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Abstract

We study relatively hyperbolic group pairs whose boundaries are Schottky sets. We
characterize the groups that have boundaries where the Schottky sets have incidence
graphs with 1 or 2 components.
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1 Introduction

Convergence group actions on the 2-sphere were introduced by Gehring and Martin in
[12] and have been studied extensively since then. It was conjectured in [21] that every
faithful convergence group action G on S2 by orientation preserving homeomorphisms
is covered by the induced action of a discrete group of Isom(H3) on S2, i.e., there exist

a Kleinian group K, an isomorphism ρ : K → G and a degree 1 map φ : Ĉ → S2 such
that the following diagram commutes :

K y Ĉ −→ Ĉyρ yφ yφ
G y S2 −→ S2

This remains open. This conjecture is closely related to Cannon’s conjecture [8], which
asserts that a hyperbolic group with 2-sphere boundary is virtually a discrete group
of Isom(H3). Cannon’s conjecture is a particular case of the previous one when the
action is faithful on its boundary and orientation preserving. Here we are dealing with
the case of relatively hyperbolic groups, and specifically those whose boundaries are
topological Schottky sets. These are defined and described in Section 5. Some familiar
examples are the Sierpiński carpet and the Apollonian gasket. Our motivation for
studying those groups is essentially twofold. Firstly, there are many examples of groups
that admit a peripheral structure for which their boundary is a topological Schottky set,
cf. Theorem D. Secondly, the relatively hyperbolic groups with these boundaries are
all conjectured to be virtually discrete subgroups of Isom(H3), see [19]. Here we show
that many relatively hyperbolic groups with boundaries that are topological Schottky
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sets are virtually discrete subgroups of Isom(H3). Furthermore, we say which Kleinian
groups arise when the boundaries are certain types of topological Schottky sets.

We say that (G,P) is a relatively hyperbolic group pair if (G,P) acts as a geometri-
cally finite convergence group on a hyperbolic space X. See section 2 for the detailed
definition. In this case, we say that the Gromov boundary of X, ∂X, is the Bowditch
boundary of (G,P), denoted ∂(G,P). We also call ∂(G,P) the relatively hyperbolic
boundary or sometimes just “the boundary”. Throughout, (G,P) is a non-elementary
relatively hyperbolic group pair (besides Proposition 3.3 where the classification of ele-
mentary convergence groups acting on S2 is provided), which means that ∂(G,P) has
more than two points.

Following [1], we define a Schottky set as the complement of at least three disjoint
open round balls in the n-sphere Sn, where Sn is equipped with the standard metric as
a subset of Euclidean space. Throughout this paper, we will restrict ourselves to n = 2,
so all our Schottky sets are planar. We actually work with the non-metric analog, which
we call topological Schottky sets.

Due to the properties of a topological Schottky set S in Definition 5.1, every S
produces an incidence graph Γ(S), the simplicial graph whose vertices correspond to
the open disks {Di}i∈I of its complement in S2, and whose edges correspond to (1-point)
incidences between closures of the disks Di.

Our main results are as follows:

Theorem A. Let S be a topological Schottky set with S = ∂(G,P). Then the incidence
graph Γ(S) has 1, 2 or infinitely many components. Their stabilizers are virtual surface
groups.

Theorem B. Let S be a topological Schottky set with S = ∂(G,P).
When the incidence graph Γ(S) has one component, then G is virtually a free product

of a free group Fn of rank n ≥ 0 and some finite index subgroups of groups in P.
Moreover, if G is finitely generated, its action is faithful and orientation preserving,
then G is covered by a geometrically finite Kleinian group K.

From a topological viewpoint, K contains a finite-index torsion-free subgroup that
uniformizes a 3-manifold obtained by gluing together along compression disks a han-
dlebody and I-bundles over surfaces.

Theorem C. Let S be a topological Schottky set with S = ∂(G,P). When the incidence
graph Γ(S) has exactly 2 components, G is virtually a closed surface group.

In contrast, when the incidence graph has infinitely many components, then the
group is covered by a geometrically finite convergence group that may have a Sierpiński
carpet boundary. Showing that these are essentially Kleinian is still a wide open ques-
tion, even in the word hyperbolic case, cf. [20]. Note that Theorem D below enables us
to construct examples of Schottky limit sets that have infinitely many components of
their incidence graphs but that do not come from a Sierpiński carpet limit set. For ex-
ample, apply the theorem to a geometrically finite Kleinian group that contains a rank-2
accidental parabolic fixed point (see for instance the first example in [6], illustrated by
Figure 6 therein). So far, all the examples we know of with Sierṕınski carpet bound-
ary are virtually fundamental groups of hyperbolic 3-manifolds with totally geodesic
boundary (which may have cusps), and this is consistent with conjectures in [20] and
[19].

Theorem D. Let K be a geometrically finite Kleinian group with non-empty domain
of discontinuity. Then there is a peripheral structure PK′ on a finite index subgroup
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K ′ of K, such that (K ′,PK′) is a relatively hyperbolic group pair and ∂(K ′,PK′) is a
topological Schottky set. Moreover, PK′ contains the natural peripheral structure of the
Kleinian group K ′ ⊂ K.

In Section 2 we prove some general facts about relatively hyperbolic groups, gener-
alizing some theorems about hyperbolic boundaries to relatively hyperbolic boundaries.
In Section 3 we restrict to relatively hyperbolic groups that are geometrically finite con-
vergence groups acting on S2. Although the results in this section will be used later in
the context of topological Schottky sets, they do not only apply to this specific context.
In Section 4 we describe how to “blow up” 2-ended peripheral subgroups in geometri-
cally finite groups acting on S2. This will change the peripheral structure, but not the
group; moreover the group with its new peripheral structure is shown to admit again
a convergence action on the 2-sphere. In Sections 5 and 6 we introduce and discuss
topological Schottky sets and their incidence graphs, and prove Theorem A. Finally in
Section 7 we prove Theorem B, and in Section 8 we prove Theorems C and D.
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2 Relative hyperbolicity and relative quasiconvexity

Here we provide some results about general relatively hyperbolic groups and their
boundaries. References on metric spaces in the sense of Gromov include [13, 5]. Let G
be a finitely generated group and a family P of subgroups consisting of finitely many
conjugacy classes.

Let us first recall that a convergence group G is a group of homeomorphisms of a
compact metric space Z such that any sequence (gn)n of distinct elements contains a
convergent subsequence, i.e., up to a subsequence, there are two points a and b in Z so
that (gn) tends uniformly to the constant map a on compact subsets of Z \ {b}. One
may then define the limit set ΛG as the set of limit points a of all convergence sequences
in G. It is a compact invariant subset of Z. Its complement, ΩG, is the ordinary set:
the action of G on ΩG is properly discontinuous, see [12] for more properties. Note
that any discrete group of isometries on a geodesic, proper, hyperbolic space X admits
a convergence action on X ∪ ∂X.

Definition 2.1 ([4]). The pair (G,P) is relatively hyperbolic if G acts on X properly
discontinuously and by isometries, where X is a proper hyperbolic geodesic metric space
such that:

1. each point of ∂X is either a conical limit point or a bounded parabolic point.

2. P is exactly the collection of maximal parabolic subgroups.

A conical limit point is a point y ∈ ∂X such that there exists a sequence (gi) in G
and distinct points a, b ∈ ∂X, such that gi(y)→ a and gi(z)→ b, for all z ∈ ∂X \ {y}.
A parabolic point yP is a point with an infinite stabilizer that fixes no other point,
i.e., the fixed point of a parabolic subgroup P . It is bounded if (∂X \ {yP })/P is
compact. Whenever we have a properly discontinuous action by isometries and these
two conditions are satisfied, we say (G,P) acts geometrically finitely on X. If (G,P) is
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a relatively hyperbolic pair, then ∂(G,P) = ∂X is its Bowditch boundary, or relatively
hyperbolic boundary. This depends on P, but is well-defined for the pair (G,P).

As we will be using topological properties of Bowditch boundaries, we recall two
topological notions that will be used several times.

Definition 2.2 (Null sequences and E-sets). Given a compact metric space Z, a null-
sequence is a collection of subsets C such that, for any δ > 0, the collection C contains
at most finitely many elements of diameter at least δ.

An E-set is a connected compact subset of the sphere S2 such that the collection
of connected components of its complement is a null-sequence.

Proposition 2.3. Let (G,P) be relatively hyperbolic.

1. If K is the limit set of a relatively quasiconvex subgroup, then the set of elements
in the orbit GK forms a null-sequence.

2. Let C be a G-invariant collection of compact subsets of ∂(G,P) which defines a
null-sequence, where each element of C contains more than one point. Then C/G is
finite and, for any perfect set K ∈ C, Stab(K) is a relatively quasiconvex subgroup
with limit set K.

Proof. Let us first consider a geometrically finite action of the group G on a proper
geodesic hyperbolic metric space X so that the stabilizers of the parabolic points are
the elements of P. We may then identify ∂X with ∂(G,P) and endow it with a visual
distance seen from a base point o ∈ X.

LetH be a relatively quasiconvex subgroup of the relatively hyperbolic group (G,P).
We will prove that the orbit of its limit set ΛH = K forms a null sequence. See [14,
Corollary 2.5] for the hyperbolic case.

