knot in S3 and let ψ : (S3,K) −→ (S3,K) be a finite order diffeo-
morphism of the pair which preserves the orientation of S3.

Definition 1. If ψ acts freely we say that ψ is a free symmetry of K. If ψ has a
global fixed point then, according to the positive solution to Smith’s conjecture
[7], the fixed-point set of ψ is an unknotted circle and two situations can arise:
either the fixed-point set of ψ is disjoint from K, and we say that ψ is a periodic

symmetry of K, or it is not. In the latter case ψ has order 2, its fixed-point set
meets K in two points, and ψ is called a strong inversion of K. In all other
cases ψ is called a semi-periodic symmetry of K.

Remark 1. Note that if the order of ψ is an odd prime, then ψ can only be a
free or periodic symmetry of K.

We start by recalling some well-known facts and a construction that will be
central in the paper.

Let L = A ∪ K0 be a hyperbolic two-component link in the 3-sphere such
that A is the trivial knot. Let n ≥ 2 be an integer and assume that n and the
linking number of A and K0 are coprime. We can consider the n-fold cyclic
cover V = D2 ×S1 −→ E(A) of the solid torus E(A) which is the exterior of A
and contains K0. The lift of K0 in V is a (connected) simple closed curve C.

Let µ, λ be a meridian-longitude system for A on ∂E(A) and let µ̃, λ̃ be its
lift on ∂V . The slopes γk = µ̃+ kλ̃, for k = 0, . . . , n− 1, on ∂V are equivariant
by the action of the cyclic group Z/nZ of deck transformations and the manifold
Vk obtained after Dehn filling along γk is S3. The action of the group of deck
transformations Z/nZ on V extends to an action on Vk which is free if k 6= 0 is
prime with n and has a circle of fixed points if k = 0. For all other values of k,
the action is semi-periodic, that is a proper subgroup of Z/nZ acts with a circle
of fixed points.

For a fixed k, the image of C in Vk is a knot that we will denote by K
admitting a periodic or free symmetry of order n according to whether k = 0 or
prime with n. For n large enough, the resulting knot K is hyperbolic because
of Thurston’s hyperbolic Dehn surgery theorem [9], e.g. [1, App. B].

Remark 2. Of course, the above construction can be carried out for arbitrary
integer values of k. However, it is not restrictive to require the value of k to be
≥ 0 and < n. Indeed, assume that k = k′ + an where 0 ≤ k′ < n. The knot
K resulting from 1/k surgery along V coincides with the knot K ′ obtained the
same manner but starting from a different link L′ and choosing γk′ = µ̃ + k′λ̃
as Dehn filling slope. The link L′ is obtained from L by Dehn surgery of slope
1/a along A.

The following proposition shows that periodic and free-symmetric knots can
always be obtained this way.

Proposition 2. Let K be a hyperbolic knot admitting a free or periodic sym-

metry of order n. Then there exist a two-component hyperbolic link L = A∪K0

with A the trivial knot, and an integer 0 ≤ k < n such that the knot K can be

obtained by the above construction.
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Proof. The statement is obvious if the symmetry is periodic: in this case the
link L consists of the image A of the axis of the symmetry and the image K0 of
the knot K in the quotient of S3 by the action of the symmetry. Hyperbolicity
of the link is a straightforward consequence of the hyperbolicity of K and the
orbifold theorem.

If the symmetry is free, some extra work is necessary. The quotient of S3

by the action of the free symmetry is a lens space containing a hyperbolic knot
K0, image of K.

Consider the cores of the two solid tori of a genus-1 Heegaard splitting for
the lens space induced by an invariant genus-1 splitting of S3. Up to small
isotopy one can assume that K0 misses one of them, say α. Note that the free
homotopy class of α is non trivial both in the lens space and in the complement
of K0. Observe, moreover, that the exterior of α is a solid torus.

Let α̃ ⊂ S3 −K denote the lift of α. If K ⊔ α̃ is a hyperbolic link, then we
are done by taking L = K0 ∪ (A = α). Otherwise we will modify the choice of
α̃.

