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Abstract We present fully adaptive multiresolution methods for a class of spatially two-
dimensional reaction-diffusion systems which describe excitable media and often give rise
to the formation of spiral waves. A novel model ingredient is a strongly degenerate diffusion
term that controls the degree of spatial coherence and serves as a mechanism for obtaining
sharper wave fronts. The multiresolution method is formulated on the basis of two alterna-
tive reference schemes, namely a classical finite volume method, and Barkley’s approach
(Barkley in Phys. D 49:61–70, 1991), which consists in separating the computation of the
nonlinear reaction terms from that of the piecewise linear diffusion. The proposed methods
are enhanced with local time stepping to attain local adaptivity both in space and time. The
computational efficiency and the numerical precision of our methods are assessed. Results
illustrate that the fully adaptive methods provide stable approximations and substantial sav-
ings in memory storage and CPU time while preserving the accuracy of the discretizations
on the corresponding finest uniform grid.

Keywords Spiral waves · Adaptive multiresolution scheme · Finite volume
approximation · FitzHugh-Nagumo model · Barkley model · Aliev-Panfilov model

R. Bürger
CI²MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C,
Concepción, Chile
e-mail: rburger@ing-mat.udec.cl

R. Ruiz-Baier (�)
Modelling and Scientific Computing, CMCS-MATHICSE-SB, École Polytechnique Fédérale
de Lausanne, EPFL, Station 8, 1015 Lausanne, Switzerland
e-mail: ricardo.ruiz@epfl.ch

K. Schneider
Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue Joliot-Curie,
13453 Marseille cedex 13, France
e-mail: kschneid@cmi.univ-mrs.fr

mailto:rburger@ing-mat.udec.cl
mailto:ricardo.ruiz@epfl.ch
mailto:kschneid@cmi.univ-mrs.fr


J Sci Comput

1 Introduction

1.1 Scope

Nonlinear reaction-diffusion systems are widely used models of excitable chemical and bi-
ological media that in many cases exhibit rich spatio-temporal multiscale dynamics. It is
well known that even when the medium is homogeneous, patterns with nontrivial spatial
structure (pulses, fronts, spiral waves and others) can emerge. We are particularly interested
in spiral waves, which have been observed experimentally in excitable media of different
origins [22–25, 29, 56, 60, 61, 66]. In these systems, an impulse over a certain threshold
initiates a wave of activity moving across the excitable medium. Spiral waves appear, for
example, in the solution of systems describing the interaction of activators and inhibitors
such as the well-known Belousov-Zhabotinsky reaction [66] (see also [63, 67]), arrhythmias
in cardiac tissue [35], fibrillation in atrial tissue, retinal and cortical neural preparations,
chemotaxis by amoebae forming multicellular structures [22, 28, 29, 38, 43, 56, 58, 60],
patterns on premixed gaseous flame fronts [33, 42, 48, 50], and two-dimensional arrays of
electronic circuits [32, 49]. (The list of references is far from being complete.) Among these
applications, one of the most studied is the propagation of electrical activity in cardiac tis-
sue. This phenomenon involves the interaction of different ion species across a combination
of active and passive ion channels and diffusion of charge through a heterogeneous substrate
with dynamically changing conductances [36, 46]. Several tachycardias are closely related
to the formation and break-up of spiral waves [37, 68]. The formation and control of spirals
has been studied by numerous methods, including bifurcation analysis [39, 54], numerical
simulation of PDEs [2, 17, 47, 62, 68] and stochastic PDEs [53, 65], cellular automata [25],
matched asymptotic expansions [39], phase equations, and various applicative phenomeno-
logical models [42, 43, 52, 56, 57, 60].

In this work, we consider the following spatially two-dimensional model for the descrip-
tion of waves in excitable media, namely a reaction-diffusion system of the generic form

∂tu = �A(u) + f (u, v), ∂tv = g(u, v), (1)

where A(u) ≥ 0 is a non-decreasing and Lipschitz continuous diffusion function. The com-
mon case of a constant diffusion coefficient is covered by

A(u) = Du, D > 0, (2)

but alternatively, we also allow A(u) to vanish on u-intervals of positive length, and will
utilize in some of the numerical examples the following expression as a prototype model for
this situation:

A(u) =
{

0 for u ≤ u∗,

D · (u − u∗) otherwise,
D > 0, (3)

where u∗ is a given constant. Observe that using (3) turns the u-equation in (1) into an
ordinary differential equation, and therefore spatial coherence is locally lost wherever A(u)

is flat, that is, where u ≤ u∗, so the solution value u∗ is considered as a threshold for the onset
of diffusion. The location of the interface u = u∗ is not known a priori, but is part of the
solution. Degenerate parabolic equations in mathematical biology were first motivated by
Witelski [64] (see also [6], where a non-linear, pointwise degenerating diffusion coefficient
accounts for a volume filling effect). Numerical solutions to reaction-diffusion systems with
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strongly degenerate diffusion exhibit a behaviour that can be surprisingly different from of
the same system with a constant diffusion coefficient when parameters are chosen such that
the latter case gives rise to Turing-type pattern formation [5].

The unknowns in (1) are the excitation variable u = u(x, y, t) and the recovery vari-
able v = v(x, y, t), which vary on fast and slow time scales, respectively. The functions
f (u, v) and g(u, v) express the local reaction kinetics of the species. A standard choice is
the FitzHugh-Nagumo kinetics [36]:

f (u, v) = 1

ρ

(
u(1 − u)(u + a) − v

)
, g(u, v) = u − bv, (4)

where the constants a and b control the excitability threshold and duration, and the parame-
ter ρ > 0 determines the time scale of the fast variable u. In this work we will concentrate,
however, on the modifications of (4) due to Barkley [2] and Aliev and Panfilov [1], respec-
tively. The model by Barkley [2] is given by

f (u, v) = 1

ρ
u(1 − u)

(
u − v + b

a

)
, g(u, v) = u − v, (5)

where the constants a, b and ρ > 0 play similar roles as in (4). In particular, ρ is usually
selected very small, such that the time scale of u can be several orders of magnitude faster
than that of v. In the application to electrical wave propagation in cardiac models, the “fast”
variable u corresponds to the membrane potential, and a and b determine the strength of
the transmembrane currents. A larger value of a would increase the action potential dura-
tion, whereas a larger ratio b/a increases the excitation threshold. The Barkley model (1),
(2), (5) possesses similar dynamics as the FitzHugh-Nagumo model (1), (2), (4), but in ad-
dition permits to employ the explicitly given fixed point and nullclines of u and v for the
implementation of a fast numerical scheme [3] tailored to the algebraic form of (5). It has
therefore become a particularly transparent prototype model for excitable media [31], and
has been studied extensively (see e.g. [3, 17, 39]).

The model by Aliev and Panfilov [1] was advanced as a two-variable model for propaga-
tion in cardiac tissue, which consists in (1), (2) along with the following variant of (4):

f (u, v) = −ku(u − a)(u − 1) − uv + Iext,

g(u, v) =
(

c + d1v

d2 + u

)(−v − ku(u − b − 1)
)
,

(6)

where a, b, c, d1, d2 and k are certain dimensionless parameters and Iext denotes an external
stimulus, i.e., Iext is a given time- or time- and space-dependent function. In comparison
with the classical FitzHugh-Nagumo kinetics (4), the Aliev-Panfilov kinetics (6) is known
to provide more realistic results in the modelling of the electrical activity in ventricular
tissue, for example in terms of shape of the action potential curve [52]. In both models (5)
and (6), the parameters are dimensionless (as is time t ) and will be specified in Sect. 4,
where numerical examples are presented.