Fix δ > 0 and let R > 0 denote the upper bound on the distances from the origin
o to any geodesic joining points δ-apart in the boundary. Let us pick a G-invariant
collection of horoballs H in X centered at the set of parabolic points in such a way that
they are pairwise disjoint and that their distance to o is at least R+ 1 (by shrinking if
necessary). By abuse of notation, we will also let H denote the union of the horoballs
of the collection. Let C denote the set of translates g(K) of diameter at least δ and
assume that K ∈ C. Since H is relatively quasiconvex, there is some q > 0 so that, for
any geodesic γ joining two points in K, γ ∩ (X \H) is contained in the q-neighborhood
of Ho, [18, Definition 6.6]. If L = g(K) ∈ C, then we may find a geodesic γ at distance
at most R from o and such that g−1(γ) is in the q-neighborhood of Ho outside H. Since
the horoballs are at distance at least R+ 1 from o, we may find a point of γ at distance
at most R from the origin and at distance at most q from gHo. Thus, there exists
gL ∈ gH such that gL(o) ∈ B(o,R+q). Since the action of G is properly discontinuous,
there are finitely many elements g ∈ G with g(o) ∈ B(o,R + q), hence finitely many
L ∈ C. This shows that GK is a null-sequence.

We now establish point 2. Let m > 0 be such that any distinct pair of points of
∂(G,P) can be m-separated by an element of G, i.e., for any x, y ∈ ∂(G,P), x 6= y,
there is some g ∈ G such that d(g(x), g(y)) ≥ m. Such m exists since the action on the
set of distinct pairs is co-compact, see [31]. Given δ > 0, we let Cδ denote the subset of
elements K of C such that diamK ≥ δ; this set is finite since C is a null-sequence and
non-empty for small enough 0 < δ ≤ m.

For all K ∈ C, we can find two points x1, x2 ∈ K and a group element g ∈ G such
that {g(x1), g(x2)} is m-separated: this implies that g(K) ∈ Cm, so that C is composed
of finitely many orbits.
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Let K ∈ C be a perfect compact set. Since GK = Stab (K) is a subgroup of G, its
action on the set of distinct triples of K is automatically properly discontinuous. Let
us prove that it is also geometrically finite.

Let x, y ∈ K, x 6= y, and assume that x is conical for G. Let (gn) be a sequence of
G such that (gn(x))n tends to a and (gn(y))n tends to b 6= a. This means that for all n
large enough diam gn(K) is larger than some constant δ > 0 (for instance δ = d(a, b)/2)
so belongs to a finite subcollection of C. Extracting a subsequence if necessary, we may
assume that gn(K) = L for some L ∈ C. It follows that hn = g−1

1 gn defines a sequence
of GK such that (hn(x)) tends to g−1

1 (a) and (hn(y)) tends to g−1
1 (b) for all other points

y. This means that x is conical for GK .
If x ∈ K is parabolic, denote by Gx its stabilizer and let L be a compact fundamental

domain for the action of Gx on ∂(G,P) \ {x}. We first prove that Gx ∩GK is infinite,
establishing that x is a also a parabolic point for GK . Since x is non-isolated in K,
we may find a sequence (xn)n in K which tends to x and a sequence (gn) in Gx so
that gn(xn) ∈ L. The collection (gn)n is infinite and diam gn(K) is at least d(x, L) > 0
so belongs to a finite subcollection CL. Extracting a subsequence if necessary, we may
assume that gn(K) is a fixed compact subset so that (g−1

1 gn)n is an infinite sequence in
Gx∩GK . We will now prove that x is also bounded as a parabolic point for GK . Let us
label the elements of CL by {K1, . . . ,KN} and let us fix, for each index j ∈ {1, . . . , N},
an element hj ∈ Gx such that hj(K) = Kj . Set LK = ∪1≤j≤Nh

−1
j (L) that is compact

in ∂(G,P) \ {x}. For any y ∈ K \ {x}, we may find g ∈ Gx so that g(y) ∈ L; note that
g(y) ∈ Kj for some j ∈ {1, . . . , N}, implying that h−1

j g(y) ∈ LK . This shows that x is
a bounded parabolic point. Thus, any point in K is either conical or bounded parabolic
for GK , so that GK is geometrically finite with limit set K.

We observe now that a collection of compact sets forms a null-sequence if it is finite
so, in particular, if it contains a single element. If the Bowditch boundary of a relatively
hyperbolic group consists of more than one component, then Bowditch showed that the
group must split. More precisely the following holds.

Theorem 2.4. [4, Theorem 10.1] The boundary ∂Γ of a relatively hyperbolic group, Γ,
is connected if and only if Γ does not split non-trivially over any finite subgroup relative
to peripheral subgroups.

In the case where the group splits, we have the following description which is again
due to Bowditch.

Theorem 2.5. [4, Theorem 10.3] Suppose a relatively hyperbolic group pair splits as a
graph of groups with finite edge groups and relative to the peripheral subgroups. Then
each vertex group is hyperbolic relative to the peripheral subgroups that it contains and
its boundary is naturally identified as a closed subset of the boundary of the whole group.

The following proposition is an immediate consequence of our Proposition 2.3 and
the above discussion and results by Bowditch.

Proposition 2.6. The set of components of the Bowditch boundary of a relatively hy-
perbolic group (G,P) forms a null-sequence. Moreover, for each non-trivial component,
the stabilizer is hyperbolic relative to conjugates of the original peripheral subgroups P.

While the boundary of a relatively hyperbolic group is not always connected and
sometimes contains cut points, the structure of cut points allows us to rule out a dendrite
boundary:
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Lemma 2.7. Let (G,P) be a geometrically finite convergence group. Then ∂(G,P) is
not a dendrite.

Recall that a dendrite is a connected, locally connected, compact metric space con-
taining at least two points that admits no simple closed curve.

Proof. According to [10, Theorem 1.1], every cut point of ∂(G,P) is a parabolic point.
This readily implies that there are at most countably many cut points in ∂(G,P). To
reach the desired conclusion, we shall show that a dendrite contains an open path of
cut points. To see this, let L be a dendrite. Then L is path connected according to [33,
II.5.1], since it is a locally connected complete metric space. Let x and y be distinct
points in L and p a path between them. Remove a point z on p. If z ∈ L is a not a
cut point, L \ {z} is connected. Since L \ {z} is connected and locally compact, i.e. a
generalized continuum, the fact that it is locally connected implies that it is path-wise
connected [33, II.5.2]. Thus there is another path p′ from x to y that misses z. Then the
set {r ∈ [0, 1] | p′(r) ∈ p([0, 1])} is closed in [0, 1] and not all of [0, 1] so its complement
contains an open interval, and this gives us a loop in L, which is absurd.

Lemma 2.7 can also be derived using Theorem 1.2 of [10].

The statement of the next proposition is due to Susskind and Swarup for geomet-
rically finite Kleinian groups [29, Thm 3]. The same argument applies verbatim to
relatively hyperbolic groups.

Proposition 2.8 (Susskind and Swarup). Let (G,P) be relatively hyperbolic and H,K
be two relatively quasiconvex subgroups. Then H ∩ K is relatively quasiconvex and
ΛH ∩ ΛK = ΛH∩K ∪ P where P is a (possibly empty) discrete set of common parabolic
points.

Together with Theorem 2.5 above, we will rely on one more result regarding split-
tings, again by Bowditch.

Theorem 2.9. [4, Theorem 10.2] Any relatively hyperbolic group pair can be expressed
as the fundamental group of a finite graph of groups with finite edge groups and with
every peripheral subgroup conjugate into a vertex group, with the property that no vertex
group splits non-trivially over any finite subgroup relative to the peripheral subgroups.

We obtain in this way

Corollary 2.10. Suppose (G,P) is a relatively hyperbolic group pair and ∂(G,P) is a
Cantor set. The group G is the fundamental group of a finite graph of groups where all
the edge groups are finite, and each vertex group is either finite or a peripheral group.

Proof. We apply Theorem 2.9 to express G as the fundamental group of a finite graph
of groups with finite edge groups and with every peripheral subgroup conjugate into
a vertex group, with the property that no vertex group splits non-trivially over any
finite subgroup relative to the peripheral subgroups. Theorem 2.4 tells us that this
graph of groups is non-trivial since the boundary is disconnected. Since it is totally
disconnected, Theorem 2.5 implies that a vertex group is the stabilizer of a point or
trivial, so each vertex group is either conjugate to a peripheral subgroup or finite.
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Theorem 2.11. Let (G,P) be a relatively hyperbolic group pair with ∂(G,P) homeo-
morphic to a Cantor set. Assume that for all P ∈ P, P is residually finite. Then G is
virtually F ∗ (∗n1Pi) where F is free (possibly of rank 0) and each Pi is a finite index
subgroup of some P ∈ P.

Theorem 2.11 follows from Corollary 2.10 and

Theorem 2.12. Let (G,P) be a relatively hyperbolic group pair, such that G can be
written as a finite graph of groups, where every edge group is finite and each vertex group
is either finite or a peripheral group. Assume that each peripheral group is residually
finite. Then G is virtually the free product of a free group and finite index subgroups of
peripheral groups.

Before proving Theorem 2.12 we set some notation.
We will express a splitting of a group in terms of an action of the group on a

simplicial tree with finite edge stabilizers and without edge inversions. A splitting is
said to be relative to a certain collection of subgroups if every subgroup in this collection
fixes a vertex of the tree. It is non-trivial if no vertex of the tree is fixed by the whole
group.