First of all, note that the link K ⊔ α̃ is not split. This is a consequence of
the equivariant sphere theorem and the fact that α̃ is invariant, hence E(K⊔ α̃)
is irreducible and boundary irreducible. In addition E(K ⊔ α̃) is not Seifert
fibered, because a Dehn filling on α̃ yields E(K), which is hyperbolic. Thus the
only obstruction to hyperbolicity is that E(K ⊔ α̃) could be toroidal.

Assume that its JSJ-decomposition is nontrivial and let M be the piece of
this splitting that is closest to K. In particular M is invariant by the action
of the symmetry. The boundary of M consists of T 2

0 = ∂N (K), some tori
T 2
1 , . . . , T

2
k , k ≥ 0, and possibly a torus T 2

k+1 that separates M from α̃. We
shall modify α̃ so that T 2

k+1 = ∂N (α̃) and k = 0, which will yield hyperbolicity.
By hyperbolicity of K, for i ≥ 1, each T 2

i either bounds a solid torus in
E(K) or it is contained in a ball in E(K). Notice that T 2

k+1 must bound a solid
torus in E(K), because α̃ is not contained in a ball else the link K ⊔ α̃ would
be split. In addition, none of the T 2

1 , . . . , T
2
k can bound a solid torus in E(K),

by nontriviality of the JSJ-decomposition.
First we modify α̃ so that ∂T 2

k+1 = ∂N (α̃). Let V be the solid torus bounded
by T 2

k+1. Then α̃ ⊂ V and V must be equivariant. In addition V is not knotted,
because α̃ is the trivial knot but also a satellite with companion S3 \ V . Then
the modification consists in replacing α̃ by the core of V . This makes ∂T 2

k+1

boundary parallel, and hence inessential.
Finally, we get rid of the tori T 2

1 , . . . , T
2
k . Let B

3
i ⊂ E(K) denote the 3-ball

containing T 2
i , for i = 1, . . . , k. On each ball there is a proper arc βi ⊂ B3

i such
that Ni = B3

i \N (βi) is a knot exterior with boundary (parallel to) T 2
i . Replace

equivariantly each Ni by a solid torus. This does not change K, because the
balls B3

i which are disjoint from K are replaced again by balls. On the other
hand, this may change α̃ to α̃′, but since every knot exterior has a degree-one
map onto the solid torus, we find a degree-one map from E(α̃) onto E(α̃′), and
since α̃ is unknotted, so is α̃′.

Note that for a given K the choice of L is not unique. Indeed, links are not
determined by their complements, and there are infinitely many slopes on the
boundary of a solid torus such that performing Dehn filling along them gives
the 3-sphere (see also Remark 2).
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Remark 3. Note that if K admits a semi-free symmetry, then either all powers
of the symmetry that act as periods have the same fixed-point set or the union
of their fixed-point sets consists of two circles forming a Hopf link. In the
first situation a hyperbolic link L can be constructed as in the case of periodic
knots. In the second situation, one can construct L by choosing one of the two
components of the Hopf link, but L will not be hyperbolic in general. Since we
only consider symmetries of odd prime order in the following, we are not going
to analyse this situation further.

3 Character varieties

Let G be a finitely presented group. Given a representation ρ : G −→ SL2(C),
its character is the map χρ : G → C defined by χρ(γ) = trace(ρ(γ)), ∀γ ∈ G.
The set of all characters is denoted by X(G).

Given an element γ ∈ G, we define the map

τγ : X(G) → C

χ 7→ χ(γ)
.

Proposition 3 ([2, 3]). The set of characters X(G) is an affine algebraic set

defined over Z, which embeds in CN with coordinate functions (τγ1 , . . . , τγN ) for
some γ1, . . . , γN ∈ G.

The affine algebraic set X(G) is called the character variety of G: it can be
interpreted as the algebraic quotient of the variety of representations of G by
the conjugacy action of PSL2(C) = SL2(C)/Z(SL2(C)).

