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AN INGHAM TYPE PROOF FOR A TWO-GRID OBSERVABILITY THEOREM ∗
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Abstract. Here, we prove the uniform observability of a two-grid method for the semi-discretization
of the 1D-wave equation for a time T > 2

√
2; this time, if the observation is made in (−T/2, T/2),

is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris
Sér. I 338 (2004) 413–418]. Our proof follows an Ingham type approach.
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1. Introduction

We consider the 1D wave equation:⎧⎨
⎩

utt − uxx = 0, 0 < x < 1, 0 < t < T,
u(t, 0) = 0, u(t, 1) = 0, 0 < t < T,
u(0, x) = u0(x), ut(0, x) = u1(x), 0 < x < 1,

(1)

which admits a unique solution u ∈ C([0, T ];H1
0 (0, 1)) ∩ C1([0, T ];L2(0, 1)), for (u0, u1) ∈ H1

0 (0, 1) × L2(0, 1).
The energy of the solution, given by

E(t) =
1
2

∫ 1

0

∣∣ut(t, x)
∣∣2 +

∣∣ux(t, x)
∣∣2dx,

is conserved, that is, E(t) = E(0), 0 ≤ t ≤ T . It is well known that for T ≥ 2 we have the observability
inequality

E(0) ≤ C(T )
∫ T

0

∣∣ux(t, 1)
∣∣2dt (2)

for each solution u of (1), with a constant C(T ) > 0 independent of the initial data (u0, u1). This inequality
means that the energy of the solution can be estimated by the energy concentrated near the endpoint x = 1
and it is also equivalent to the boundary controllability of the wave equation (see, e.g., [7]). For the reader’s
convenience, we recall here the corresponding 1D controllability result, which is equivalent to (2). In fact,
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the observability inequality (2) holds if and only if, for any (y0, y1) ∈ L2(0, 1) × H−1(0, 1), there exists v ∈
L2(0, T ) such that the solution of the controlled wave equation

⎧⎨
⎩

ytt − yxx = 0, 0 < x < 1, 0 < t < T,
y(t, 0) = 0, y(t, 1) = v(t), 0 < t < T,
y(0, x) = y0(x), yt(0, x) = y1(x), 0 < x < 1,

(3)

satisfies
y(T, x) = 0 = ∂ty(T, x) = 0, 0 < x < 1.

Each solution u of (1) satisfies also the extra regularity property

∫ T

0

∣∣ux(t, 1)
∣∣2dt ≤ C(T )E(0), (4)

with another constant C(T ) > 0. The latter inequality is often called the direct inequality, whereas the first one
is called the observability inequality, as we have said before, and we can also name it inverse inequality (cf. [8]
or [9]). The direct inequality is relevant for solving the non-homogeneous boundary problem (3) (see [9]) and
guarantees that the controlled solution of (3) satisfies that y ∈ C([0, T ];L2(0, 1)) ∩ C1([0, T ];H−1(0, 1)).
Finite difference scheme. Now let us consider the classical finite-difference space semi-discretization of the
1D-wave equation, with an odd N ∈ N

∗ and h := 1/(N + 1):

⎧⎨
⎩

u′′j = 1
h2

(
uj+1 − 2uj + uj−1

)
, 0 < t < T, j = 1, 2, . . . , N,

u0 = uN+1 = 0, 0 < t < T,
uj(0) = u0

j , u′j(0) = u1
j , j = 0, . . . , N + 1.

(5)

For each initial condition (u0
j , u

1
j)

N+1
j=0 satisfying the compatibility conditions u0

0 = u0
N+1 = u1

0 = u1
N+1 = 0, the

system (5) has a unique solution, which is explicitly given by

uj(t) =
N∑

|k|=1

akeiλ0
kte

|k|
j , e

|k|
j = sin(j|k|πh), λ0

k =
2
h

sin
(
k
πh

2

)
, (6)

where the coefficients (ak)N
|k|=1 are uniquely determined by the relations

u0
j =

N∑
k=1

(ak + a−k)ek
j , u1

j =
N∑

k=1

iλ0
k(ak − a−k)ek

j , j = 1, . . . , N.