Given a group G with an action on a simplicial tree T with no edge inversions, we
let Γ = T/G be the orbit space. For each vertex v of Γ we may consider a vertex group
Gv defined as the stabilizer of a representative of the vertex in v. In the same manner,
we define edge groups Ge for edges. The action of G on T provides us with injective
maps φ0,e : Ge → Gv, φ1,e : Ge → Gv defined whenever e(0) or e(1) is v.

We say the tuple G = (Γ, {Gv}, {Ge}, {φε,e}) is a graph of groups, and G is the
fundamental group of the graph of groups G. The set of generators of G is the union
of the sets of generators for all the Ge and the Gv, together with a set contaning a
generator te for each edge of Γ. The relations are all the relations in each Ge and Gv,
te = 1 if e is in a fixed maximal tree, t−1

e = tē and teφ0,e(x)t−1
e = φ1,e(x) for all x ∈ Ge.

Let G be the fundamental group of a graph of groups G with underlying graph
Γ. Suppose further, as in the hypotheses of Theorem 2.12, that P is a collection of
subgroups of G where each subgroup is residually finite, each edge group is finite, and
each vertex group is either finite or a subgroup in P.

Proof of Theorem 2.12. We will map G to the fundamental group of a graph of groups
G′, over the same graph Γ but where the vertex groups and edge groups are all finite.
For each infinite vertex group Gv, conjugate to some P ∈ P, there are finitely many
edges meeting the vertex v. Since P is residually finite, there is a map ψv : Gv → Cv
onto a finite group Cv which is injective on the union of the images φε,e(Ge) where
e(ε) = v. We will define G′ as the fundamental group of G′ = (Γ, {G′v}, {Ge}, {fε,e})
where

• G′v = Gv if Gv is finite, and G′v = Cv if Gv is infinite.

• fε,e = ψv ◦ φε,e : Ge → Cv if Ge(ε) is infinite, and fε,e = φε,e if Ge(ε) is finite.

The group G admits a natural surjection to G′. Furthermore, G′ admits a surjection
to a finite group which is injective on every edge and vertex group of G′, by Scott and
Wall [28, Chapter 7]. Then the composition of these two maps is a map from G to a
finite group which is injective on every finite vertex group and every edge group. The
kernel H of this composition is a finite index subgroup of G which acts on the same tree
as G but with trivial edge groups. Thus, we see H as the fundamental group of a finite
graph of groups where the edge groups are trivial and the vertex groups are either finite
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or finite index subgroups conjugate to peripheral subgroups of G. This implies that H
is the free product of a free group and finite index subgroups of peripheral groups.

3 Geometrically finite convergence groups acting on
S2

A relatively hyperbolic group pair (G,P) can have a planar boundary where the action
does not extend to S2; see, for example [20, Section 9], where the group G is hyperbolic
and virtually Kleinian. The group G need not be virtually Kleinian for ∂(G,P) to be
planar, though, and its peripheral subgroups can be arbitrary [19]. Here we collect
some general results on geometrically finite convergence groups on S2, which will be
used for the more specific case of Schottky sets which we study here.

Let G be a convergence group acting on S2 with limit set Λ = ΛG ⊂ S2. A relatively
hyperbolic group pair (G,P) is a geometrically finite convergence group on S2 if every
point of Λ is either a bounded parabolic point (with maximal parabolic group in P) or
a conical limit point. We are not in general assuming that the action is faithful: there
could be a finite normal subgroup of G which acts as the identity on S2. When we
know that the quotient by this finite normal subgroup is virtually a 2 or 3-manifold
group, there is a finite index subgroup of G which acts as a subgroup of Homeo(S2),
by [16, Theorem 1.3]. In what follows we will be analyzing the quotients by the finite
normal subgroup, and the results in general will be virtual.

Lemma 3.1. An infinite-order, orientation-preserving parabolic element of a geomet-
rically finite convergence group on S2 is conjugate to a translation.

Proof. Let g ∈ G be parabolic with fixed point p ∈ S2. Its restriction to S2 \ {p}
is fixed-point free and its action is properly discontinuous. Hence, (S2 \ {p})/〈g〉 is a
surface with cyclic fundamental group and so homeomorphic to a cylinder. This implies
that the action of g is conjugate to that of a translation.

Proposition 3.2. Let ∂(G,P) be a geometrically finite convergence group on S2 with
G finitely generated. Then each P ∈ P is a virtually finite type surface group, that is
virtually free of rank at least 1 or virtually a closed surface group.

Proof. Any maximal parabolic subgroup P is finitely generated, since we are assuming
that G is finitely generated by [26, Prop. 2.29]. Since P also acts properly on R2, this
is exactly [19, Cor. 3.2]. The proof uses [16, Thm 1.3] in the case that there is a finite
normal subgroup.

Elementary action.— A convergence action on a compact metrizable space is ele-
mentary if its limit set is finite, i.e., contains at most two points. Such actions are
classified on the sphere, cf. [21, Theorem 3.4, Lemma 4.2].

Proposition 3.3. Let G be a finitely generated subgroup of Homeo+(S2) (the orien-
tation preserving homeomorphisms of S2) which is an elementary convergence group.

Then its action is conjugate to a subgroup of Möbius transformations. More pre-
cisely,

1. If ΛG = ∅, then its action is conjugate to that of a finite subgroup of SO3(R);
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2. If ΛG is a singleton, then G contains a finite index subgroup whose action is
conjugate to that of a Fuchsian group that defines a surface of finite type. In
particular, if G is two-ended, then G is either isomorphic to Z or to (Z/2Z) ∗
(Z/2Z).

3. If ΛG is a pair of points, then G has an index 1 or 2 subgroup G′ which is Abelian,
and the action of G′ is conjugate to that of 〈z 7→ 2z, z 7→ ζz〉, with ζn = 1 for
some n ∈ N.

Proof. If the limit set is empty, then the action of G on S2 is properly discontinuous and
cocompact so that S2/G is naturally equipped with a good spherical orbifold structure.
In other words, its action is conjugate to that of a finite subgroup of SO3(R).

Let us now assume that the limit set consists of a single point p. It must be parabolic
so Proposition 3.2 implies that it is virtually a surface group of finite type.

Let us now assume furthermore that G is two-ended. Following [28, Theorem 5.12],
we consider a finite normal subgroup F of G. Note that, as F is normal and finite,
we can find an infinite order element g in G that centralizes it. This implies that F
also fixes the point p, and, by the previous case, F has to be a finite cyclic group.
Let us assume that F is non trivial and let q be the other fixed point under F . Since
g has infinite order, it acts as a translation by Lemma 3.1. Thus we should have
gnfg−n(q) = f(q) = q for all n ∈ Z and f ∈ F . However, this shows that f fixes
infinitely many points and cannot be non-trivial, so that we may conclude that F is
trivial and that G is isomorphic to Z or (Z/2Z) ∗ (Z/2Z) by [28, Theorem 5.12 (iii)].

We now assume that ΛG has two points, so G is two-ended. Now take the subgroup
G′ of G which fixes pointwise ΛG. This is a subgroup of index at most two. As
above, we consider a finite normal subgroup F of G′. Since F < G′ fixes ΛG = {p, q}
pointwise and is finite, F has to be a rotation group, i.e., a finite (cyclic) subgroup of
SO2(R). Since the action is properly discontinuous, cocompact and free on S2 \ {p, q},
the quotient by G′ is a torus. If G′ 6= G, G = G′ o Z/2Z, where Z/2Z acts dihedrally
on G′. The result follows.

The following is immediate from [10] and in the case when the peripheral groups
are tame from previous work [2, Thm 0.1] and [3, Thm 0.2].

Corollary 3.4. Let ∂(G,P) be a geometrically finite convergence group acting on S2.
Then every cut point of a component is a parabolic point. Furthermore, the components
of the limit set are all locally connected.

Lemma 3.5. Let (G,P) be a geometrically finite convergence group on S2 with con-
nected Bowditch boundary ∂(G,P) = Λ. The ordinary set S2\Λ is made of finitely many
orbits, each with stabilizer which is a 2–orbifold group. When G is finitely generated,
these are finite-type surface groups.

Proof. We start by observing that the compact connected set Λ is also locally connected
by Corollary 3.4. According to [33, Theorem VI.4.4], local connectivity of Λ assures that
the components of the ordinary set S2 \Λ form a null-sequence (Λ is an E-set) and that
the boundary of each component is locally connected. Moreover, each component Ω is
simply connected. This follows from the fact that every simple closed curve contained
in the surface Ω separates the sphere into two disks, one containing the connected set
Λ ⊃ ∂Ω and the other contained in Ω.

9



If S2\Λ has only finitely many components, then G contains a finite index subgroup
that stabilizes each component, i.e., a relatively quasiconvex subgroup. Of course, in
this case S2 \ Λ is made of finitely many orbits.