Note that the set {γ1, . . . , γN} in the above proposition can be chosen to
contain a generating set of G. For G the fundamental group of a knot exterior,
we will then assume that it always contains a representative of the meridian.

A careful analysis of the arguments in [3] shows that Proposition 3 still holds
if C is replaced by any algebraically closed field, provided that its characteristic
is different from 2. Let Fp denote the field with p elements and F̄p its algebraic
closure. We have:

Proposition 4 ([3]). Let p > 2 be an odd prime number. The set of characters

X(G)F̄p
associated to representations of G over the field F̄p is an algebraic set

which embeds in F̄Np with the same coordinate functions (τγ1 , . . . , τγN ) seen in

Proposition 3. Moreover, X(G)F̄p
is defined by the reductions mod p of the

polynomials over Z which define X(G)C.

Let K be an algebraically closed field of characteristic different from 2. A
representation ρ of G in SL2(K) is called reducible if there is a 1-dimensional
subspace of K2 that is ρ(G)-invariant; otherwise ρ is called irreducible. The
character of a representation ρ is called reducible (respectively irreducible) if so
is ρ.

The set of reducible characters coincides with the set of characters of abelian
representations. Such set is Zariski closed and moreover is a union of irreducible
components of X(G) that we will denote Xab(G) [2].

Assume now that G is the fundamental group of a link in the 3-sphere with r
components. In this case,Xab(G) is an r-dimensional variety that coincides with
the character variety of Zr, i.e. the homology of the link. In the case where
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r = 1, that is the link is a knot, Xab(G) is a line parametrised by the trace
of the meridian. When r = 2, that is the link has two components, Xab(G)
is parametrised by the traces x, y of the two meridians and that, z, of their
product subject to the equation x2 + y2 + z2 − xyz − 4 = 0.

The subvariety of abelian characters is well-understood for the groups that
we will be considering. Hence, in the rest of the paper, we will only consider
the irreducible components of X(G) that are not contained in the subvariety of
abelian characters.

Notation 1. We will denote byX(G) the Zariski closed set which is the union of
of the irreducible components of X(G) that are not contained in the subvariety
of abelian characters. If G is the fundamental group of a manifold or orbifoldM
we will write for short X(M) instead of X(G). Similarly if G is the fundamental
group of the exterior of a link L we shall write X(L) instead of X(G). Notice
that if G is the fundamental group of a finite volume hyperbolic manifold then
X(G) is non empty for it contains the character of the hyperbolic holonomy.

Assume now that f is in Aut(G). The automorphism f induces an action
on both X(G) and X(G) defined by χ 7→ χ ◦ f . This action only depends on
the class of f in Out(G) since traces are invariant by conjugacy. Moreover, the
action on the character varieties is realised by an algebraic morphism defined
over Z. It follows readily that the set of fixed points of the action is Zariski
closed and itself defined over Z. As a consequence, the defining relations of
the variety of characters that are fixed by the action considered over a field of
characteristic p, an odd prime number, are just the reduction mod p of the
given equations with integral coefficients.

4 The character variety of L and the invariant

subvariety of K

In this section we define and study the invariant subvariety of K, where K is a
hyperbolic knot admitting a free or periodic symmetry of order an odd prime p.

Let ψ denote the symmetry of K of order p and let L = K0 ∪ A be the
associated link as defined Section 2. Denote by E(K)/ψ the space of orbits of
the action of ψ on the exterior E(K) of the knot K. Recall that E(K)/ψ is
obtained by a (possibly orbifold) Dehn filling on the component A of the link
L. We have