It is the purpose of this paper to introduce two variants of a fully adaptive multiresolu-
tion (MR) scheme for the efficient computation of solutions to (1) with non-degenerate or
degenerate diffusion, (2) or (3), in combination with the kinetics (5) or (6). One variant is
based on a standard finite volume scheme (denoted “Scheme A”) which can be applied uni-
versally to reaction-diffusion systems of the type (1); in particular, this variant can handle
both kinetics (5) or (6). A second variant is based on “Scheme B”, which in turn is based



J Sci Comput

on Barkley’s method [2] (see also [3, 17]) devised for (1), (2), (5). Scheme B is based on
avoiding evaluating the Laplacian �A(u) wherever u is close to zero, and employs different
implicit discretizations of the reaction kinetics in dependence of the location of the current
solution value relative to the nullclines of the reaction terms. This method relies on the fact
that u = 0 is a u-nullcline for the Barkley kinetics (5), and can therefore in general not be
applied to the FitzHugh-Nagumo kinetics (4). We demonstrate by numerical experiments
that MR schemes based on both schemes attain considerable speed-up and data compres-
sion while preserving the precision of the underlying scheme. In particular, it turns out that
for Scheme B applied to (1), (2), (5), the width of the boundary layer yields a nearly opti-
mal reference tolerance for the thresholding procedure within the MR method. On the other
hand, in light of the almost radial structure of spiral wave-type solutions, spatially one-
dimensional computations are sufficient to identify the optimal threshold parameter prior
to two-dimensional simulations, so for the problem at hand the implementation of the fully
adaptive MR device produces smaller “overhead” of additional computations than for a gen-
eral two-dimensional reaction-diffusion system [5].

We emphasize here that while the MR device is defined for, and presented herein (in
Sect. 3.1) in a rather general and abstract form, while the MR structure we will actually use
in this work is based on Cartesian meshes.

1.2 Related Work

The excitation dynamics of the PDE model (1) emerges from its ODE version

du

dt
= f (u, v),

dv

dt
= g(u, v), (7)

and is similar for the kinetics (4), (5) and (6). The behaviour can be illustrated most easily for
the Barkley model (5), since the fixed point and nullclines are explicitly given and simply
structured, see Fig. 1. Similar diagrams for this case can also be found in [2, 3, 31, 53];
ours contains, in addition, some trajectories computed numerically by the explicit-implicit
first-order in time scheme described in [2].

For the parameter values D = 1, ρ = 0.05, a = 0.75 and 0 ≤ b < bcr with a critical value
bcr ≈ 0.05, the Barkley model (1), (2), (5) possesses spiral waves [2]. By varying some
of these parameters, the trajectories of the spiral wave tip may undergo bifurcations. The
problem of finding the rotation frequency and the shape of spiral waves as a function of the
parameters in (1), (2), (5) is usually treated by matched-asymptotic expansions of properly
scaled versions of this model, see [39] and the references cited in that paper. In general,
however, it is not so clear which factors influence, or even compel, the onset of spiral waves.
For example, traveling waves may meet an “obstacle” and they “break” [52]. In the context
of applications to cardiac problems, this phenomenon is equivalent to a desynchronization
of cells in their developmental path.

Excitable media can be characterized by the phenomenon of scale separation, since the
time scale of the excitation variable u is essentially shorter than that of the recovery vari-
able v. As a strategy to accurately capture the multiscale patterns produced by the difference
between time scales, and to concentrate computational effort on zones of strong variation,
we present a fully adaptive MR approach. This approach is based on representing the so-
lution at each time on a sequence of nested dyadic grids, where the coefficients of the rep-
resentation, the so-called details, become small on fine levels of resolution wherever the
solution is smooth. Details that are smaller than a level-dependent threshold value may be
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Fig. 1 Schematic phase–space diagram of the ODE system (7) with the Barkley kinetics (5), showing four
computed trajectories and the system nullclines: the v-nullcline g(u, v) = 0 consisting of u = v, and the
u-nullcline f (u, v) = 0 consisting of the three lines u = 0, u = 1 and u = (v + b)/a. The parameters are
a = 0.75, b = 0.02 and ρ = 0.02 (as in Examples 1 and 2 of Sect. 4). The origin is the excitable fixed point
of the system. Initial conditions close to (0,0) but located to the left of u = (v + b)/a lead to solutions
that decay directly into the fixed point, as is shown for the starting points (open circles) A = (0.14,0.1) and
B = (0.41,0.3). Initial conditions to the right of u = (v + b)/a cause a large excursion before returning to
the fixed point, as is shown for the starting points C = (0.18,0.1) and D = (0.442455,0.3). The fat dots are
plotted after every time interval of length 0.1, and illustrate that the dynamics of the excitation variable u

is much faster than that of the recovery variable v. The location of the δ-boundary layer is indicated (see
Sect. 2.2)

discarded, which allows to substantially compress the representation of the numerical solu-
tion in each time step, allowing for substantial data and CPU time savings while controlling
the error. Multiresolution techniques were first introduced by Harten [26] to improve the
performance of schemes for one-dimensional conservation laws. Later on, the original ideas
were extended to related problems [7, 11], leading finally to the concept of fully adaptive
multiresolution schemes [13, 15, 44, 51]. Overviews on multiresolution methods for conser-
vation laws are given in [12, 44].

In this work, our version of the MR method incorporates Barkley’s algorithm [2] to speed
up the simulations of waves in excitable media, known as “Barkley’s trick” (our Scheme B,
see Sect. 2.2), and to the authors’ knowledge, it is the first application of MR techniques to
spiral waves. Other techniques have been proposed by several authors to accurately solve
the system (1). For example, stochastic versions of the model were studied e.g. by Shard-
low [53], who uses numerical methods based on Barkley’s original scheme and on spec-
tral methods; and the FitzHugh-Nagumo model has been studied also using pseudospectral
methods [47]. A nonlinear scaling of u only, which eventually permits an efficient discretiza-
tion using simple data structures, is proposed in [62], and linear finite element methods
combined with a family of partitioning methods is used in [27] to solve related systems.
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1.3 Initial and Boundary Conditions

We consider (1) for (x, y, t) ∈ QT := Ω × [0, T ], where Ω ⊂ R
2 is an open, bounded,

connected polygonal domain with boundary ∂Ω , along with zero-flux boundary conditions

∇A(u) · n = 0 on ∂Ω × (0, T ), (8)

where n is the outer normal vector of ∂Ω , and appropriate initial conditions

u(x, y,0) = u0(x, y), v(x, y,0) = v0(x, y) in Ω. (9)

For the existence and uniqueness of solutions to the initial-boundary value problem (1), (2),
(4) or (5), (8), (9) we refer to results for the FitzHugh-Nagumo equations [59]; see also
[10, 21]. Moreover, in a more general analysis [54], time periodic spiral wave solutions are
proved to exist for a class of kinetic formulations.

1.4 Outline

The remainder of the paper is organized as follows. In Sect. 2 we recall two numerical meth-
ods for obtaining approximate solutions of (1) on uniform fine meshes. These methods play
the role of reference numerical schemes, i.e. they are numerical methods to approximate the
solution of (1) using a space discretization on a uniform mesh. The first method, Scheme A,
is a classical finite volume (FV) scheme based on a first-order Euler time discretization, and
the second, Scheme B, is based on “Barkley’s trick”. Next, in Sect. 3 we will be concerned
with the main ingredients of the MR procedure, which allows to construct space-time adap-
tive schemes based on the reference methods of Sect. 2. The numerical results presented in
Sect. 4 confirm the efficiency of the proposed methods, and finally some concluding remarks
are given in Sect. 5.