If S2 \ Λ has infinitely many components forming a null sequence, we may apply
part 2 of Proposition 2.3 to conclude that S2 \ Λ is made of finitely many orbits and
their boundaries are stabilized by relatively quasiconvex subgroups. We claim that the
stabilizer H of a component Ω of S2 \ Λ is of finite index (at most 2) in the stabilizer
of its boundary ∂Ω. This shows that H is relatively quasiconvex. The claim follows by
observing that the elements of the stabilizer of ∂Ω that do not leave Ω invariant must
permute the components of S2 \Λ that have the same boundary as Ω. If Ω is a Jordan
domain, that is, if its closure is an embedded disk, then its boundary is a Jordan curve
and either bounds one or two components of S2 \ Λ. If Ω is not a Jordan domain, the
boundary of Ω is not an embedded circle. However, since it is locally connected, the
Carathéodory-Torhorst theorem applies: we can find a homeomorphism of the open
disk onto Ω which extends continuously to the boundaries, f : D2 → Ω̄. Since ∂Ω is
not a circle, such map cannot be injective. We can thus find a simple closed curve γ
which is contained in the closure of Ω and meets ∂Ω in a single cut point. The curve γ
is the image of a simple arc joining two points of the boundary of the closed disk which
are mapped to the same point in ∂Ω. Since every other component of S2 \ Λ must sit
on either side of γ, another component cannot have the same boundary as Ω. We thus
see that H = Stab(Ω) coincides with the stabilizer of ∂Ω in this case. Since Ω is an
open disc and H acts properly discontinuously on Ω, H is a orbifold group by [19, Cor.
3.2].

When G is a finitely generated convergence group acting on S2, the peripheral
subgroups are finite-type orbifold subgroups by Proposition 3.2. We claim that the
peripheral subgroups of H are finitely generated, hence H is finitely generated, since
it is relatively quasiconvex, and hence hyperbolic relative to the induced peripheral
subgroups. Any peripheral subgroup Q of H is P ∩H, where P is a peripheral subgroup
of (G,P). This is exactly the subgroup of P that takes Ω to itself. Then Ω/Q embeds
in the finite-type orbifold (S2 \ {p})/P , so is an embedded sub-orbifold of a finite-type
orbifold, and hence of finite type. Since the peripheral subgroups are finitely generated,
so is H.

Lemma 3.6. Let (G,P) be a geometrically finite, non elementary, convergence group
on S2 with limit set Λ. Let Ω be a simply connected component of S2 \Λ and h : D→ Ω
the extension of the homeomorphism conjugating the action of the stabilizer H as above.
Let p ∈ ∂Ω be a parabolic point with stabilizer P , and set Q = h−1 ◦ (P ∩H) ◦ h. Then
the limit set ΛQ is exactly the non-empty set h−1({p}).

Proof. Let K ⊂ S2 \ {p} be a compact subset containing a fundamental domain for
the action of P on Λ \ {p}. We may find g ∈ P such that g(∂Ω) ∩K 6= ∅. Thus, g(Ω)
contains in its closure the point p and at least one point of K. Such components form
a finite set since Λ is an E-set (Def. 2.2). By considering a sequence of points in ∂Ω
tending to p, we may pick an infinite sequence (gn) in P that maps Ω to components
whose closures intersect both {p} and K. As there are only finitely many of them,
we may assume that gn(Ω) = V for a fixed component V , and all n ≥ 1. Therefore,
(g−1

1 gn)n is an infinite collection of elements of H ∩ P which proves that ΛQ is not
empty.
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Since hQ ⊂ Ph, it follows that h−1({p}) is Q-invariant and compact, hence it
contains ΛQ which by definition is the minimal compact invariant subset under the
action of Q.

The equality will follow from the fact that p is a bounded parabolic point. We first
rule out the case that h−1({p}) contains an interval. If this was the case, then it would
be the whole circle by invariance so that we would have H = P ; this contradicts that
ΛP = {p} and ΛH = ∂Ω. Therefore, h−1({p}) is nowhere dense in S1.

Let Ω1, . . .Ωk, be the P -translates of Ω whose closures intersect both {p} and K
and let us fix g1, . . . gk ∈ P such that gj(Ωj) = Ω. Set L = h−1(∪1≤j≤kgj(K)). This
is a compact subset of D disjoint from h−1({p}), hence from ΛQ. Let x ∈ h−1(p). We
want to prove that the action of Q is not equicontinuous at x. With that in mind,
pick a point y ∈ S1 \ h−1({p}) arbitrarily close to x. Note that h(y) ∈ ∂Ω \ {p} and
since K is a fundamental domain, we may find g ∈ P and j ∈ {1, . . . , k} so that
g(h(y)) ∈ K ∩∂Ωj . It follows that gjg ∈ (H ∩P ) so that we may find q = h−1gjgh ∈ Q
with q(y) ∈ L. This implies that x ∈ ΛQ. Indeed, considering now a sequence (yn)
in S1 \ h−1({p}) tending to x, we obtain in this way a sequence (qn) in Q such that
(qn(x), qn(yn)) ∈ h−1({p})× L: as L and h−1({p}) are disjoint compact subsets, (qn)n
cannot be equicontinuous at x.

As already observed in the proof of Lemma 3.5, if h is not injective, i.e., if h(x) =
h(y) for some pair of points x, y in S1, then h(x) is a cut point of ΛG (we may build a
Jordan arc in D, a crosscut, that maps under h to a separating Jordan curve), and so
h(x) is parabolic.

Given a parabolic point p with stabilizer P and a component Ω of the ordinary set
which contains p in its boundary, we will say that p is uniquely accessible from Ω if the
above map h : D→ Ω is injective over p, i.e., h−1({p}) is a singleton. Likewise, we say
that p is doubly accessible from Ω if h−1({p}) consists of two points. We expect that in
general h−1(p) will be a Cantor set if p is not uniquely or doubly accessible.

Corollary 3.7. Let p be a parabolic point with stabilizer P of a geometrically finite
convergence group acting on S2, (G,P). Assume that the component of its Bowditch
boundary containing p is not a singleton. Let Ω be any component such that ∂Ω contains
p. If P is two-ended, then p is either uniquely or doubly accessible from Ω.

Proof. Recall the notation of Lemma 3.6: Q is defined as h−1 ◦ (P ∩H) ◦ h, where h
is the extension of the homeomorphism conjugating the action of the stabilizer H of
Ω. The number of accesses to p from Ω are in bijection with the cardinality of ΛQ. By
Lemma 3.6, the limit set is non-empty so Q is infinite.

Since we assume that P is two-ended, this is also the case of Q. Hence there is
a finite index cyclic subgroup in Q that is generated either by a loxodromic element,
implying the point p is doubly accessible, or by a parabolic element, implying the point
p is uniquely accessible.

We note that the converse of Corollary 3.7 does not hold in full generality. Here
is a counter-example: pick a convex-cocompact Kleinian group G that uniformizes a
hyperbolic 3-manifold with totally geodesic boundary; consider one component F of
its boundary and choose a compact π1-injective proper subsurface S in F , with a non-
Abelian free fundamental group P , such that each component of the complement of S
has also non-Abelian free fundamental group. The pair (G,P), where P consists of the
conjugates of P , is a planar relatively hyperbolic group pair. To see this, P stabilises
a component ΩF of the ordinary set, hence the hyperbolic convex hull K of ΛP in
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ΩF is connected and simply connected in ΩF , and precisely invariant under P , i.e., if
g(K) ∩ K 6= ∅ for some g ∈ G, then g ∈ P . Therefore, as ΛG is a Sierpiński carpet,
G(K) is a null sequence that satisfies the assumptions of Moore’s Theorem 4.3: by
collapsing each component of G(K) we obtain a geometrically finite convergence group
action on S2 for which P is parabolic with fixed point p. Moreover, the parabolic point
p is on the boundary of countably many components Ω such that Stab(Ω)∩P is cyclic
but P is not, and p is uniquely accessible from each component.

Proposition 3.8. Let p be a parabolic point with stabilizer P of a geometrically finite
convergence group on S2, (G,P). We assume that the component of ∂(G,P) containing
p is not a singleton. Let Ωp denote the union of the ordinary components which contain
p on their boundary. The action of P on S2 \ ({p} ∪ Ωp) is cocompact and the set of
components of Ωp forms finitely many orbits.

In particular, if p is in the boundary of no ordinary component, then P acts cocom-
pactly on S2 \ {p}.

Proof. We may assume that ΛG is connected according to Proposition 2.6. Let K ⊂
S2 \ {p} be a compact subset containing a fundamental domain for the action of P on
ΛG \ {p}.

Since ΛG is an E-set, it follows that the closure of the union of ordinary components
Ω ∈ π0(ΩG \ Ωp) with K ∩ ∂Ω 6= ∅ is a compact subset L of S2 \ {p}. Consider any
component Ω disjoint from Ωp, we may find g ∈ P such that g(∂Ω)∩K 6= ∅. It follows
that the action is cocompact on S2 \ ({p} ∪ Ωp).

We now consider components Ω which contain p on their boundary. As above, we
may find g ∈ P such that g(∂Ω)∩K 6= ∅. Thus, g(Ω) contains in its closure the point p
and at least one point of K. Such components form a finite set since ΛG is an E-set.

We conclude with some general properties of the ordinary set, which are proved as
for Kleinian groups. The next proposition was already known, but we were unable to
find a formal proof in the literature.

Proposition 3.9. Let G be a convergence group acting on S2. Then the ordinary set
has zero, one, two or infinitely many components.

Proof. The conclusion is obvious if the limit set ΛG is empty: in this case the ordinary
set is connected and the action is elementary.

Let us first consider the case when ΛG 6= ∅ is not connected. If all of its components
are points, in particular if ΛG 6= ∅ is finite and the action of G is elementary, then
ΩG is connected. Otherwise, there are infinitely many components of ΛG which are
non-trivial, so there are infinitely many components of the ordinary set by Lemma 2.7.

We may now assume that ΛG is an infinite connected compact set. Let us assume
furthermore that the ordinary set has at least two but finitely many components.

Considering a finite-index subgroup if necessary, one may assume that the group
G fixes each component. Therefore, ΛG is the boundary of each component of the
ordinary set. This is the main point and follows from the fact that the boundary of
each component is closed, contained in ΛG, and G-invariant.

