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Final states of decaying 2D turbulence in bounded domains:
Influence of the geometry
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Abstract

Direct numerical simulations of two-dimensional decaying turbulence in wall bounded domains are presented. The Navier–Stokes equations
are solved using a Fourier pseudo-spectral method with volume penalization. Starting from random initial conditions, we study the influence of
the geometry of the domain on the flow dynamics, in particular on the long time behaviour. Circular, square, triangular and annular domains
are considered and we show how the geometry plays a crucial role regarding the decay scenario towards final states. Three stages can be
distinguished: formation of coherent vortices from random initial conditions, vortex wall interactions, and finally relaxation towards a quasi-
steady structure. The eigenvalues estimated from the decay rate of both energy and enstrophy depend on the geometry and agree well with the
theoretical eigenvalues based on the Stokes mode of the corresponding domain. For the final states we find a linear functional relation between
vorticity and streamfunction.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional turbulence in wall-bounded domains has
many applications in geophysical flows, e.g. the prediction
of currents in oceanic basins, the transport and mixing
of pollutants. Experiments in rotating tanks, e.g., in [2],
leading to quasi two-dimensional geostrophic flows, have
shown the formation of long-lived coherent vortices. Quasi
two-dimensional experiments in stratified fluids for square
and circular containers have been presented in [10,6,16].
Several numerical simulations of two-dimensional turbulence
in bounded domains have been performed so far, e.g., in circular
and square domains [15,5,4,22]. Compared to simulations
in double periodic domains the decay scenario is altered in
bounded domains with no-slip boundary conditions, since the
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role of viscous boundary layers is determinant, for a discussion
see, e.g., [7].

The aim of the present paper is to study the influence of the
geometry of the domain on the flow dynamics, in particular on
its long-time behaviour. Therefore we consider four different
geometries: circular, square, triangular and annular domains.
Typically, we observe the formation of stable large-scale
structures which persist for a long time before they are finally
dissipated.

Late states of decaying two-dimensional flows in periodic
domains were investigated, e.g., in [17,23]. Here we study
the final states of wall-bounded flows considering different
geometries with no-slip boundary conditions.

Several theoretical predictions of the long time behaviour
of two-dimensional flows have been made for unbounded or
periodic domains. Variational principles for predicting the final
state are based on the ‘selective decay’ hypothesis supposing
conservation of energy and decay of enstrophy [13]. In this
heuristic approach enstrophy is minimized under constraint
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of conservation of energy and eventually additional conditions.
Another variational hypothesis has been proposed, based on
statistical mechanics, which introduces a measure of mixing,
leading to the definition of an entropy. The final states then
correspond to a maximum of entropy as turbulence maximizes
mixing [8,19]. For two-dimensional flows in bounded domains,
with either free-slip [9] or no-slip [10] boundary conditions, a
different approach based on viscous eigenmodes of the Stokes
flow has been used to predict the self-organization of the flow
into ’final’ states. Stokes eigenmodes in a square domain with
no-slip boundary conditions have been computed in [14].

The paper is organized as follows. First, we briefly
recall the volume penalization technique and the numerical
method employed to solve Navier–Stokes equations in
different geometries (Section 2). The construction of viscous
eigenmodes is sketched in Section 3. Then, numerical results
of decaying flows in four different geometries are presented in
Section 4 and conclusions are drawn in Section 5.

2. Numerical scheme and geometry

The numerical technique we use here is based on a Fourier
pseudo-spectral method with semi-implicit time discretization
and adaptive time-stepping [21]. The Navier–Stokes equations
are solved in a double periodic square domain of size L =

2π using the vorticity–velocity formulation. The bounded
domain Ω is imbedded in a periodic domain and the no-
slip boundary conditions on the wall ∂Ω are imposed using
a volume penalization method. A mathematical analysis of
the method is given in [1], proving its convergence towards
the Navier–Stokes equations with no-slip boundary conditions.
Details on the code, together with its numerical validation, can
be found in [21]. The governing equations in vorticity-velocity
formulation, written in dimensionless form, are

∂tω + Eu · ∇ω − ν ∇
2 ω + ∇ ×

(
1
η
χ Eu

)
= 0, (1)

where Eu is the divergence-free velocity field, i.e., ∇ · Eu = 0,
ω = ∇ × Eu the vorticity, ν the kinematic viscosity and χ(Ex)
a mask function which is 0 inside the fluid, i.e., Ex ∈ Ω , and 1
inside the solid wall.