2 Reference Numerical Schemes

2.1 A Standard Finite Volume Method (Scheme A)

An admissible mesh for Ω ⊂ R
2 is formed by a family T of control volumes of maximum

diameter h and a family of points (xK)K∈T with the following properties (see for instance
[18, Definition 5.1]). For a given finite volume K ∈ T , xK denotes the center of K and N(K)

the set of neighbors of K which share a common edge with K . Here Eint(K) is the set of
edges of K in the interior of T and Eext(K) the set of edges of K lying on the boundary ∂Ω .
We denote by E (K) = Eint(K) ∪ Eext(K) the set of edges of K . For all L ∈ N(K), d(K,L)

denotes the distance between xK and xL, and we denote by σ = K|L (σ = K|∂Ω , respec-
tively) the interface between K and L (between K and the boundary ∂Ω , respectively).
By ηK,σ we denote the unit normal vector to σ = K|L (σ ∈ Eext(K), respectively) oriented
from K to L (from K to ∂Ω , respectively). Moreover, |K| stands for the two-dimensional
measure of K and |σ | for the one-dimensional measure of σ ∈ E . The admissible mesh also
satisfies that xKxL is orthogonal to σK,L. Numerical fluxes on all edges σ are defined as
follows: {

τσ (A(uL) − A(uK)) for σ = K|L ∈ Eint(K),

0 for σ ∈ Eext(K),
(10)

where the transmissibility coefficients τσ are defined by τσ := |σ |/|d(K,L)| for σ = K|L ∈
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Eint(K). To formulate the underlying scheme, we choose an admissible discretization D of
QT , consisting of an admissible mesh of Ω and a time step size �t > 0. We set tn := n�t

for n ∈ {0, . . . ,N}, where N is the smallest integer such that N�t ≥ T . Now we define

f n
K := f

(
un

K, vn
K

)
, gn

K := g
(
un

K, vn
K

);
these quantities are numerical approximations of the respective averages

1

|K|
∫

K

h
(
u(x, y, tn), v(x, y, tn)

)
d(x, y), h ∈ {f,g}.

The initial data are approximated by their L2 projections in space:

u0
K := 1

|K|
∫

K

u0(x, y)d(x, y), v0
K := 1

|K|
∫

K

v0(x, y)d(x, y).

To advance the numerical solution from tn to tn+1 = tn + �t , we use the following finite
volume scheme (Scheme A for short): Given un

K , vn
K for all K ∈ T , determine (un+1

K )K∈T ,
(vn+1

K )K∈T from the following discrete version of (1)

|K|u
n+1
K − un

K

�t
+

∑
σ∈E(K)

τσ

(
A

(
un+1

L

) − A
(
un+1

K

)) = |K|f n
K, (11)

vn+1
K − vn

K

�t
= gn

K for all K ∈ T . (12)

A CFL stability condition for Scheme A is given by

�t

h

[
‖∂uf ‖∞ + ‖∂vf ‖∞ + ‖∂ug‖∞ + ‖∂vg‖∞ + 4D

h2

]
≤ 1. (13)

Note that if one chooses initial data u0 and v0 assuming values in [0,1] then numerical
solutions of (1) with either kinetics (5) and (6) remain bounded, with u(x, y, t) ∈ [0,1], due
to the particular algebraic forms of f (u, v) and g(u, v) in these cases. This is transparent
for (5), and is confirmed by our numerical results for both cases. Consequently, the norms
appearing in (13) can be bounded a priori.

The definition of numerical fluxes (10) includes the zero-flux boundary conditions. That
the resulting finite volume scheme has a unique solution and that this solution converges to
a weak solution of (1), (2) as the discretization parameters tend to zero follows straightfor-
wardly from classical results (see e.g. [18]). A description of the algorithm can be found
e.g. in [4].

2.2 Local Dynamics and Actively Evaluated Diffusion (Scheme B)

As proposed in [2], for ease of numerical implementation, the computation for (1), (2) or
(3) with the kinetics (5) is split into a semi-implicit integration of the reaction kinetics in
the absence of diffusion, and an active evaluation of the diffusion term which permits us
to evolve the system more efficiently. This approach is strongly based on the assumption
that u ≈ 0 within a layer of a given small width δ at the left branch of the u-nullcline (see
[2] and Fig. 1), meaning that the u-field is flat in the interior of recovery regions. Such
behaviour is met by model (1), (2) or (3), (5), but not by models that involve the FitzHugh-
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Nagumo kinetics (4). Clearly, Scheme B is not applicable in a general situation. We note that
u = 0 is also a nullcline of the Aliev-Panfilov kinetics (6) whenever Iext = 0, and therefore
“Barkley’s trick”, i.e., the active evaluation of the Laplacian �A(u), could potentially be
applied to (1), (2) or (3), (6). However, we have found that the largest portion of gain of
efficiency for Scheme B applied to (1) and (2) or (3) with the Barkley kinetics (5) is due
to the semi-implicit discretization of the reaction terms. These terms are considerably more
complicated in the Aliev-Panfilov kinetics (6), so that part of Scheme B cannot be applied.

Further savings can be achieved in other regions, if the Laplacian is evaluated “actively”
(see details in [2]). This means that the computation of the approximate Laplacian is in-
corporated into the algorithm for the local dynamics in such a way that unnecessary cal-
culations are avoided at points whose contribution to the Laplacian of A(u) is zero. More-
over, only for �t/ρ ≤ 1 can explicit Euler time stepping be used for the time integration
of the u-dynamics; otherwise, two alternative semi-implicit formulas are employed, de-
pending on whether un

K is located to the left or to the right of the excitability threshold
ûn+1

K := (vn
K + b)/a. Each formula prevents the time stepping of the kinetics from over-

shooting the stable branches of the u-nullcline even if �t is large in the “fast” region.
For sake of completeness we detail the main ingredients of one time step of this alter-

native scheme (Scheme B henceforth) for interior cells in the following algorithm. In this
algorithm, Lapm

K denotes an approximate value of �A(u) on K , and we recall that δ is a
given small parameter. The variables m ∈ {0,1} and m′ = 1 − m flag old and new versions
of the discrete Laplacian of A(u).

Algorithm 1 (Scheme B)
Initially Lapm

K = 0, for all m ∈ {0,1}, K ∈ T .

do for all “interior” K ∈ T
if un

K < δ then
un+1

K ← |K|−1�tLapm
K, vn+1

K ← (1 − �t)vn
K

else

ûn+1
K ← 1

a
vn

K + b

a
, vn+1

K ← vn
K + �t

(
un

K − vn
K

)
if �t/ρ ≤ 1 then

un+1
K ← un

K + ρ−1�tun
K

(
1 − un

K

) (
un

K − ûn+1
K

) + |K|−1�tLapm
K

else
if un

K < ûn+1
K then

un+1
K ← un

K

(
1 − ρ−1�t

(
1 − un

K

) (
un

K − ûn+1
K

))−1 + |K|−1�tLapm
K

else
w ← ρ−1�tun

K

(
un

K − ûn+1
K

)
un+1

K ← (
un

K + w
)
(1 + w)−1 + |K|−1�tLapm

K

endif
endif
Lapm′

K ← Lapm′
K − |N(K)|A(un+1

K )

do for all L ∈ N(K)

Lapm′
L ← Lapm′

L + A(un+1
K )

enddo
endif
Lapm

K ← 0
enddo

Swap m and m′.
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For a standard diffusion term (2), the convergence of the numerical solution obtained
from Scheme B in the limit �t,h, δ → 0 follows from standard arguments [55]. Notice that
we update the Lap term in the same way as in Barkley’s work [2]. This treatment is possible
due to the piecewise linearity of the respective diffusion terms (2) and (3).