By density of loxodromic fixed points, the group G contains a loxodromic element
g with fixed points a and b in ΛG.

Consider a component Ω of the ordinary set and a point x ∈ Ω. We may find a path
c0 in Ω that joins x to g(x). The g-orbit cn = gn(c0), n ∈ Z, defines a path which joins
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a and b in Ω by the convergence property. Its image contains an arc c also joining a
and b, i.e. a path without self-intersections.

Since, as remarked above, ΛG is the boundary of every component, we can proceed
similarly with a second component Ω′ and denote by c′ an arc in Ω′ which joins a and
b. Then {a, b} ∪ c∪ c′ is a Jordan curve that separates ΛG, for there are points of both
Ω and Ω′ on each side of the Jordan curve. If there were a third component in the
complement of ΛG it would sit on one side of this Jordan curve {a, b} ∪ c∪ c′. Because
of this, the boundary of this new component could not be ΛG as it should. Therefore,
if there are more than two components, there must be infinitely many.

Corollary 3.10. Let (G,P) be a geometrically finite convergence group acting on S2.
If ΩG is non empty and connected, then ΛG is totally disconnected. If furthermore G
is finitely generated, then G is covered by a Kleinian group. If ΩG has exactly two
components, then ΛG is a circle and the action of G is either isomorphic to a Fuchsian
group of finite coarea, or to a degree 2 extension of such a group.

Proof. Let us assume that ΩG is connected and let us assume for contradiction that Λ
is a component of the limit set with at least two points. Then Λ is the limit set of its
stabilizer H which is also hyperbolic relative to virtual surface groups, cf. Proposition
2.6. Since Λ does not separate the plane and does not contain an open disk, it is simply
connected. It follows that Λ cannot contain a simple closed curve and, since it is locally
connected by Corollary 3.4, it is a dendrite, which is impossible by Lemma 2.7. So ΛG
is totally disconnected. Now, when G is finitely generated, it follows from [21, Corollary
5.4] that G is covered by a Kleinian group.

Assume ΩG has two components Ω±. Taking an index 2 subgroup if necessary,
we may assume that both components are invariant under G so that Ω+ ∩ Ω− =
ΛG, the minimal G-invariant set. This implies that ΛG is their common boundary
and is connected by [33, Cor. VI.2.11], hence locally connected by Corollary 3.4, and
that Ω± are simply connected. Thus, by the Carathéodory-Torhorst theorem, there
are continuous onto maps ϕ± : D → Ω± from the closed unit disk that restrict to
homeomorphisms between their interiors. Since both images of the unit circle coincide,
reasoning as in the proof of Lemma 3.5, we may conclude that ΛG is a Jordan curve.
Finally Lemma 3.5 enables us to conclude in this case. For more general results, see
[23].

4 Blowing-up rank-one parabolic points

Definition 4.1. Let (G,P) be a geometrically finite convergence group on S2. We
write P = P1 ∪ P2 where P1 consists of all stabilizers of rank 1 parabolic points.

Theorem 4.2. Let (G,P) be a geometrically finite convergence group on S2, and P =
P1 ∪ P2 as in Definition 4.1. Then (G,P2) is a geometrically finite convergence group
on S2 and there is an equivariant degree 1 continuous map φ : S2 → S2 mapping the
Bowditch boundary of (G,P2) onto that of (G,P).

Before giving the proof, we pause for some topological facts, starting with the fol-
lowing particular case of Moore’s theorem [24].

Theorem 4.3 (Moore). Let C be a pairwise disjoint collection of compact and connected
subsets of the sphere S2 such that each K ∈ C is not a point. Assume that each
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element has a connected complement and the set C forms a null-sequence. Let ∼ be the
equivalence relation generated by x ∼ y if there is some K ∈ C that contains {x, y}.
Then Z = S2/ ∼ is a topological sphere when endowed with the quotient topology.

We add some further properties that will be used in the proof of Theorem 4.2.

Proposition 4.4. Under the assumptions of Theorem 4.3, set Y = S2 \ ∪K∈CK.
For any connected open subset U of S2 such that ∂U ⊂ Y , the set Y ∩ U is arcwise
connected. In particular Y is arcwise connected, and every point of Y admits a basis of
neighborhoods such that the boundaries of these neighborhoods are disjoint from S2\Y =
∪K∈CK.

Proof. Denote by π : S2 → Z the canonical projection and note that for all y ∈ Y ,
π−1(π({y})) = {y}, in particular the restriction of π to Y is injective. We first justify
that if A is a compact arc or a Jordan curve in π(Y ), then so is B = π−1(A). To see
this, note that B is compact and that π : B → A is bijective and continuous since
B ⊂ Y .

Since the projection π : S2 → Z maps Y to the complement of a countable set, we
may find arcs joining any two points in π(Y ) and then lift them back to Y . This proves
that Y is arcwise connected, as well as U ∩Y for any connected open set with ∂U ⊂ Y ,
for in this case U is saturated and π(U) is open. Similarly, if x ∈ Y , then we may
construct a basis of disk-neighborhoods of π(x) in Z with their boundaries contained
in π(Y ). They lift as disk neighborhoods of x in S2. Since C is a null sequence and x
is disjoint from the collection C, these disk-neighborhoods form a basis.

Proof of Theorem 4.2. The proof goes as follows. We first define a set Ŷ that plays
the role of a blown-up of S2 over the parabolic fixed points coming from P1. This is
a planar compact set bounded by Jordan curves. Then we prove that the action of
the group G induces a geometrically finite convergence group action whose maximal
parabolic subgroups are exactly those of P2, and we extend the action to the whole
sphere.

Let P1 denote a set of representatives of each conjugacy class in P1.

Definition of the set Ŷ .— Fix P ∈ P1 with parabolic point p and let us define
two disjoint horoballs in ΩG attached to p as follows. Since P is two-ended, P is
either isomorphic to Z or to (Z/2Z) ∗ (Z/2Z) according to Proposition 3.2, and there
is an element γ that acts as a translation on S2 \ {p} and that generates a subgroup of
minimal index in P , cf. Lemma 3.1. Let us consider a chart that identifies S2 \{p} with
C and γ with the translation by 1. Note that the action of γ on ΛG \ {p} is cocompact
since γ generates a finite index subgroup of P and that p is a bounded parabolic point.
Therefore, we may enclose ΛG \{p} into a horizontal open strip of bounded width. The
complement of the strip in C is the union of two half-planes contained in ΩG, each of
which defines a closed horoball attached to p. Let HP denote their union, and note that
the fact that P is the stabilizer of p implies that one can choose the two half planes
so that the stabilizer of HP is exactly P . Set C = ∪P∈P1

GHP , the collection of all
translates by G of the finite collection {HP | P ∈ P1}.

Let us check that C forms a null sequence, by contradiction: we consider a sequence
(gn)n∈N of G such that diam gn(HP ) ≥ δ for some δ > 0 and some fixed P ∈ P1 and
associated point p. Up to taking a subsequence, by the convergence property, we may
assume that (gn) tends uniformly towards the constant map with image b ∈ ΛG on the
compact subsets of S2 \ {b′}, where b, b′ ∈ ΛG. We now remark that we must have
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b′ = p. Indeed, if that was not the case, the closure of HP would be a compact set
in the complement of b′, intersecting ΛG only in p. By the convergence property its
images by the elements of the sequence should shrink to {b}, against the hypothesis
that their diameter is bounded from below.

Pick c ∈ ΛG \ ({b} ∪ Gp). Since c 6= b, it follows that (g−1
n (c)) tends to p. As p

is a bounded parabolic point and c /∈ Gp, up to passing to a subsequence, we may
find a sequence (hn) in P such that (hn(g−1

n (c)) tends to a point a ∈ ΛG \ {p}. Pick a
neighborhood V of a that is disjoint from HP . It follows that (gn◦h−1

n )n tends uniformly
to the constant map b on S2 \ V . Since hn(HP ) = HP , it follows that we have uniform
convergence of (gn|HP

)n to the constant map b, contradicting our assumptions.
Choose the horoballs small enough so that the collection is pairwise disjoint in ΩG.

This is possible since the action of G is properly discontinuous on ΩG and P1 is finite.

Set Y = S2 \∪K∈CK and observe that we are under the assumptions of Proposition
4.4. In particular, Y is arcwise connected.

It will be convenient to endow S2 with a distance dS compatible with its topology.
We define, on Y , dY (x, y) = inf diamSL where L runs over all continua of Y which

contain {x, y}. This defines a metric. Let us denote by Ŷ its completion.

Properties of the set Ŷ .— We claim that Ŷ is a planar, locally connected and
arcwise connected compact set with open disks as complementary components. To see
this, we define a notion of regular neighborhoods for points in Y ⊂ S2.

• By Proposition 4.4, every point in y ∈ Y admits a basis of neighborhoods in S2

whose boundaries are disjoint from the elements of C. We call such neighborhoods
regular of type (Y ) for y.

Let K ∈ C be the element associated to a rank 1 parabolic point p. Note that K
is a union of two closed disks attached at p and that K \ {p} is contained in ΩG,
so isolated from the other components.

• It follows from the fact that the components in C are disjoint in ΩG that any point
x ∈ ∂K \ {p} admits a basis of neighborhoods which are discs in Y bounded by
the union of an arc in ∂K and an arc in ΩG \ K. We call such neighborhoods
regular of type (K) for x.