1 −→ π1(K) −→ π1(E(K)/ψ) −→ Z/pZ −→ 1

which splits if and only if ψ is periodic. Note that if ψ is free then the quotient
group Z/pZ can also be seen as the fundamental group of the lens space quotient.
In any case, we see that ψ defines an element ψ∗ of the outer automorphism
group of π1(K). Remark now that, since E(K)/ψ is obtained by Dehn filling
a component of L, the exterior E(L) of the link L is naturally embedded into
E(K)/ψ. Let µ be an element of π1(E(K)/ψ) corresponding to the image of a
meridian of A via this natural inclusion: it maps to a generator of Z/pZ. Let
f ∈ Aut(π1(K)) be the automorphism of π1(K) induced by conjugacy by µ.
Note that f is a representative of ψ∗. Thus the symmetry ψ induces an action
on the character variety X(K) of the exterior of K as defined in the previous
section.
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We have seen that the fixed-point set of this action is an algebraic subvariety
of X(K). We will denote by X(K)ψ the union of its irreducible components
that are not contained in Xab(K). Note that X(K)ψ is non empty for the char-
acter of the holonomy is fixed by the action. Remark also that each irreducible
component of X(K)ψ contains at least one irreducible character by definition.
Indeed, each irreducible component of X(K)ψ contains a whole Zariski-open set
of irreducible characters. We shall call X(K)ψ the invariant subvariety of K.

Let us now consider how the different character varieties of K and L are
related.

It is straightforward to see that the character variety X(E(K)/ψ) of the
quotient of the exterior E(K) ofK by the action of the symmetry injects into the
character variety X(L) of the exterior of L. Indeed the (orbifold) fundamental
group of E(K)/ψ is a quotient of the fundamental group of L, induced by the
Dehn filling along the A component of L.

On the other hand, there is a natural map from X(E(K)/ψ) to the invariant
submanifold X(K)ψ of K, induced by restriction in the short exact sequence
above.

Assume now that χ is a character in X(K)ψ associated to an irreducible
representation ρ of K. We will show that ρ extends in a unique way to a (neces-
sarily irreducible) representation of E(K)/ψ giving a character in X(E(K)/ψ)
(observe that here we only use that p is odd). This proves that the above natural
map is one-to-one and onto when restricted to the Zariski-open set of irreducible
characters.

Note that if ρ is a representation of π1(K) that extends to a representation
of π1(E(K)/ψ) then, necessarily, its character must be fixed by the symmetry
ψ, for the action of µ on π1(K) is by conjugacy and cannot change the character
of a representation.

The idea is to extend ρ to π1(E(K)/ψ) by defining ρ(µ) in such a way that
the action of µ by conjugacy on the normal subgroup π1(K) coincides with
the action of the automorphism f . We know that χ = [ρ] = [ρ ◦ f ]. Since
ρ is irreducible, SL2(C) acts transitively on the fibre of χ so that there exists
an element M ∈ SL2(C) such that ρ ◦ f = MρM−1 [6]. The element M is
well-defined, up to multiplication times ±1, i.e. up to an element in the centre
of SL2(C). The fact that ψ has odd order implies that there is a unique way
to choose the sign and so that ρ(µ) = M is well-defined. Note that in some
instances ρ(µ) can be the identity.

We have thus proved the following fact.

Proposition 5. Let K be a hyperbolic knot admitting a symmetry ψ of prime

odd order. The restriction map from the ψ-invariant subvariety of K to the

character variety of E(K)/ψ induces a bijection between the Zariski-open sets

consisting of their irreducible characters.

Remark 4. Proposition 5 holds more generally for hyperbolic knots admitting
either a free or a periodic symmetry of odd order and for character varieties
over fields of positive odd characteristic.
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5 Knots with periodic symmetries

Let K be a hyperbolic knot admitting a periodic symmetry ψ of odd prime
order p. Let L = A ∪ K0 be the associated quotient link. Denote by tµ the
coordinate of the variety X(L) corresponding to the trace of µ. Proposition 5
implies at once that X(K)ψ is birationally equivalent to a subvariety of Z ∪Z0,
where Z ⊂ X(L) ∩ (∪p−1

ℓ=1{tµ = 2 cos(2ℓπ/p)}) and Z0 ⊂ X(L) ∩ {tµ = 2}.
Note that since p is odd, the set {2 cos(2ℓπ/p) | ℓ = 1, . . . , p− 1} equals

{−2 cos(ℓπ/p) | ℓ = 1, . . . , (p−1)/2}. In particular this includes a lift to SL2(C)
of the holonomy of E(K)/ψ, when tµ = −2 cos(π/p); observe that this means
that the image of the meridian is conjugate to

−

(

ei
π
p 0

0 e−i
π
p

)

,

a rotation of angle 2π
p that has order p in SL2(C).