3 Adaptivity: Multiresolution Framework and Local Time Stepping

In order to equip Schemes A and B with adaptivity, we apply the technique of fully adaptive
multiresolution (MR) (see e.g. [5, 13]). This approach basically consists in representing
and computing the approximate solution on a dynamically evolving adaptive grid, which
is constructed from a sequence of nested grids. On these grids a wavelet basis is defined,
from which small coefficients on fine levels of resolution may be discarded (this operation
is called thresholding), allowing for substantial data compression. Here we briefly recall
some basic aspects of the MR discretization and the data structure which are useful for our
study. For a more detailed description we refer to [8, 51].

3.1 Multiresolution Schemes

For ease of computation, we only consider Cartesian meshes on a rectangular domain, which
after a change of variables can be regarded as Ω = [0,1]2. Nevertheless, the MR analysis
could be carried out for more general meshes, as presented in e.g. [14, 44]. The starting
point consists in determining a nested mesh hierarchy T0 ⊂ · · · ⊂ TH , using a partition of Ω .
Each grid Tl is formed by the control volumes Kl on each level l, l = 0, . . . ,H , where l = 0
corresponds to the coarsest and l = H to the finest level. The refinement sets are defined by

MKl := {
Ll+1

i

}
i
, Kl :=

#M
Kl⋃

i=1

Ll+1
i ,

where Ll+1
i denotes a control volume at the resolution level l + 1, Ll+1

i ⊂ Kl . For x ∈ Kl

the scale box function is defined as

ϕ̃Kl (x) := 1

|Kl |χKl (x),

and therefore the average of any function u(·, t) ∈ L1(Ω) in the cell Kl can be expressed as
the inner product

uKl := 〈
u, ϕ̃Kl

〉
L1(Ω)

.

3.1.1 Projection and Prediction Operators

Cell averages and box functions satisfy the two-level relation:

uKl =
∑

Ll+1
i

∈M
Kl

|Ll+1
i |

|Kl | u
Ll+1

i
, ϕ̃Kl =

∑
Ll+1

i
∈M

Kl

|Ll+1
i |

|Kl | ϕ̃
Ll+1

i
,

which defines a projection operator needed to move from finer to coarser levels.
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An appealing feature is that we can determine a transformation between the cell averages
on level l = H and the cell averages on level l = 0 plus a series of detail coefficients to be
defined later. This transformation is required to be reversible:

ũKl+1 =
∑
T ∈S̄l

K

gl
K,T uT l , (14)

where S̄l
K is the stencil of interpolation or coarsening set, gl

K,T are coefficients, and the
tilde over u in the left-hand side of (14) denotes a predicted value. Relation (14) defines
a prediction operator needed to move from coarser to finer resolution levels. Although this
operator is not unique, it is imposed to be consistent with the projection and local. Even with
these requirements, there are many operators still available, such as the trivial prediction

ũ
Ll+1

i
= uLl for i = 1, . . . ,#MKl .

Typically, however, a polynomial prediction is chosen, which in the particular case of Carte-
sian meshes is defined by

ũLi ,l+1 = uL,l − Qx − Qy + Qxy for i = 1, . . . ,#MKl , (15)

where we define

Qz :=
s∑

n=1

γ̃n

(
uSz,l − uTz,l

)
, z ∈ {x, y},

Qxy :=
s∑

n=1

γ̃n

s∑
p=1

γ̃p

(
uSx,y ,l − uSx,−y ,l − uS−x,y ,l + uS−x,−y ,l

)
.

(16)

Here S±x,±y denote the diagonal neighbors of the control volume S and the corresponding
coefficients for s = 2 are (see [45, 51])

γ̃1 = − 22

128
, γ̃2 = 3

128
. (17)

For x ∈ Kl+1 we define the following wavelet function, which in the discrete cell-average
multiresolution setting, computes the error between a fine-scale average and its predicted
value from coarser scale averages. Therefore the form of this wavelet depends on the choice
of the prediction operator. In the case of the choice (15)–(17), one obtains

ψ̃Kl ,j = ϕ̃
Ll+1

i
−

s∑
m=−s

γ̃i+mϕ̃Ll
i+m

for j = 1, . . . ,#MKl .

The error induced by the prediction operator at the cell Kl is defined as the difference be-
tween the cell average and the predicted value, i.e.,

dKl := uKl − ũKl ,

and using the previously introduced wavelet functions, we may also write

dKl,j := 〈
u, ψ̃Kl ,j

〉
for j = 1, . . . ,#MKl .
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In the case of a multicomponent solution (u, v), on each cell Kl they are computed by

dKl = min
{|uKl − ũKl |, |vKl − ṽKl |}

for the refinement stages and by

dKl = max
{|uKl − ũKl |, |vKl − ṽKl |}

for the coarsening stages of the algorithm.

3.1.2 Thresholding

Details are related to the regularity of a given function. Roughly speaking, the more regular a
function u is over Kl , the smaller is the corresponding detail coefficient. This property moti-
vates the so-called thresholding procedure, which basically consists in discarding all control
volumes corresponding to details that are smaller in absolute value than a level-dependent
tolerance εl . Choosing εl too small or too large will make the multiresolution device inef-
ficient (the compression rate is poor) or deteriorate the quality of the solution due to large
thresholding errors, respectively. A reasonable choice of εl is based on the consideration that
the order of convergence of a given reference scheme should be maintained if this scheme
is endowed with multiresolution. Cohen et al. [13] and Roussel et al. [51] advance a cal-
culus, valid for the respective cases of one-dimensional hyperbolic conservation laws [13]
and multi-dimensional strictly parabolic equations [51], that leads to a value of the so-called
reference tolerance εR provided that among other properties (L1 contractivity of the general
time evolution operator, and L∞ stability of the reference numerical scheme) the reference
scheme has a known order of convergence in space (α = 1/2 and α = 2 for the problems
considered in [13] and [51], respectively).

The latter constant is at present unknown for finite volume discretizations of degener-
ate parabolic equations. However, encouraging numerical results in previous papers includ-
ing [4, 5, 8] indicate that the methodology of [13, 51] can also be successfully applied to
degenerate reaction-diffusion systems when α is a convergence rate obtained from a se-
ries of numerical experiments. This idea will also be applied in the present situation. To
this end, we briefly summarize the basic arguments from [5] adapted to (1). (In fact, the
systems investigated in [5] are of the slightly more general type ut = �A(u) + f (u, v),
vt = �B(u) + g(u, v).) Assume that u = (u, v), and that ūH

ex, ūH
FV and ūH

MR denote the cell
averages of the exact solution, the cell averages of the numerical solution obtained by the
reference finite volume scheme, and the cell averages of the MR numerical solution corre-
sponding to the finest level H , respectively. For a given norm ‖ · ‖ we can then formally
write ‖ūH

ex − ūH
MR‖ ≤ E1 + E2, where E1 := ‖ūH

ex − ūH
FV‖ and E1 := ‖ūH

FV − ūH
MR‖ are the

so-called discretization and perturbation errors, respectively. Now suppose we know that
there exists a (solution-dependent) constant C1 such that E1 ≤ C12−αH . Concerning E2, our
reasoning is based on the analysis by Cohen et al. [13] for scalar conservation laws. They
showed that if the discrete time evolution operator is contractive in the chosen norm and
details on a level l are deleted when they are smaller than a level-dependent tolerance εl

given by

εl = 22(l−H)εR, l = 0, . . . ,H, (18)

where εR is a reference tolerance, then the perturbation error accumulates in time and satis-
fies E2 ≤ C2nεR, where C2 is a constant and n is the number of time steps. At a fixed time
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T = n�t this gives E2 ≤ C2(T /�t)εR. Suppose now that the reference scheme is subject to
a CFL condition of the type