• For the point p, we may consider a basis of Jordan disks that is regular for the
collection C \ {K} and that intersects K in exactly two arcs, one in each horoball.
We call such neighborhoods regular of type (P ) for p.

By construction, if V is a regular neighborhood of type (Y ) or (K), then Y ∩ V is
arcwise connected, whereas if V is of type (P ), then Y ∩ V has exactly two arcwise
connected components.

Recall that dS is the metric on S2 used to define dY above so that dS ≤ dY . Thus
every Cauchy sequence for dY is a Cauchy sequence for dS . This ensures the existence
of a canonical continuous map π : Ŷ → (Y , dS).

Let (xn)n be a Cauchy sequence in (Y, dS) with limit x ∈ Y . If x is not a rank-one
parabolic point, then it admits a basis of regular neighborhoods in Y of types (Y ) or (K)
that intersect Y in an arcwise connected set, so that (xn)n is also a Cauchy sequence in

(Y, dY ) that defines a unique limit point in Ŷ . If x is a rank-one parabolic point with
stabilizer P , then Y \{x} has two ends associated to the arcwise connected components
of its regular neighborhoods of type (P ). It follows that π−1({x}) has exactly two
preimages that correspond to each end. Thus, π is also surjective and a point has two
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preimages if it is a parabolic point of rank one and one preimage otherwise. Moreover,
we may define regular neighborhoods V̂ for points in Ŷ that will be connected by lifting
regular neighborhoods of types (Y ) and (K) and half neighborhoods of type (P ).

All these observations enable us to conclude that Ŷ is arcwise connected, locally
connected, compact, with no local cut points and that each component of Ŷ \ Y is a
Jordan curve.

It remains to check that Ŷ is planar. Claytor’s theorem [7] asserts that a continuum
without local cut points is embeddable in the sphere if and only if it contains neither
a copy of the complete graph on five vertices K5 nor of the complete bipartite graph
with six vertices K3,3.

Let us consider a finite connected graph L and an embedding j : L ↪→ Ŷ . We will
modify the embedding j so that π ◦ j is also injective, implying that L cannot be one
of the forbidden graphs.

Let T ⊂ L denote the closure of the set of points z ∈ L for which we may find w 6= z
in L such that (π ◦ j)(z) = (π ◦ j)(w). Note that T is a compact subset of L. If T is
empty, then there is nothing to be done. Let us assume it is not empty. Let z ∈ T .
If z belongs to an edge, we consider an open interval neighborhood Jz ⊂ L contained
in the same edge; if z is a vertex, then we consider a star-shaped open neighborhood
Jz contained in the union of the edges incident to z. Since L \ Jz is compact, we have

dY (j(z), j(L \ Jz)) > 0 so that we may find a regular neighborhood V̂z ⊂ Ŷ of j(z)

such that j−1(V̂z) ⊂ Jz; we let Vz ⊂ Y be the corresponding regular neighborhood of
(π ◦ j)(z).

We now extract a finite subcover of (π ◦ j)(T ) given by the above regular neighbor-
hoods that we order V1, . . . , Vn. Each Vk comes with a point zk ∈ L, a neighborhood
Jk ⊂ L and a regular neighborhood V̂k of j(zk). We modify the embedding j inductively
on the neighborhoods Vk. Let us fix 1 ≤ k ≤ n, and let us assume that π ◦ j is injective

on L \ (∪k≤i≤nJzi). We note that j(L) ∩ V̂k ⊂ j(Jk) and V̂k ∩ Y is homeomorphic to
the complement of a countable subset of a Jordan domain. Therefore, we may modify
j|Jk so that its image in V̂k is contained in Y . As π|Y is injective, the map π ◦ j is now
injective on L \ (∪k<i≤nJzi).

In conclusion, given any embedding of a finite graph L in Ŷ , there is an embedding
of L in Y , hence in S2. As the latter space is planar, we may conclude that L is not
isomorphic to K5 nor K3,3, and so Ŷ is planar.

Extension of the action of G to Ŷ .— Let us now consider the action of G on
Ŷ : regular neighborhoods enable us to conclude that the action on (Y, dY ) extends

continuously to Ŷ .
Let us check that the action remains a geometrically finite convergence action. For

this, we pick a sequence of distinct elements (gn). We may as well assume that there are
two points a and b in Y such that the sequence (gn) of homeomorphisms of the sphere
tends uniformly to the constant map a on the compact subsets of S2 \ {b}. When both

a and b are distinct from the rank 1 parabolic points, then this property lifts to Ŷ .
Let us assume that a is a rank 1 parabolic point and write {x, x′} = π−1(a). Let

us consider a regular neighborhood of type (P ). It defines two disjoint connected

neighborhoods W and W ′ in Ŷ of x and x′ respectively. We may pick a point z ∈ Ŷ
and assume that (gn(z)) tends to x for instance, implying that gn(z) ∈ W for all n

large enough. Note that we may exhaust Ŷ \ π−1({b}) by connected compact subsets.
Since π−1(a) is discrete, for any connected compact subset K ⊂ Y \ {b} containing
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π(z), the convergence property implies that gn(K) has to be contained in π(W ) for n

large enough. This implies that (gn) tends to the constant x in Ŷ \ π−1(b). If b is not
parabolic, then we are done.

On the other hand, if π−1(b) = {y, y′}, then the same reasoning for (g−1
n )n shows

that we may also assume that all compact subsets disjoint from {x, x′} tend to y

under (g−1
n ). Let V ⊂ Ŷ be a disk-neighborhood of y disjoint from W ∪ W ′ and

K = Ŷ \ (W ∪ W ′). Note that, for any n large enough, g−1
n (K) is contained in V

so that the connected set Ŷ \ V is covered by the two disjoint open sets g−1
n (W ) and

g−1
n (W ′). The connectedness of Ŷ \ V implies that g−1

n (W ′) ⊂ V since (gn) pushes

points into W ⊂ (Ŷ \ V ). Therefore, we have uniform convergence of (g−1
n ) on W ′ to

the constant map y. By symmetry, we get uniform convergence of (gn) to the constant
map x on compact subsets disjoint from y. This shows that G has also a convergence
action on Ŷ .

Let us note that since the action of G on ΛG∩Y is invariant and minimal, its closure
Λ̂ in Ŷ will be a minimal invariant subset, hence the limit set of this new action.

We may check that the action on it is geometrically finite with maximal parabolic
subgroups in P2. Since Ŷ is planar, we may now consider it as a subset of S2 and
extend the action to the whole sphere using [15, Thm. 5.8].

5 Topological Schottky sets

Definition 5.1. A topological Schottky set S is a proper compact subspace of S2 defined
by the following topological properties enjoyed by Schottky sets.

(S1) the set of components {Di}i∈I of S2 \ S is countable and not empty;

(S2) for each i, D̄i = Di ∪ ∂Di is a closed disc; that is Di is a Jordan domain.

(S3) for each pair i 6= j ∈ I D̄i and D̄j meet in at most one point.

(S4) for each triple of distinct indices i, j, k ∈ I, D̄i ∩ D̄j ∩ D̄k = ∅,
(S5) for every open cover U of S2 and for all but finitely many i ∈ I there is a Ui ∈ U

such that Di ⊂ Ui.

Remark 5.2. If the 2-sphere is endowed with a metric, the purely topological condition
(S5) is equivalent to asking that S is an E-set (Def. 2.2). This is an easy consequence
of the Lebesgue number lemma.

The most well-known topological Schottky sets are the Sierpiński carpet and the
Apollonian Gasket. These both occur as the limit sets of geometrically finite Kleinian
groups, [20], [17]. Hence they are also the (Bowditch) boundaries of relatively hyperbolic
groups. Observe that in contrast to the definition of a Schottky set, the cardinality of
I is not required to be at least 3. However, if |I| ≤ 2 then S has non empty interior
and cannot be the boundary of a relatively hyperbolic group.

Proposition 5.3. A topological Schottky set is connected, locally connected, hence
arcwise connected, with no cut points and no cut pairs.

Lemma 5.4. Let S be a topological Schottky set and Ω a non-empty open connected
subset of S2 such that, for each i ∈ I, ∂Di ∩ Ω is connected. The set X = S ∩ Ω is
connected.

Note that the proof of this lemma does not use the E-set condition (S5).
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Proof. Let us consider two open subsets of Ω, R and B, for red and blue, such that
X ⊂ R∪B, X ∩R and X ∩B are not empty, but X ∩R∩B = ∅. We may assume that
each component of R and B intersects X, by removing any components that do not
intersect X (note that the sphere is locally connected so every component of an open
subset is itself open).

We will increase these sets (by adding in disks associated to the two components)
into two open and disjoint subsets that cover Ω: this will prove that one of them has to
be empty, hence that X is connected. With this in view, we split the set of components
{Di}i∈I into three sets I = I0 t IR t IB .

Let i ∈ I, and let us write Ci = ∂Di. If Ci ∩ X = ∅, since Ω is a connected set
intersecting S and Ci is a Jordan curve, then Ω∩Di = ∅ and we let i belong to I0. If not,
(Ci∩X) is connected by assumption, and covered by R and B. Hence, R∩(Ci∩X) = ∅
or B ∩ (Ci ∩X) = ∅. In the former case, Di ∩R = ∅ as each component of R intersects
X, but not Ci, so we let i belong to IB ; in the latter, we let i belong to IR. Thus i ∈ IR
if and only if (Ci ∩X) ⊂ R and i ∈ IB if and only if (Ci ∩X) ⊂ B.