Proposition 6. The variety Z contains at least (p − 1)/2 irreducible curves

Z1, . . . , Z(p−1)/2, each of which contains at least one irreducible character. As

a consequence, all these components are birationally equivalent to a subvariety

Z̃1, . . . , Z̃(p−1)/2 of X(K)ψ.

Furthermore, the curves Z̃1, . . . , Z̃(p−1)/2 are irreducible components of the

whole X(K), not only the invariant part.

Proof. First of all, remark that the intersection of X(L) with the hyperplane
{tµ = −2 cos(π/p)} contains the holonomy character χ1 of the hyperbolic
orbifold structure of E(K)/ψ. In particular, a component of X(L) ∩ {tµ =
−2 cos(π/p)} is an irreducible curve Z1 containing χ1, the so called excellent
or distinguished component. This is the curve that, viewed as a deformation
space, allows to prove Thurston’s hyperbolic Dehn filling theorem [9], e.g. [1,
App. B].

The character χ1 takes values in a number field K containing the subfield
Q(cos πp ) of degree p−1

2 . The Galois conjugates of χ1 are contained in X(L) ∩

{tµ = −2 cos(ℓπ/p)}) for some ℓ = 1, . . . , (p − 1)/2. As {−2 cos(ℓπ/p) | ℓ =
1, . . . , (p − 1)/2} is precisely the set of Galois conjugates of tµ(χ1), this yields
the p−1

2 components defined by tµ = −2 cos(ℓπ/p), ℓ = 1, . . . , p−1
2 (though the

number of conjugates may be larger, depending on the degree of the number
field K).

To prove the assertion that these curves are irreducible components ofX(K),
notice that the restriction χ1|E(K) is the holonomy of the hyperbolic structure

of E(K). Therefore, by Calabi-Weil rigidity, the Zariski tangent space of Z̃1 at
χ1|E(K) is one dimensional. This space equals the cohomology group of E(K)
with coefficients in the Lie algebra sl(2,C) twisted by the adjoint of the holon-
omy, cf. [6, 10]. Using for instance simplicial cohomology, the dimension of this
cohomology can be established by the vanishing or not of certain polynomials
(with integer coefficients) in the entries of the representation. In particular the
same dimension count is true for its Galois conjugates. This Zariski tangent
space gives an upper dimension bound that establishes the final claim.

Remark that X(K)ψ may contain other components than the ones described
above. In particular, if K0 is itself hyperbolic, there is at least one extra compo-
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nent whose characters correspond to representations that map µ to the trivial
element, that is the lift of the excellent component of E(K0).

Corollary 7. Let K be a hyperbolic knot which is periodic of prime order p 6= 2.
Then X(K) contains at least p−1

2 irreducible components which are curves.

In addition there is an extra irreducible component when K0 itself is hyper-

bolic.

Remark 5. By considering the abelianisation Z × Z/pZ of the fundamental
group of the orbifold E(K)/ψ, it is not difficult to prove that Xab(E(K)/ψ)
consists of (p + 1)/2 lines. On the other hand, the abelianisation of the fun-
damental group of the exterior of K consists in a unique line which is fixed
pointwise by the action induced by ψ on X(K). It follows that, in general, the
fixed subvariety of the whole character variety of K is not birationally equiv-
alent to the whole character variety of the orbifold. For this reason we have
restricted our attention to X(K)ψ.

6 Knots with free symmetries

Let K be a hyperbolic knot admitting a free symmetry ψ of odd prime order p.
Let L = A∪K0 be the associated link as defined in Section 2 (see in particular
Proposition 2).