Four different geometries are considered: a circle with radius
R = 2.8, a square of sidelength S = 5.712, an equilateral
triangle with sidelength T = 5.8 and an annulus with minor
radius Rm = 0.8 and major radius RM = 2.8. All domains are
centred inside the periodic square domain of size L = 2π . The
viscosity is set to ν = 0.001. For all computations the resolution
is N = 2562 and the penalization parameter η is chosen to be
sufficiently small (η = 10−3) [21].

Different integral quantities, the energy E , enstrophy Z and
palinstrophy P , can be defined as [11]

E =
1
2

∫
Ω

|Eu|
2dEx, Z =

1
2

∫
Ω

|ω|
2dEx,

P =
1
2

∫
Ω

|∇ω|
2dEx, (2)

respectively.
Table 1
Properties for different geometries

Circle Triangle Annulus Square

tν 200 180 210 280
Theor. EV µ1 1.87 – 2.73 1.60
Estim. EV 1.89 5.88 2.74 1.70
Estim. α 1.90 4.25 2.70 1.70

Viscous time, theoretical eigenvalues [10,12], eigenvalues estimated from the
energy and enstrophy decay (Fig. 2) and estimated slope of the linear functional
relationship at final instants (Fig. 4).

The energy dissipation is given by dt E = −2νZ and the
enstrophy dissipation by

dt Z = −2νP + ν

∮
∂Ω
ω(En · ∇ω)ds, (3)

where En denotes the outer normal vector with respect to the
boundary of the domain ∂Ω . The line integral in (3) reflects
the enstrophy production at the wall, involving the vorticity and
its gradients, which is due to the no-slip boundary conditions.
This second term is not present in the case of periodic boundary
conditions.

3. Viscous eigenmodes of the Stokes flow

Final decay of two-dimensional turbulence in bounded
domains with no-slip boundary conditions is characterized by
a self-similar decay of the fundamental mode of the Stokes
flow [5]. For a square domain an analytical expression was
derived, either for stress-free [9], or for no-slip boundary
conditions [10]. For the later case numerical computations
of the Stokes eigenmodes and the corresponding eigenvalues
were presented in [14]. The solution of the vorticity equation
neglecting the nonlinear term

∂tω − ν ∇
2 ω = 0 (4)

is expressed as a superposition of exponentially decaying
modes, each characterized by an eigenvalue µn ,

ω(Ex, t) =

∑
µ

Cµ ωµ(Ex) e−µnνt , (5)

with µn > 0, and where the constants Cµ are determined by the
initial conditions. For each value ofµn the following Helmholtz
equation for ωµ(Ex) has to be solved.

∇
2ωµ(Ex)+ µωµ(Ex) = 0. (6)

Since for the vorticity no boundary condition is available we
consider instead the streamfunction ψ . Replacing in Eq. (6)
ω = ∇

2ψ , we obtain a fourth order PDE

∇
4ψµ(Ex)+ µ∇

2ψµ(Ex) = 0. (7)

The no-slip boundary condition of the velocity yields for the
stream function ψ =

∂ψ
∂n = 0.

The available theoretical lowest eigenvalues for the circular,
annular and square geometry are given in Table 1. For the circle
the eigenvalue is the square of the first zero crossing of the
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Bessel function of order one, divided by the square of the radius
R, to take into account the domain size. For the square domain,
the value given in [10] has to be multiplied by (π/(S/2))2,
which corresponds to the value computed numerically in [14]
divided by (S/2)2, due to different normalizations. Analytical
expressions for the Stokes eigenfunctions of the annular domain
can be found in [12]. The corresponding eigenvalues are given
by a transcendent equation containing Bessel functions of the
first and second kind. More details on the eigenmodes of the
circular and annular domains are given in the Appendix.