�t ≤ �x2(a�x + b)−1 (19)

(note that (13) can be converted to an inequality of this type), where the constants a and b

depend on the coefficients of the equation under consideration, and �x is the meshwidth
of the finest grid, i.e. �x = C̃(Ω)2−H , where C̃(Ω) depends on the dimension and shape
of Ω . The largest possible time step can then be expressed in terms of 2−H if we consider
equality in (19), i.e.,

�t = (
C̃(Ω)

)2
2−2H

(
C̃(Ω)2−H a + b

)−1
. (20)

Now, if E1 and E2 are supposed to be of the same orders as �x or equivalently, H varies,
then we must have a proportionality of the type εR ∝ 2−αH �t . Replacing �t by the right-
hand side of (20), which in turn represents the CFL condition (as stated above), we obtain an
explicit expression for the reference tolerance provided that the factor of proportionality C

in εR = C2−αH �t is chosen appropriately.
Let us now denote by α the experimental convergence rate of (11)–(12), which by means

of standard preliminary computations (see Example 1) we have found to be α = 1.2. Under
the assumptions of L1 contractivity of the general time evolution operator and stability of
the reference numerical scheme (13), and following the principles outlined above, we then
obtain the following expression for εR:

εR = C
2−(α+2)H

|Ω|(‖∂uf ‖∞ + ‖∂vf ‖∞ + ‖∂ug‖∞ + ‖∂vg‖∞) + D|Ω|3/222+H
, (21)

see e.g. [5] for its deduction. The level-dependent tolerances εl are then given by (18), which
guarantees that the error due to thresholding is of the same order as the discretization error,
and therefore the order of the underlying scheme is preserved. The constant C in (21) has to
be determined by test calculations on a uniform grid, possibly in one space dimension only,
prior to the proper multiresolution simulation. This is documented in detail for Example 4
in Sect. 4.

3.1.3 Dynamic Graded Tree

We organize the cell averages and corresponding details at different levels in a dynamic
graded tree. The root is the basis of the tree. A parent node has four sons, and the sons
of the same parent are called brothers. A node without sons is a leaf. A given node has
s ′ = 2 nearest neighbors in each spatial direction, needed for the computation of the fluxes
of leaves; if these neighbors do not exist, we create them as virtual leaves. Brothers are also
considered nearest neighbors. We denote by � the set of all nodes of the tree and by L(�)

the restriction of � to the leaves. We apply this MR representation to the spatial part of the
function u = (u, v), which corresponds to the numerical solution of the underlying problem
for each time step, so we need to update the tree structure for the proper representation of
the solution during the evolution. To this end, we apply the above thresholding strategy, but
always ensure the graded tree structure of the data. Once the thresholding is performed, we
add to the tree a safety zone, generated by adding one finer level to the tree in all leaves
without violating the graded tree data structure. In addition, to enforce conservativity of the
scheme, we compute only the fluxes at level l + 1 and we set the ingoing flux on the leaf at
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level l equal to the sum of the outgoing fluxes on the leaves of level l + 1 sharing the same
edge, i.e.

FLl→Kl =
∑

S∈M
Kl ,|∂S∩∂L|�=0

FSl+1→T l+1 ,

where T /∈ MKl is a control volume such that |∂T ∩ ∂L| �= 0 and T shares an edge with S.

3.1.4 Data Compression Rate and Speed-up

The quantity η := N/(2−(2H)N + #L(�)), denoted data compression rate [8], is used to
measure the improvement in data compression. Here, N is the number of control volumes
in the full finest grid at level l = H , and #L(�) is the number of leaves. The speed-up V
between the CPU times of the numerical solutions obtained by the FV and MR methods is
defined by V := CPU timeFV/CPU timeMR.

3.2 Local Time Stepping

To achieve further savings in computational time, we utilize the locally varying time step-
ping (LTS) device introduced by Müller and Stiriba [45]. It basically consists in enforcing a
local stability condition by using the same CFL number for all levels, and then evolving all
leaves on level l using the local time step

�tl = 2H−l�t, l = H − 1, . . . ,0,

where �t = �tH corresponds to the time step on the finest level l = H , and for schemes
constructed on the basis of Scheme A, this local stability condition will depend on the CFL
condition given in (13). It is assumed that the fine grid is only used locally, so this strategy
allows us to increase the time step for the major part of the adaptive mesh. In order to always
have at hand the computed fluxes, we need to perform the locally varying time stepping
recursively from fine to coarse levels. If at any instance of the procedure there is a missing
value, we can project the value from the sons nodes or we can predict this value from the
parent nodes. A more detailed description of the locally varying time stepping strategy is
given in the following algorithm (see e.g. [5, 45]), a related technique using two step time–
schemes was proposed in [16]. We here detail only the description for interior cells, and
concentrate on the basis of Scheme B only. (The analogue algorithm based on Scheme A
has already been applied to reaction-diffusion systems, see [5].) This algorithm is similar to
Algorithm 2 in [45] and Algorithm 6.1 in [5]. The basic novelty is part (b) of step 2.

Algorithm 2 (Locally varying intermediate time stepping)

1. Grid adaptation (provided the former sets of leaves and virtual leaves).
2. do k = 1, . . . ,2H (intermediate time steps are n + 2−H ,n + 2 · 2−H ,n + 3 · 2−H , . . . ,

n + 1)
(a) Synchronization:

do l = H, . . . ,1

if 1 � l � l̃k−1 then
if Kl is a virtual leaf then compute kinetics by

f n+k2−H

Kl ← f
n+(k−1)2−H

Kl , gn+k2−H

Kl ← g
n+(k−1)2−H

Kl
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endif
else

if Kl is a leaf then compute kinetics by
f n+k2−H

Kl ← ρ−1un+k2−H

Kl

(
1 − un+k2−H

Kl

)(
un+k2−H

Kl − a−1
[
vn+k2−H

Kl + b
])

gn+k2−H

Kl ← un+k2−H

Kl − vn+k2−H

K,l

endif
if Sl+1, T l+1 are leaves (interface edges) then compute fluxes by

FLl→Kl ←
∑

S∈M
Kl ,|∂S∩∂L|�=0

FSl+1→T l+1

endif
endif

enddo
(b) Time evolution:

do l = 1, . . . ,H

if 1 ≤ l ≤ l̃k−1 then there is no evolution:

u
n+(k+1)2−H

Kl ← un+k2−H

Kl , v
n+(k+1)2−H

Kl ← vn+k2−H

Kl

else
Interior marching formula only for the leaves Kl :

Set Lapm

Kl = 0 for all m ∈ {0,1} (m′ = 1 − m).
if un+k2−H

Kl < δ then

u
n+(k+1)2−H

Kl ← |K|−1�tlLapm

Kl , v
n+(k+1)2−H

Kl ← (1 − �tl)v
n+k2−H

Kl

else

û ← 1

a
vn+k2−H

Kl + b

a
, v

n+(k+1)2−H

Kl ← vn+k2−H

Kl + �tl
(
un+k2−H

Kl − vn+k2−H

Kl

)
if �tl/ρ ≤ 1 then

u
n+(k+1)2−H

Kl ← un+k2−H

Kl + |K|−1�tlLapm

Kl

+ρ−1�tlu
n+k2−L

Kl

(
1 − un+k2−H

Kl

)(
un+k2−H

Kl − û
)

else
if un+k2−H

Kl < û then

u
n+(k+1)2−H

Kl ← |K|−1�tlLapm

Kl

+un+k2−H

Kl

[
1 − ρ−1�tl

(
1 − un+k2−H

Kl

)(
un+k2−H

Kl − û
)]−1

else
w ← ρ−1�tlu

n+k2−H

Kl

(
un+k2−H

Kl − û
)

u
n+(k+1)2−H

Kl ← (
un+k2−H

Kl + w
)
(1 + w)−1 + |K|−1�tlLapm

Kl

endif
endif
Lapm′

Kl ← Lapm′
Kl − |N(Kl)|A(

u
n+(k+1)2−H

Kl

)
do for all L ∈ N(Kl) (in this case, L is at one of the levels l − 1, l, or l + 1)