In this case, the irreducible characters of X(K)ψ are mapped inside the
subvariety of X(L) obtained by intersection with the hypersurface defined by
the condition that its characters correspond to representations that send µ̃+kλ̃
to the trivial element.

Note that in π1(E(K)/ψ) one has µ̃+ kλ̃ = pµ+ kλ. We write:

ρ(µ) =

(

mA ∗
0 m−1

A

)

and ρ(λ) =

(

lA ∗
0 l−1

A

)

(1)

Thus the representations of E(K)/ψ must satisfy mp
Al
k
A = 1. This provides

a motivation to look at the restriction to the peripheral subgroup π1(∂N (A))
generated by µ and λ:

res : X(L) → X(∂N (A)). (2)

When this restriction has finiteness properties, we are able to find uniform
bounds on the number of components of X(K)ψ:

Proposition 8. Assume that (2) is a finite map. Then there is a constant C
depending only on X(L) such that the number of components of X(K)ψ is ≤ C.

Notice that the components of X(L) have dimension at least two [9], the
hypothesis in Proposition 8 implies in particular that they are always surfaces.
We give in the next section an example of a link for which (2) is a finite map.
As a consequence we have:

Corollary 9. There exists a sequence of hyperbolic knots Kp parametrised by

infinitely many prime numbers p such that Kp has a free symmetry ψ of order

p but X(Kp)
ψ is bounded, uniformly on p.
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Proof of the proposition. Since p and k are coprime, there exist q and h such
that the elements pµ + kλ and qµ + hλ generate the fundamental group of
∂N (A). The character variety X(∂N (A)) is a surface in C3 with coordinates
x = tr(pµ+kλ), y = tr(qµ+hλ), and z = tr((p+q)µ+(k+h)λ), defined by the
equation x2+y2+z2−xyz−4 = 0. The equations x = 2 and y = z determine a
line D contained in the surface X(∂N (A)) which corresponds to the subvariety
of characters of representations that are trivial on pµ+ kλ.

To count the components of X(K)ψ it is enough to count the components
of res−1(D). The map res being finite, there is a Zariski open subset of each
irreducible component of X(L) on which the map is finite to one. As a conse-
quence there is a finite number N of curves in X(L) which are mapped to points
of X(∂N (A)). It follows that the number of irreducible components res−1(D)
is bounded above by d + N where d is the cardinality of the generic fibre of
res.

7 A family of examples

Consider the two-component 2-bridge link 622 pictured in Figure 1.

K0 A

µν

Figure 1: The 2-bridge link 622 and the generators of its fundamental group.

For each prime p > 4 and each 0 ≤ k < p one can construct a symmetric
knot K as described in Section 2. Since the absolute value of the linking number
of the two components of L is 3, the construction does not give a knot for p = 3,
which must thus be excluded.

Using Wirtinger’s method one can compute a presentation of its fundamental
group:

〈µ, ν | µ(νµ−1νµν−1µνµ−1ν) = (νµ−1νµν−1µνµ−1ν)µ〉

where the generators µ and ν are shown in Figure 1. Having chosen the meridian
µ, the corresponding longitude is λ = νµ−1νµν−1µνµ−1ν.

An involved but elementary computation gives the following defining equa-
tion for X(L)

(αβγ − α2 − β2 − γ2 + 4)(−γ4 + αβγ3 − (α2 + β2 − 3)γ2 + αβγ − 1)

where α, β, and γ represent the traces of µ, ν, and µ−1ν respectively. The
equation can also be found in [4].
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Note that the variety consists of two irreducible components, the first one
being that of the abelian characters.