4. Numerical results

Starting with the same random initial conditions, i.e., a
correlated Gaussian noise with an energy spectrum E(k) ∝

k−4, we compute the flow evolution in the four different
geometries for initial Reynolds numbers, Re = 2D

√
2E/ν, of

about 1000 (where D corresponds to the characteristic domain
size). Fig. 1 shows the vorticity fields at early, intermediate and
late times, for circular, square, triangular and annular domains.
All flows organize into larger and larger scale structures until
reaching the domain size and forming a structure which then no
more evolves. For the circular geometry (Fig. 1, top) we observe
the transition via a quasi-dipolar structure, before reaching the
final state where a monopole is formed. It consists of a negative
circular vortex surrounded by a band of positive vorticity which
forms a kind of circular jet. The final state of the annular
geometry (Fig. 1, bottom) corresponds to two ring-shaped
bands of oppositely signed vorticity which corresponds to a
circular jet. During the transition phase, a triangularly shaped
vortical structure forms which is surrounded by three positive
vortices. For the triangle and the square domain (Fig. 1, middle)
we see that the final state is not yet completely reached. During
the transition phase we observe a tripole which evolves towards
a kind of circular jet as for the circular and annular domains.
In the present simulations the infinite sequence of corner
eddies of the Stokes eigenmodes, predicted by Moffatt [18]
and computed numerically in [14], cannot be observed for the
triangular and square domains. Indeed, the magnitude of these
vortices decays exponentially and a high resolution spectral
method where the basis functions satisfy the no-slip boundary
conditions would be required for observing them.

Figs. 2 and 3 present the decay of different integral
quantities, energy (Fig. 2, left), enstrophy (Fig. 2, right) and
palinstrophy (Fig. 3, left) for the four geometries. All quantities
exhibit at early times a rapid monotonuous decay, which is
partly due to the fact that the flow has first to adjust to the
boundary conditions, since the initial conditions do not satisfy
them. For the square, circular and triangular geometries we
observe an oscillatory behaviour in the palinstrophy decay,
which is, however, less pronounced for the latter case. These
oscillations are due to the enstrophy production at the wall.
Considering the decay of the fundamental Stokes mode, we
can characterize the long time decay of energy, enstrophy
and palinstrophy, to be proportional to exp(−2µνt) according
to Eq. (5). At later times we find indeed, for all geometries
and all quantities, an exponential decay behaviour for which
Fig. 1. 2d decaying turbulence in bounded domains. Vorticity fields at early
(left), intermediate (middle) and late times (right). From top to bottom: circle,
square, triangle and annulus.

the decay rates depend on the geometry. Table 1 presents
the time instant tν when viscous decay starts to dominate for
the different geometries. It is identified by considering the
palinstrophy evolution and detecting the moment when the
decay slows down and becomes exponential. We computed
slopes by fitting an exponential curve using a least square
method, applied to both energy and enstrophy evolution, which
yield similar results. The square domain shows the slowest
decay for all quantities, followed by the circle, the annulus,
while the triangle exhibits the fastest decay. To get an estimation
of the eigenvalue µ we divide the slopes thus obtained by twice
the viscosity. The resulting estimated eigenvalues µ are given
in Table 1 and are compared with the theoretical values based
on the Stokes eigenmodes, given in [10] for the circle and
the square geometry, and in [12] for the annulus. Note that
the theoretical values are adapted to our normalization. The
estimated eigenvalues agree well with the available theoretical
values for all geometries.

The time evolution of the mean square wavenumber kλ =
√

Z/E , which is inversely proportional to the Taylor microscale
λ, is plotted in Fig. 3, right. It is measuring the inverse average
vortex size in the flow and is bounded from below by the size of

the domain. For unbounded flows, one can show that
dk2
λ

dt ≤ 0,
i.e., the average vortex size is monotonously increasing [17].
In the present cases we observe a monotonous decay at early
times. At later times a nonmonotonous behaviour is found
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Fig. 2. Decay of energy E(t) (left) and enstrophy Z(t) (right) for circular, square, triangular and annular domains.

Fig. 3. Decay of palinstrophy P(t) (left) and the normalized mean square wavenumber kλ(t)/kλ(0) (right), for circular, square, triangular and annular domains.
which is due to the intermittent generation of vortices at the
no-slip wall (cf. Fig. 3, right). Note that in [22] we also found
a nonmonotonous behaviour for a circular domain at higher
Reynolds number (Re = 50 000). At late times, the mean
square wavenumber becomes constant for all cases, which
confirms that the size of the structure is not changing anymore.
The coherence scatter plot, defined as the pointwise correlation
between vorticity and stream function, is shown in Fig. 4 for
the four geometries at the corresponding final instant of the
simulations. The coherence plot measures the self-organization
of the flow. A functional relationship between ω and ψ implies
that the nonlinearity has been depleted, and that the flow has
reached a quasi-stationary state.