We let

R′ = R ∪ (∪i∈IRDi ∩ Ω) and B′ = B ∪ (∪i∈IBDi ∩ Ω) .

We obtain in this way a cover of Ω by two disjoint open sets, so that one of them
has to be empty. Therefore, one of R or B has to be empty as well, establishing the
connectedness of X.

Proof of Proposition 5.3. To show that S is connected and with no cut points, we apply
Lemma 5.4 twice: with Ω = S2 first and then with Ω = S2 \ {x}, for any x ∈ S. As
each boundary component of S is a closed simple curve, it cannot be disconnected by
removing at most one point and it follows that S and S \ {x} are both connected.

Now let x, y ∈ S be two points and consider Ω = S2 \ {x, y}. If no boundary
component of S contains both x and y, the previous argument applies and we see that
x, y cannot form a cut pair. We can thus assume that there is an i ∈ I such that
x, y ∈ Ci. Let γ be a properly embedded arc in D̄i connecting x to y. Di \ γ is the
union of two open disks, D and D′, each adjacent to precisely one connected component
of Ci \ {x, y}. We can now repeat the same strategy used in the proof of Lemma 5.4
with Ω = S2 \ γ to conclude that S \ {x, y} must be connected. This shows that S has
no cut pairs.

As S is an E-set, we deduce from [33, Theorem VI.4.4] that it is also locally con-
nected, hence arcwise connected [33, Theorem II.5.1].

Our first key result is that the boundaries of the Di are topologically distinguished,
generalizing the case of a Sierpiński carpet.

Proposition 5.5. Let S be a topological Schottky set with S ' S2 \ ∪(Di), where each
Di is open. Then the non-separating embedded circles of S are exactly the Ci = D̄i∩S.

Proof. Let C be an embedded circle in S ⊂ S2. By the Jordan curve theorem, the
complement of C consists of two open discs O and O′. Assume that C is contained in
S. By construction C is a Ci if and only if either O or O′ coincides with Di. If this is
not the case, both O and O′ contain points of S and C separates S.

We want to show that if C = Ci then C does not separate S. Let us consider
Ω = S2\D̄i. Condition (S3) ensures that Lemma 5.4 applies to prove the connectedness
of S \ Ci.
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Corollary 5.6. Any homeomorphism h : S1 → S2 between two topological Schottky
sets is the restriction of a self-homeomorphism H : S2 → S2 of the sphere.

This implies that we may define a topological Schottky set as an abstract compact
subset homeomorphic to that of an embedded topological Schottky set as above

Proof. By Proposition 5.5, h maps boundary components {C1
i } to boundary compo-

nents {C2
i }. As these components are Jordan curves, one may extend h : C1

i → C2
i as

a homeomorphism Hi : D1
i → D2

i for each i ∈ I. Since topological Schottky sets are
E-sets, these local homeomorphisms induce a global homeomorphism H : S2 → S2.

Proposition 5.7. Let (G,P) be a relatively hyperbolic pair. If its Bowditch boundary
is homeomorphic to a topological Schottky set, then (G,P) is a geometrically finite
convergence group on S2.

Proof. We may assume that G acts as a convergence group action on a topological
Schottky S ⊂ S2. Proposition 5.5 implies that G preserves the collection of boundary
circles. Therefore, we may apply [15, Thm. 5.8] and extend in this way the action as a
global convergence of the sphere.

Corollary 5.8. Let (G,P) be a relatively hyperbolic group pair with Bowditch boundary
a topological Schottky set. The set ∪i6=j∈I(D̄i ∩ D̄j) corresponds to the set of parabolic
points whose stabilizers are 2-ended.

Proof. Let p be a parabolic point. Let Ωp denote the union of components of the ordi-
nary set that contain p on their boundaries: according to the definition of a topological
Schottky set, Ωp is either empty, or has one or two components. By Proposition 3.8,
the action on S2 \ ({p} ∪ Ωp) is cocompact.

If Ωp = ∅, then (S2 \ {p})/Stab(p) is a compact surface orbifold. If Ωp has a single
component, then Stab(p) is cyclic since it preserves ∂Ωp, but this prevents the quotient
to be compact on its complement as the action of the cyclic group is generated by a
translation by Lemma 3.1. Therefore, if Ωp is non-empty, then it is the union of two
discs. Conversely, if two boundary components intersect, then Proposition 2.8 implies
that the intersection of their stabilisers is a parabolic point p. Up to index 2, Stab(p)
fixes each component, hence is a rank 1 parabolic point.

6 Incidence graphs for topological Schottky sets

We recall Definition 5.1. A topological Schottky set S is a connected, locally connected,
1-dimensional subset of the sphere such that the complement is a union of pairwise
disjoint Jordan domains. The closure of each component of the complement is home-
omorphic to a disc D̄i. The intersection D̄i ∩ D̄j is at most one point and a point of
S belongs to at most two (̄Di). A topological Schottky set has no cut points nor cut
pairs.

In this situation, we can draw more conclusions from the above construction in
Section 4.

Definition 6.1. We define the incidence graph Γ(S) of the topological Schottky set S.
Let Γ be the bipartite graph with vertex set the union of vertices {vi}i∈I , associated
to the components {Di}i∈I or, equivalently by Proposition 5.5, to the embedded non
separating circles in S, and vertices vp, associated to intersections D̄i ∩ D̄j , such that
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there is a non oriented edge between vi and vp if and only if p ∈ ∂Di. Since we are
working with a topological Schottky set, Γ embeds into S2. To see this we pick for each
component Di a base-point vi ∈ Di and join vi to each p ∈ ∂Di ∩ ∂Dj with an arc in
D̄i.

If (G,P) is a relatively hyperbolic group pair whose boundary is a topological Schot-
tky set, we will often denote this graph by Γ(G) or Γ(G,P). As observed in Lemma 6.3,
each edge corresponds to a rank-1 parabolic point. Also, we may ignore the vertices
corresponding to the rank-1 parabolic points since this will not change the topology of
the graph.

The following is a consequence of Proposition 5.5.

Lemma 6.2. If ∂(G,P) has Bowditch boundary a topological Schottky set, then G acts
on Γ(G).

The following was established in the proof of Corollary 5.8

Lemma 6.3. Let (G,P) be a relatively hyperbolic group pair with Bowditch boundary
a topological Schottky set. The intersection of two ∂Di, which corresponds to an edge
in the incidence graph, is a parabolic point with a 2-ended stabiliser. All other parabolic
points have stabilisers isomorphic to a compact surface orbifold group.

Corollary 6.4. Let P = P1 ∪ P2 be as in Definition 4.1. The components of the
ordinary set of ∂(G,P2) are in bijection with the components of Γ. Each cycle in Γ
separates the Bowditch boundary of (G,P2).

Proof. We will use the same notation introduced in Section 4 for the proof of Theo-
rem 4.2: Y is the complement of the union of pairs K of closed horoballs attached to
each rank-1 parabolic point p and Ŷ its completion after blowing-up, so that there is a
natural quotient map π : Ŷ −→ Ȳ . Let ΓT = Γ ∩ Y and let us consider its closure Γ′T
in Ŷ . This graph is disjoint from the limit set, and each edge is cut into two pieces by
a Jordan domain D = π−1(K), K ∈ C. We may then connect both sides of the edge in
D to reconstruct a graph Γ′ isomorphic to Γ which will now be disjoint from the limit
set.

Let us observe that this edge separates in D the preimages of the parabolic point, so
that any cycle in Γ′ separates the limit set. By construction each connected component
of the new ordinary set contains a component of Γ′ (which might be reduced to a single
point). To see there is at most one, we may proceed by contradiction as follows: if two

components of Γ′ belonged to the same component of Ω̂G, we could consider a curve
joining them in Y : a contradiction.

Theorem A. Let S be a topological Schottky set with S = ∂(G,P). Then the incidence
graph Γ(S) has 1, 2 or infinitely many components. Their stabilizers are virtual surface
groups.

Proof. According to Proposition 5.5, boundary components do not separate a topolog-
ical Schottky set so the group G maps boundary components to themselves. Therefore,
[15, Thm. 5.8] enables us to extend the action onto the whole sphere. The parabolic
points are either surface groups that are not accessible from any components or rank 1
parabolic points, which correspond to two intersecting disks, as observed in Lemma 6.3.
According to Corollary 6.4, the components of the graph are thus in bijection with those
of the blown-up ordinary set. Since the action is geometrically finite, there are 1, 2 or
infinitely many components as seen in Proposition 3.9. By Proposition 2.3 we deduce
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that the stabilizers of components are relatively quasiconvex subgroups. In addition
they have no parabolics. Since these stabilizers stabilize disks, they are virtually closed
surface groups.

7 One component in the incidence graph

Here we prove Theorem B:

Theorem B. Let S be a topological Schottky set with S = ∂(G,P).
When the incidence graph Γ(S) has one component, then G is virtually a free product

of a free group Fn of rank n ≥ 0 and some finite index subgroups of groups in P.
Moreover, if G is finitely generated, its action is faithful and orientation preserving,
then G is covered by a geometrically finite Kleinian group K.

Recall from Therorem 4.2 that if (G,P) is a relatively hyperbolic group pair and P ′
is the set of non 2-ended subgroups of P, then (G,P ′) is a relatively hyperbolic group
pair and the Bowditch boundary ∂(G,P ′) is obtained from ∂(G,P) by unpinching the
parabolic points of ∂(G,P) with two-ended stabilizers. Furthermore in our situation
(in fact whenever ∂(G,P) is planar) the unpinched boundary ∂(G,P ′) is also planar.