A similar computation gives an expression for the trace of λ in terms of α,
β, and γ:

tr(λ) = (αβ − (α2 + β2 + γ2 − αβγ − 3)γ)(βγ − α)− (αγ − β)

We want to understand the generic fibre of the restriction map res : X(L) →
X(∂N (A)), where X(L) is a surface contained in C3 with coordinates α, β, and
γ and X(∂N (A)) is also a surface contained in C3 but with coordinates tr(µ),
tr(λ), and tr(µλ). For each fixed point (tr(µ), tr(λ), tr(µλ)) in X(∂N (A)), the
fibre of res consists of the points (α, β, γ) which satisfy











α = tr(µ)

(αβ − (α2 + β2 + γ2 − αβγ − 3)γ)(βγ − α)− (αγ − β) = tr(λ)

−γ4 + αβγ3 − (α2 + β2 − 3)γ2 + αβγ − 1 = 0

Once α is replaced by its value tr(µ), the points we are interested in correspond
to the intersection of two curves in C2 with coordinates β, γ. We see immediately
that, for generic values of tr(λ) each point of X(∂N (A)) is the image of at most
a finite number of points in X(L) and such finite number is bounded above by
the product of the degrees of the two polynomials in β and γ, i.e. 20.

This shows that Proposition 8 applies to this link and Corollary 9 holds.

8 Invariant character varieties over fields of pos-

itive characteristic

Let L = K0∪A be a hyperbolic link with two components such that A is trivial.
Assume that lk(K0, A) 6= 0. For each odd prime number p that does not divide
the linking number lk(K0, A), the knot K0 lifts to a knot Kp in the p-fold cyclic
cover of S3 branched along A.

By construction (see Section 2), Kp is periodic of period p, realised by ψ,
and the invariant subvariety X(Kp)

ψ contains at least (p − 1)/2 irreducible
components of dimension 1. These components of X(Kp)

ψ are constructed in
Proposition 6 as the intersection of the character variety X(L) with a family
of (p− 1)/2 parallel hyperplanes. These parallel planes correspond to a hyper-
surface which is the vanishing locus of the minimal polynomial for 2 cos(2π/p)
in the variable tr(µ). Such polynomial can be easily computed from the pth
cyclotomic polynomial and is defined over Z.

The characters of X(Kp)
ψ correspond to representations of the orbifold

E(Kp)/ψ. Note that X(E(Kp)/ψ) may have further components besides those
provided by Proposition 6, since the orbifold may admit irreducible represen-
tations that are trivial on µ. These irreducible representations correspond to
characters for which tr(µ) = 2. In any case, X(E(Kp)/ψ) contains at least
(p− 1)/2 components of dimension 1.

If we consider the character variety of E(Kp)/ψ in characteristic p, we have
that, since the only elements of order p are parabolic, the entire character variety
must be contained in the hyperplane defined by tr(µ) = 2. We note that if p is
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not a ramified prime for E(Kp)/ψ, then it must contain as many 1-dimensional
irreducible components as the one over C, that is at least (p− 1)/2.

Let us now turn our attention to the subvariety of X(L) which consists in
the intersection of X(L) with the hyperplane tr(µ) = 2. We remark that it is
non-empty since it must contain the character of the holonomy representation
of L. We are interested in its irreducible components of dimension 1. These are
in finite number, say N , depending on L only, and constitute an affine variety
of dimension 1 that we shall denote Y .

Standard arguments of algebraic geometry show that for almost all (odd)
primes q, the character variety X(L) as well as its subvariety Y have the same
properties over an algebraically closed field of characteristic q they have over
the complex numbers. In particular Y has N irreducible components.

Proposition 10. For infinitely many periodic knots Kp as above, the character

variety X(Kp) ramifies at p.

Proof. We start by considering the invariant variety X(Kp)
ψ and show that

this variety ramifies at p if p is large enough. Indeed, if this were not the case,
the above discussion implies that the number of irreducible curves of X(Kp)

ψ

should be at least (p− 1)/2 on one hand and at most N on the other. It follows
readily that X(Kp)

ψ ramifies at p.
Now, since (p − 1)/2 curves of the invariant variety X(Kp)

ψ are also irre-
ducible components of X(Kp) and since X(Kp)

ψ is defined over Z, the character
variety of Kp ramifies at p, too.

Remark 6. The polynomial equations defined over Z of the character variety
of the orbifold E(Kp)/ψ generate a non radical ideal when considered mod p,
since the minimal polynomial of 2 cos(π/p) is not reduced when considered
mod p.
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