For the flows in bounded domains considered here we find a
linear functional relationship between ω and ψ , i.e., ω = F(ψ)
with F(ψ) = αψ in the four cases. This is in agreement with
the linear relationship found in [10] for the square domain. We
also observe that close to the wall the linear relationship is
less pronounced. For the triangular domain we still have some
scattering which might be due to the persistence of higher order
eigenmodes. The values of α, obtained by fitting a straight
line in the scatter plot (Fig. 4), are given in Table 1 and they
agree approximately with the eigenvalues of the corresponding
geometry.

5. Conclusion

By means of DNS of wall-bounded flows in domains of
different geometries, we have shown that no-slip boundary
conditions and the geometry of the domain play a crucial role
for the decay of turbulent flows. At early times, we observe
a decay of the flow which leads to self-organization and the
emergence of vortices in the bulk flow, similarly to flows in
periodic domains. At later times, larger scale structures form
which depend on the domain geometry, and they finally relax
towards quasi-steady states. The present results confirm both
numerical and experimental studies performed for circular and
square domains [16,7].

In contrast to simulations of two-dimensional turbulence
in periodic domains, we do not observe selective decay in
bounded domains with no slip boundary conditions, since in
this case energy is no more conserved but strongly dissipated.
The viscous dissipation becomes the dominant mechanism
of these final states, which correspond to the fundamental
Stokes eigenmodes of the different geometries. The nonlinear
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Fig. 4. Coherence scatter plot for the different geometries at final instants: circle (top, left), square (top, right), triangle (bottom, left) and annulus (bottom, right).
term in the Navier–Stokes equations is depleted and we
observe a functional relationship between streamfunction and
vorticity. For wall-bounded domains this relationship is linear,
corresponding to the eigenmodes. This linear relationship,
originally suggested by Batchelor [3], corresponds to steady
motion of an inviscid fluid, or, when multiplied by exp(−µνt)
to decaying motion of viscous fluid. The observed decay ratesµ
of the exponentially decaying energy and enstrophy agree well
with the smallest eigenvalues of the Stokes eigenmodes of the
different geometries.
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Appendix

In the following we present the eigenfunctions and
the corresponding eigenvalues for the circular and annular
domains. Their derivation in velocity-pressure formulation can
be found in the original papers [20,12].
For the circular domain with radius R the azimuthally
symmetrical solutions of Eq. (7) are given by [20]

ψµ(r) = J0(
√
µnr)− J0(

√
µn R) (8)

with r = |Ex | and where J0 denotes the Bessel function of first
kind of order zero. The eigenvalues µn are obtained from the
zeros of the Bessel function of first kind of order one, i.e.,

J1(
√
µn R) = 0 (9)

which yields for the lowest eigenvalue, µ1 = 1.873 (with
R = 2.8). Note that (8) satisfies ψµ(r = R) = 0 and
∂rψµ(r = R) = 0.

For the solution of the vorticity equation (5) we get
correspondingly

ω(r, t) =

∑
n

cnµn J0(
√
µnr)e−µnνt . (10)

For the annular domain with minor radius Rm and major radius
RM the azimuthally symmetrical solutions of Eq. (7) are given
by [12]

ψµ(r) = J0(
√
µnr)− J0(

√
µn RM )
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−
J1(

√
µn Rm)

Y1(
√
µn Rm)

(
Y0(

√
µnr)− Y0(

√
µn RM )

)
, (11)

where Y0 and Y1 denote the Bessel functions of second kind
(also called Weber functions) of order 0 and 1, respectively.

The eigenvalues µn are solutions of the transcendent
equation

J1(
√
µn RM )Y1(

√
µn Rm)− J1(

√
µn Rm)Y1(

√
µn RM ) = 0

(12)

which yields (using Maple) for the lowest eigenvalue, µ1 =

2.731 (with Rm = 0.8 and RM = 2.8).
For the vorticity in eq. (5) we get

ω(r, t) =

∑
n

dn µn

[
J0(

√
µnr)

−
J1(

√
µn Rm)

Y1(
√
µn Rm)

J0(
√
µnr)

]
e−µnνt . (13)

For the square and triangular domains there are to our
knowledge no explicit expressions available.
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