There are three cases to consider for relatively hyperbolic group pairs with Schottky
set boundary. The first is when the incidence graph has one component.

Theorem 7.1. Let (G,P) be a relatively hyperbolic group pair such that ∂(G,P) is
a Schottky set with connected incidence graph. Let (G,P ′) be the relatively hyper-
bolic group pair where P ′ consists of the subgroups in P that are not two-ended. Then
∂(G,P ′) is a Cantor set.

Proof. We will prove that if ∂(G,P ′) has a non-trivial component, it is a dendrite.
However, this is impossible according to Lemma 2.7. The theorem will then follow.

Take a component L of ∂(G,P). Suppose that L contains at least two points x and
y.

• L is a connected, locally connected compact metrizable space. The component
is connected by definition. A component L is itself the boundary of a relatively
hyperbolic subgroup pair: the subgroup stabilizing L along with the peripheral
subgroups whose fixed points belong to L [4]. Thus L is compact and a metric
space. Furthermore, the set of peripheral subgroups is a subset of P ′, each of whose
elements is a closed surface group. Therefore by Bowditch [3] the boundary L is
locally connected.

• The component L contains no simple closed curve. Any simple closed curve
bounds two discs in S2 which are either contained in L or not. At least one
must be contained in L as the complementary region would correspond to an
additional component of the incidence graph, which is connected. If the simple
closed curve bounds a disk in L, then the boundary has non-empty interior but
then it must be all of S2, since it is the boundary of a relatively hyperbolic group
(limit points of loxodromic elements are dense).

Thus, L should be a drendrite, so we may now conclude that there are no non-trivial
components.
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Proof of Theorem B. Let (G,P ′) be the relatively hyperbolic group pair where P ′ con-
sists of the subgroups in P that are not two-ended. According to Theorem 7.1, the
Bowditch boundary of the group pair (G,P ′) is a Cantor set, hence its ordinary set on
S2 is connected. We are now in a position to apply Theorem 2.11 and conclude that,
in this case, the group G is virtually a free product of infinite cyclic groups and finite
index subgroups of peripheral groups, which are virtual surface groups. It follows from
Corollary 3.10 that G is covered by a Kleinian group if it is finitely generated. The
conclusion follows.

Remark 7.2. In the same circle of ideas, Otal proves that if (F,P) is a free relatively
hyperbolic group pair such that its Bowditch boundary is a topological Schottky set,
then there exists a handlebody with fundamental group F and disjoint homotopy classes
of simple curves on its boundary that represent the peripheral structure P [27].

8 More components in the incidence graph

In the previous section, under the hypothesis that ∂(G,P) is a topological Schottky set
with connected incidence graph, we determined the structure of the group G. Since the
incidence graph has 1, 2, or infinitely many components, we now analyze what happens
in the latter two cases.

Theorem C. Let S be a topological Schottky set with S = ∂(G,P). When the incidence
graph Γ(S) has exactly 2 components G is virtually a closed surface group.

Proof. We recall that the rank 1 parabolic points in P correspond to the edges of the
incidence graph by Lemma 6.3 and the very definition of the incidence graph.

Then, we unpinch the rank-1 parabolic points as in Theorem 4.2. This results in a
different geometrically finite action of the group G. For every parabolic point removed,
the two components of the domain of discontinuity that corresponded to the endpoints
of the edge are contained in the same component. So when there are no more rank-1
parabolic points, there are two components of the domain of discontinuity. Then by
Corollary 3.10, G is virtually Fuchsian with limit set S1.

Since we already removed all of the rank-1 parabolic points, G is virtually a closed
surface group and P2 = ∅.

When the incidence graph has infinitely many components, the topology of the
blown-up limit set can be extremely varied so there is no hope of getting a meaningful
description of the underlying group. Indeed, the next theorem shows in particular that
the limit set of any finitely generated Kleinian group with infinitely many components
in its regular set and no two-ended parabolic subgroups is isomorphic to the boundary
of some (G,P2) obtained by blowing up all the rank-one parabolics of a relatively
hyperbolic group (G,P1 ∪ P2) where ∂(G,P1 ∪ P2) is a topological Schottky set.

Theorem D. Let K be a geometrically finite Kleinian group with non-empty domain
of discontinuity. Then there is a peripheral structure PK′ on a finite index subgroup
K ′ of K, such that (K ′,PK′) is a relatively hyperbolic group pair and ∂(K ′,PK′) is a
topological Schottky set. Moreover, PK′ contains the natural peripheral structure of the
Kleinian group K ′ ⊂ K.
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Proof. We choose K ′ to be a torsion-free finite-index subgroup of K contained in
PSL(2,C). Below we will define a peripheral structure PK′ of K ′ that will contain
all the parabolic subgroups of K ′ < PSL(2,C) but will in general be larger.

In this situation, there is an irreducible and orientable manifold with boundary MK′

obtained as the quotient of the 1-neighborhood of the convex hull of ΛK′ , the limit set
of K ′, by the action of K ′. There is at least one geometrically finite end, as the group is
geometrically finite and its limit set is not all of S2. This manifold comes equipped with
a natural pared structure, given by the parabolic structure on K ′. This realizes the
boundary of MK′ as a union of connected surfaces with boundary, which corresponds
to the rank-1 cusps in the hyperbolic structure. We will add curves to the peripheral
structure so that the resulting pared manifold contains no essential annuli or disks,
and thus admits a hyperbolic structure with totally geodesic boundary [25, Theorem
B’ page 70].

We will first consider the case when these surfaces are incompressible. Now, in this
situation, MK′ admits a JSJ-decomposition along a finite family of pairwise disjoint and
non parallel incompressible annuli Ai into “geometric pieces” (see [32] for a description):
I-bundles over surfaces (Seifert fibered pieces) and anannular manifolds with boundary
(hyperbolic pieces). By taking a further cover if necessary, that is by taking a further
finite-index subgroup, we assume no twisted I-bundle appears in the decomposition.
Note that a piece can have different structures. For instance, a solid torus can be seen
as a circle bundle over a disk, an interval times an annulus, as well as a twisted I-bundle
over a Möbius band. We only require each piece to admit some product structure.

The characteristic submanifold CK′ in MK′ consists of all the surface-times-interval
components together with small neighborhoods of the JSJ annuli Ai, which are solid
tori Ti. Note that if CK′ is empty, MK′ with its natural pared structure admits a
hyperbolic metric with totally geodesic boundary so that ∂(K ′,PK′) is a Sierpiński
carpet and hence a topological Schottky set.

Otherwise, we observe that the boundary of each solid torus Ti is partitioned into
four annuli: two of them contained in ∂MK′ and two others properly embedded in MK′

and parallel to Ai. For each Ti, we mark two points on each of the four circles that
delimit the four annuli in its boundary. We then connect these pairs of points with two
arcs in ∂Ti ∩ ∂MK′ running from one circle to the other.

Remark that ∂CK′ \ ∂MK′ consists of properly embedded annuli contained in the
boundary of some tori Ti. The rest of the boundary ∂CK′ in ∂MK′ is a union of
subsurfaces, possibly with boundary or cusps.

For each complementary piece of ∂MK′ \ ∂CK′ , we connect all the marked points
on its boundary components with an embedded collection of essential (pairwise non-
parallel) arcs. Next, if some component of ∂MK′ \ ∪iTi is an annulus, (for instance,
if a piece is a solid torus) we connect the pair of points on one boundary component
directly with the pair of points on the other boundary component. Each remaining
component of CK′ \ ∪iTi is a surface times an interval S × I. In this case again we
first connect the marked points on the boundary circles along an embedded collection
of essential arcs in S × I ∩ ∂MK′ (as was done in the complementary components).
Then we take a pair of pants decomposition of each remaining component after cutting
along these arcs. The pair of pants decomposition for the pieces of S × {0} should
be different from the decomposition for S × {1}, in particular, the curves of the pants
decomposition for S×{0} should be transverse to curves going through S×{1}. Since
there are two arcs meeting at each marked point, the union of these arcs and curves
is a collection of curves so that any essential annulus in ∂CK′ is transverse to some
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curve in this collection. Since these curves are essential and non-parallel, we can make
this collection peripheral. The resulting pared manifold with this peripheral structure
will admit a Kleinian representation where the quotient of the 1-neighborhood of the
convex hull of the limit set is a hyperbolic manifold with totally geodesic boundary.
Therefore its limit set can be realized as a Schottky set.

Assume now that ∂MK′ is compressible. In this case, the limit set of K ′ is not
connected. We can choose a finite family D of properly embedded pairwise disjoint
essential disks such that (the closure of) each component of the complement of the
disks, MK′ \ ∪D∈DD, has incompressible boundary and the family D is minimal with
respect to this property. As we did with the JSJ-annuli in the previous case, for each
disk D we remove small cylindrical neighborhood CD and mark two points on each of
the circles delimiting the two disks on the boundary of CD. We then connect the two
pairs of points by two arcs in the annulus contained in ∂CD. For each component N
of MK′ \ ∪CD∈DD let us denote CN the characteristic submanifold of N . Note that we
can assume that the annuli of the JSJ-decomposition of N are disjoint from the disks
of the family D. We can now repeat the previous argument keeping in mind that this
time we need to connect also the marked points on the boundary of the disks.
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