Lapm′
L ← Lapm′

L + A
(
u

n+(k+1)2−H

Kl

)
enddo

endif
Lapm

Kl ← 0
endif
m ↔ m′

enddo
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(c) Partial grid adaptation each odd intermediate time step:
do l = H, . . . , l̃k + 1

Projection from the leaves.

enddo
do l = l̃k, . . . ,H

Thresholding, prediction, and addition of the safety zone.

enddo
enddo

Here, l̃k denotes the coarsest level containing leaves at the intermediate step k (as intro-
duced in [45]), h(l) is the mesh size on level l. The interior marching formulas are obtained
from Algorithm 1 for the intermediate time steps k = 1, . . . ,2H , for the leaf in the position
K at level l.

4 Numerical Results

Our subsequent simulations will include comparisons based on error analysis. Therefore,
and in the absence of exact solutions for these examples, we compute errors in different
norms using a numerical solution on an extremely fine mesh as a reference solution. To
measure errors between a reference solution zref and an approximate solution zh, at time tn,
we will use normalized Lp-errors:

en
p = ‖zn

ref − zn
h‖p

‖zn
ref‖p

, p = 1,2,∞,

where

‖zn
ref − zn

h‖∞ = max
K∈T

∣∣zn
ref,K − zn

hK

∣∣,
‖zn

ref − zn
h‖p =

(
1

|K|
∑
K∈T

∣∣zn
ref,K − zn

hK

∣∣p)1/p

, p = 1,2.
(22)

Here zn
ref,K stands for the projection of the reference solution onto the control volume K .

Convergence rates for a scalar field z are calculated by r(z) = log(e(z)/e∗(z))[log(h/h∗)]−1,
where e(z) and e∗(z) denote the respective errors computed for two consecutive meshes of
sizes h and h∗. Eventually, we will also need to compute errors between a reference solution
and an approximate solution obtained using multiresolution. In this case, zn

hK
in (22) stands

for the approximate MR solution on the cell K at the finest resolution level l = H . This
value is obtained by applying a prediction procedure from the corresponding leaf whenever
the leaf is not at level l = H .

4.1 Examples 1 and 2

For our first pair of examples, which are included to illustrate the effect of degenerate dif-
fusion independently of the MR device, we consider a simple square domain Ω = [0,180]2

with the following model parameters chosen according to [2]: N = 2002, a = 0.75, b =
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Fig. 2 Examples 1 and 2: Recovery fronts for the Barkley model (1), (5) with a constant diffusion coeffi-
cient (2) (top) and degenerate diffusion (3) (bottom) at times t = 9 (left), t = 18 (middle) and t = 27 (right),
simulated by Scheme B on a uniform grid

Table 1 Example 1: number of control volumes, meshsize h, normalized approximate L1-errors en
1 for the

recovery variable u and observed convergence rates r1(u) at simulated time t = 10 for Schemes A and B

Scheme A Scheme B

Mesh h en
1 r1(u) en

1 r1(u)

80×80 1.8750 2.49 × 10−2 − 6.86 × 10−2 −
200×200 0.7500 3.60 × 10−3 1.2416 9.37 × 10−3 1.0974

400×400 0.3750 5.61 × 10−4 1.1647 9.91 × 10−4 1.1866

800×800 0.1875 9.05 × 10−5 1.1309 1.42 × 10−4 1.2007

0.02, ρ = 0.02, �t = 1802/{5(N − 1)2}, and D = 1. In Example 1, we utilize the stan-
dard diffusion function (2), and in Example 2, the degenerate diffusion function (3) with
u∗ = 0.75. The initial values for both u and v are uniformly distributed for the entire do-
main, however, as discussed in e.g. [65], for patterns to appear, it is sufficient to consider
constant initial data perturbed only on a small portion of the domain. The computation is
done without multiresolution, and Fig. 2 shows snapshots of the numerical solution for u

obtained by using Scheme B with δ = 1 × 10−3 on a uniform mesh. It can be seen that
the recovery fronts are formed by two-armed spiral waves. Moreover, we observe that the
solution for Example 2 exhibits a larger number of spirals, which in turn have sharper fronts.

We select Example 1 for comparison with approximate solutions obtained by Scheme A.
Table 1 illustrates that the approximate errors obtained for Scheme B (i.e., the distance to
a reference solution) are slightly larger than those obtained with Scheme A (the reference
solution is also computed by Scheme A, which may in part explain this “bias”), but still
comparable. Moreover, the approximate convergence rates obtained by both methods are
also comparable, both reaching O(h). Specifically, an order of approximately α = 1.2 is
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Fig. 3 Example 3: initial data for the Barkley model according to [62]

attained, and this value is also needed in the computation of the threshold parameter εR for
MR computations, to be used in the following examples. We also mention that there exists
a notable difference in speed-up between both Schemes A and B. For instance, the CPU
time required to advance the approximate solution until t = 10 has been determinated, and
Scheme B is about four times faster than Scheme A.

4.2 Example 3

In order to understand the differences between the dynamics of both components of the so-
lution, we now perform in Example 3 a computation using the MR scheme, called Scheme
A-MR, which is based on Scheme A as the underlying reference scheme. We select para-
meters according to Weiser [62], namely Ω = [−0.5,0.5]2, D = 0.002, ρ = 0.01, b = 0.01,
and a = 0.8. To initiate the formation of spiral waves, we choose the initial functions

u0(r, θ) := tanh(5θ)φ(r), v0(r, θ) := tanh(5θ)φ(r + 0.5)

(see Fig. 3), where

0 < r =
√

x2 + y2 < 0.5, 0 < θ = arctan(y/x) < 2π,

φ(θ) :=
∑
k∈Z

exp(−2(2πk + θ)2).

We use H = 8 resolution levels for the MR analysis, and as a result of a series of test com-
putations we choose the nearly optimal reference tolerance εR = 3.5 × 10−4 (more details
on the procedure to obtain the value for εR are provided for Example 4). Figure 4 shows
snapshots of both components of the numerical solution along with the adaptive mesh. Fig-
ure 5(a) shows a profile of the approximate solution at y = 0.25 (also for both components
u and v), for the particular time t = 20, along with its corresponding tree structure plotted
in Fig. 5(b). Even though it corresponds to a slice of the spiral wave solution of Fig. 4, this
profile is similar to the behaviour of one-dimensional planar waves. The transition from the
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Fig. 4 Example 3: numerical solution of u and v together with the corresponding adaptive mesh for the
Barkley model at time t = 20, calculated by Scheme A-MR with H = 8 MR levels

Fig. 5 Example 3: (a) profile of the numerical solution at y = 0.25 and (b) corresponding adaptive mesh for
the Barkley model at time t = 20, calculated by Scheme A-MR
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Fig. 6 Example 3: time evolution of the (a) speed-up rate, (b) data compression rates, and (c) normalized
errors for the scheme A-MR

Fig. 7 Example 4: (a) profile of the recovery front and (b) corresponding tree at level y = 120 and time
t = 50, calculated by Scheme B-MR-LTS with δ = 1.0×10−3, H = 8 resolution levels and εR = 1.12×10−3

resting state u ≈ 0 to the excited state u ≈ 1 is a sharp interface propagating through the
excitable medium, as should be expected since the diffusion parameter D is fairly small. In
contrast to this, the “slow” field v shows a much smoother transition. Furthermore, the MR
scheme captures accurately both fast and slow scale features, using the maximum resolution
only on small portions of the domain. Here, we also present the evolution in time of the
compression rates V and η and normalized errors (see Fig. 6).

4.3 Example 4

In Fig. 9 we display the numerical solution computed by Scheme B applying MR and lo-
cally varying time stepping (scheme B-MR-LTS). The solution is plotted along with the cor-
responding positions of the leaves that form the adaptive mesh. For this case (Example 4),
the parameters are the same as in Example 1, except for Ω = [0,160]2 and N = 2562. The
width of the recovery fronts can be seen from a transversal profile of the solution at level
y = 120 with its corresponding tree structure, which is shown in Fig. 7.

For the MR setting we use H = 8 resolution levels. Now, for obtaining an optimal refer-
ence tolerance εR, a more careful consideration needs to be done. Clearly, as is mentioned
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in Sect. 3.1.2, choosing a very small threshold parameter would imply an unnecessary re-
finement, and an overestimation of the tolerance would imply larger errors. To obtain εR

from (21), we need to determine the factor C based on preliminary computations involving
error analysis and comparison of data compression rate η and CPU speed-up V . Basically,
we select the largest value of C (among a finite number of test values) such that both com-
pression rates are maximized while the errors are controlled to have the same slopes as the
reference scheme (A or B). This preliminary study needs to be done just once, and in order to
minimize the required computational effort, we perform these calculations for an auxiliary
one-dimensional problem, which is obtained by fixing a level (y = 120 in our case). Despite
the possible differences between the 2D solution and the planar travelling wave, it is possible
to capture with sufficient accuracy the essential features of the local solution structure (see
e.g. [62]). In practice, we extract a slice of the numerical solution of the two-dimensional
problem at time t = 49.5. Then we use this as initial condition for the one-dimensional
version of (1) and we evolve such a system until we reach t = 50.

A snapshot of the numerical one-dimensional solution at time t = 50 is presented in
Fig. 7, and the preliminary computations to determine the factor C are summarized in Fig. 8.
Note that the value C = 2.5 × 104 yields the optimal threshold εR = 1.12 × 10−3, which
corresponds to εR ≈ δ for the two-dimensional problem. Since δ is the size of the boundary
layer related to the u-nullcline of the system, following the construction of Scheme B, it is
clear that details that are below δ will be not considered neither by the MR device nor by the
reference scheme B. Then, an additional way of obtaining savings in computational effort,
would be to simply set εR = δ, avoiding the computation of εR using (21).

A comparison of the corresponding schemes has been carried out, and from Table 2 it
is clear that the adaptive method based on Scheme A (Scheme A-MR-LTS) yields slightly

Fig. 8 Example 4: determination of the factor C in (21). (a) Data compression rate η, (b) Speed-up factor
V , and (c) normalized L1-errors, for different levels H and values of C at time t = 50

Table 2 Example 4: Corresponding simulated time, used numerical scheme, speed-up rate V , compression
rate η and normalized errors for the recovery variable computed with respect to a reference solution obtained
by Scheme A on a fine mesh of 22·11 = 20482 = 4194304 control volumes

Time Scheme V η en
1 en

2 en∞

t = 20 A-MR-LTS 15.36 21.64 1.24 × 10−4 2.42 × 10−5 3.63 × 10−4

B-MR-LTS 48.21 22.31 4.63 × 10−4 3.51 × 10−5 4.97 × 10−4

t = 50 A-MR-LTS 19.49 11.42 3.60 × 10−4 5.63 × 10−5 1.07 × 10−3

B-MR-LTS 57.25 11.39 5.13 × 10−4 7.29 × 10−5 9.64 × 10−4
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Fig. 9 Example 4: Recovery fronts and leaves of the tree data structure at times t = 20 (left), t = 50 (right).
H = 8 resolution levels and εR = δ = 1 × 10−3, calculated by Scheme B-MR-LTS

smaller error levels than those based on Scheme B (Scheme B-MR-LTS). This is not sur-
prising since we are comparing against a reference solution computed by Scheme A. We
can also notice that the data compression rate is very similar for all times for both methods,
implying that the evolving meshes used by the methods are essentially the same. However,
when using Scheme B-MR-LTS, a substantial improvement is seen in the speed-up. Even
though, such gain in speed-up over the A-MR-LTS scheme is only of about three times and
not four, as reported in Example 1 when comparing Schemes A and B. This apparent in-
consistency could be explained, however, by the sub-linear growth of V induced by the MR
strategy (as reported in Fig. 6(a)).

A difficult task is to compare solutions of systems starting from randomly distributed ini-
tial data. In practice, we compute errors as follows. The system is evolved until the “random
noise” which is imposed as an initial condition on the finest grid has been smoothed suffi-
ciently and has been organized into wave-like structures; then, the solution is projected on
coarser levels to obtain auxiliary initial conditions for all levels required. For example, for
the Scheme B-MR-LTS, the desired smoothing is reached within 100 time steps. This initial
smoothing of the noise is also needed when computing MR solutions, since thresholding
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Fig. 10 Example 5: recovery fronts and adaptive tree structures at times t = 75 (left) and t = 150 (right)
calculated by Scheme A-MR-LTS. Here H = 9 resolution levels are used with a reference tolerance set to
εR = 5.5 × 10−4

initial data with noise would discard significant information and therefore the computations
on the regular fine mesh and the adaptive one will have spurious differences.

4.4 Example 5

In this example, we utilize the model (1), (2) with D = 0.01 and employ the Aliev-Panfilov
kinetics (6) with the parameters a = b = 0.1, k = 8.0, c = 0.01, d1 = 0.12, and d2 = 0.3.
The approximate solution is obtained by Scheme A-MR-LTS, for which the discretization
parameters are H = 9 resolution levels, reference tolerance εR = 5.5 × 10−4, Ω = [0,5]2,
N = 5122. A re-entrant wave is generated using a wavefront as initial data, which after
t = 25 is broken at the center of the domain (external stimulus Iext). Next, the resulting elec-
trical activity (field u) over the homogeneous excited domain and its corresponding adaptive
mesh are illustrated in Figs. 10 and 11. After approximately 10 re-entrant rotations (which
occurs at t ≈ 100), spiral break-up becomes evident near the core, and it will lead the sys-
tem to a state that displays spatiotemporal chaos and spiral turbulence. Approximate errors
and compression rates are depicted in Table 3. It is apparent that as long as the solution
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Fig. 11 Example 5: recovery fronts and adaptive tree structures at times t = 600 (left) and t = 1000 (right)
calculated by Scheme A-MR-LTS. Here H = 9 resolution levels are used with a reference tolerance set to
εR = 5.5 × 10−4

Table 3 Example 5: Computation using Scheme A-MR-LTS. Corresponding simulated time, speed-up
rate V , compression rate η and normalized errors for the recovery variable calculated with respect to a refer-
ence solution obtained by Scheme A on a fine mesh of 4194304 control volumes

Time V η en
1 en

2 en∞

t = 75 16.12 26.87 3.15 × 10−4 8.47 × 10−5 6.11 × 10−4

t = 100 29.41 22.88 5.04 × 10−4 9.62 × 10−5 6.87 × 10−4

t = 150 43.70 19.62 5.91 × 10−4 1.33 × 10−4 7.90 × 10−4

t = 300 61.02 19.01 5.89 × 10−4 1.64 × 10−4 8.61 × 10−4

t = 500 63.33 17.18 7.35 × 10−4 2.17 × 10−4 1.84 × 10−3

t = 1000 68.15 15.77 1.04 × 10−3 2.23 × 10−4 1.97 × 10−3

structure becomes irregular, the data compression rate decreases and the MR looses its ef-
fectiveness. Nevertheless, it is also readily observed the MR-LTS strategy allows savings
around 60 times in terms of speed-up while the errors remain controlled.
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Fig. 12 Examples 6 and 7: Recovery fronts and adaptive tree structures at time t = 80 calculated by Scheme
A-MR-LTS using constant (left) and strongly degenerate diffusion (right). Here H = 9 resolution levels are
used with the reference tolerance εR = 5.5 × 10−4

4.5 Examples 6, 7 and 8

For our last examples we consider (1) with a standard diffusion coefficient (2) and alterna-
tively a degenerating diffusion coefficient (3), where f and g are chosen according to the
Aliev-Panfilov kinetics (6) with the parameters a = b = 0.1, k = 8.0, c = 0.01, d1 = 0.12,
d2 = 0.3, D = 0.01, Ω = [−0.5,0.5]2, as in Example 5. However, in contrast to that ex-
ample, we here do not apply an external stimulus, i.e., we set Iext = 0. Instead, the initial
conditions are explicitly given by

u0(x, y) =
{

1 for x ≥ 0 and −0.01 ≤ y < 0,

0 otherwise,

v0(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x < 0,

1.5 for x ≥ 0 and y < −0.01,

−0.5y for x ≥ 0 and −0.01 ≤ y < 0,

0 otherwise.

(23)
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Fig. 13 Examples 6 and 7: Recovery fronts and adaptive tree structures at time t = 500 calculated by Scheme
A-MR-LTS using constant (left) and strongly degenerate diffusion (right). Here H = 9 resolution levels are
used with a reference tolerance set to εR = 5.5 × 10−4

To ensure that the qualitative features we find are not produced by other artifacts, we perform
two simulations that only differ in the choice of A(u). First, in Example 6, we solve the
problem for a constant diffusion coefficient (2) (which means that the conductivity is the
same through the entire medium), and next, in Example 7, we use the strongly degenerate
diffusion term (3) with u∗ = 0.85. This may correspond to regarding the excitable medium
as for example being injured by the effect of past arrhythmias [57], and not being able to
propagate correctly the electrical potential when this is below the value u∗ = 0.85 (we do
not choose a lower value since typically the repolarization of u involves a jump of 80–
95% [20]). Roughly speaking, from the viewpoint of the equation, diffusion is “turned on”
at the threshold u∗. This effectiveness of diffusion on a smaller u-interval is expected to
exhibit sharper fronts than in the nondegenerate case. The approximate solution is obtained
by scheme A-MR-LTS, for which the discretization parameters are H = 9 resolution levels,
the reference tolerance εR = 5.5 × 10−4, and N = 5122.

We stress that neither the well-posedness analysis and convergence of the numerical so-
lutions obtained by Scheme A (and therefore for scheme A-MR-LTS) are covered for the
model with degenerate diffusion (1), (3), nor is the well-posedness of (1), (3) itself covered
in the case of zero-flux boundary conditions. In fact, significant advances have been made in
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Fig. 14 Examples 6 and 7: profile view at y = 0 of the recovery fronts and corresponding adaptive tree
structures at time t = 500 calculated by Scheme A-MR-LTS using constant (top) and strongly degenerate
diffusion (bottom). Here H = 9 resolution levels are used with a reference tolerance set to εR = 5.5 × 10−4

the well-posedness analysis (see e.g. [9, 40]) and the numerical analysis [19, 34, 41] of scalar
strongly degenerate parabolic equations. The well-posedness of weakly coupled systems of
such equations, of which (1), (3) is a special case, has, however, only been established for
initial value problems (without boundary conditions) [30].

The numerical results are provided in Figs. 12 and 13. Although the approximate solu-
tions obtained with and without degenerate diffusion are obviously different, a qualitative
comparison is possible from Fig. 14, where it can be noticed that as expected, the fronts
obtained with model (1), (3) are indeed sharper.

The spirals produced in the strongly degenerate parabolic case (Example 7), which are
shown in the right plots of Figs. 12 and 13, have a close-to-octagonal shape which is aligned
with the (x, y)-coordinate system. This observation raised the question whether the octago-
nal shape is possibly a numerical artefact associated with the Cartesian computational mesh.
To check this, we performed another numerical experiment (Example 8) based on the same
reaction-diffusion equations as in Example 7, but considering a new computational domain
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Fig. 15 Example 8: Recovery fronts at times t = 80 and t = 500 for the strongly degenerate diffusive case,
calculated by Scheme A-MR-LTS on a domain rotated in counter-clockwise sense by an angle of π/3. The
Cartesian computational grid is aligned with the x- and y-axes

Ω̄ obtained by rotating the domain Ω by an angle of π/3 in the counter-clockwise sense.
The initial datum (23) is rotated correspondingly. The (adaptive) computational grid, how-
ever, for Scheme A-MR-LTS is kept aligned with the x- and y-axes. Figure 15 shows the nu-
merical result. The directions xrot and yrot indicate the orientation of the rotated domain Ω̄ .
We again obtain spirals of close-to-orthogonal shape. However, as we emphasize by some
thin straight lines in both plots of Fig. 15, the axes of “symmetry” of the spirals are aligned
with the orientation of Ω̄ . They are not aligned with the x- and y-axes of the Cartesian
computational grid. In other words, the numerical results of Example 8 are basically rotated
versions of those of Example 7. Thus, we conclude that the close-to-octagonal shape of the
spirals in Figs. 12 and 13 is not a numerical artefact, but is rather associated with the shape
of domain Ω and the initial condition, and particular solution behaviour under degenerate
diffusion.

5 Conclusion

A new fully space-time adaptive MR method has been applied for the simulation of the
complex dynamics of waves in excitable media. The discretization used either a classical
finite volume scheme with explicit time discretization or Barkley’s semi-implicit method
with operator splitting. For both schemes, a detailed numerical study based on a series of
simulation experiments showed that the automatic adaptation strategy is able to track the
spatio-temporal pattern accurately at a substantially reduced computational cost. The non-
linear dynamics of complex multiscale patterns can thus be computed efficiently, also in
the chaotic and turbulent regime which are currently beyond the frontiers of methods using
regular discretizations.

In spite of modelling limitations associated with a simple system such as (1), the pre-
sented method could be of help in the control of more involved biological excitation waves
thanks to the increased computational efficiency. We have also proposed the use of degen-
erate diffusion in the context of spiral waves simulation. The obtained results suggest such
mechanism as an alternative way of numerically achieving sharper fronts in the simulation
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of spiral waves in excitable media. On the other hand, as the discussion of Examples 7 and 8
shows, it appears that degenerate diffusion leads to some intriguing phenomena (such as
close-to-octagonal spirals) that seem to merit further in-depth investigation.

Insights gained from the study of these problems carried out via MR methods could help
in reaching a better understanding of the processes involved in the spiral wave dynamics.
Moreover, current extensions of this study to more general models are envisaged, including
an anisotropic version of (1), and the modelling of the coupling of reaction-diffusion systems
similar to (1), with a model of elasticity to consider motion of the excitable medium in the
context of cardiac applications.
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