The energy of the system is given by

E0
h(t) =

h

2

N∑
j=0

[
|u′j |2 +

∣∣∣∣uj+1(t) − uj(t)
h

∣∣∣∣
2
]
, (7)

because it is a discretization of the continuous energy. It is also constant in time: E0
h(t) = E0

h(0), 0 < t < T .
Uniform observability inequality. Now, we look for a semi-discrete version of (2), namely, a uniform ob-
servability inequality (or indirect inequality): do we have

E0
h(0) ≤ C(T )

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣
2

dt, (8)
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with a constant C(T ) > 0 independent of the initial conditions and of h? It turns out that the answer is
negative, as it was first noticed in [5]. This phenomenon is now well known and it is due to the effect of spurious
high frequency numerical solutions, and several methods have been designed and analyzed during the last years,
allowing us to avoid the blow-up of the observability constant; see for example [18].

Note that such inequality is also related to the boundary uniform controllability of the solutions, indepen-
dently of the mesh-size and to whether the controls of the semi-discrete scheme converge to those of the wave
equation. This topic has been intensively studied these last years. See [17] for a detailed bibliography. Let us
emphasize that the main property and difficulty is that the constant C(T ) (which may be different at different
places) has to be independent of the mesh-size h.

As in the continuous case, we may also look for a direct inequality: do we have

∫ T

0

∣∣∣∣uN(t)
h

∣∣∣∣
2

dt ≤ C(T )E0
h(0) (9)

with a constant C(T ) > 0 independent of the initial conditions and of h? The latter inequality is true (see
e.g. [5]), and has been proven by a discrete multiplier approach.

Concerning the uniform observability (8), many remedies have been developed and analyzed these last years.
We refer the reader to [17] for a survey of existing methods, and we will mention thereafter only the methods
that we will deal with.

The filtering method. One remedy is to filter out the high frequencies, as it was introduced in [5]. More
precisely, for 0 < α < 1, we can consider the subspace of solutions to (5) or (17) satisfying

ak = 0, |k| ≥ αN.

The two-grid method. We can also recover the uniform observability by taking initial data in a subspace
formed by slowly oscillating initial data obtained by interpolation from data given in a coarser grid. It is the
so-called two-grid method, the main subject of study in our paper. It has been proposed by Glowinski, Li
and Lions [2] (in the context of full finite difference and finite element discretizations in 2D). We suppose that
N ∈ N

∗ is an odd number. Thus let us consider initial conditions satisfying

u0
2k+1 =

u0
2k + u0

2k+2

2
, u1

2k+1 =
u1

2k + u1
2k+2

2
, k = 0, . . . ,

N − 1
2

· (10)

By using the relations (10) in the Fourier series (6), we get for k = 0, . . . , N−1
2 :

{
(λ0

k)2(ak + a−k) = −(λ0
N+1−k)2(aN+1−k + a−N−1+k),

(λ0
k)3(ak − a−k) = −(λ0

N+1−k)3(aN+1−k − a−N−1+k). (11)

By taking the square of the relations and adding the resulting identities, since λ0
k ≤ λ0

N+1−k for k = 1, . . . ,
(N − 1)/2, we obtain

|aN+1−k|2 + |a−N−1+k|2 ≤ (νk)4(|ak|2 + |a−k|2), νk =
λ0

k

λ0
N+1−k

, k = 1, . . . ,
N − 1

2
· (12)

Different methods exist for proving the uniform observability in these classes of initial data; we will deal here
with two of them.

Multiplier type approach. The two-grid method has been at first analysed by Negreanu and Zuazua in [15],
with a discrete multiplier approach. They proved that (8) holds true for T > 4, within the class (10).
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Ingham type approach. Another classical way to study the observability is to use an Ingham type approach.
It consists in using the Fourier series form of the solution under consideration and to use thereafter a theorem
of Ingham or a variant of it.

More precisely, by introducing the Fourier expansion (6) of the solutions and then computing the normal
derivative, for the two-grid method, inequality (8) takes the form

C(T )
N∑

k=1

|λ0
k|2|ak|2 ≤

∫ T

0

∣∣∣∣∣∣
N−1

2∑
|k|=1

ek
N

h
(akeiλ0

kt + bkeiμ0
kt)

∣∣∣∣∣∣
2

dt, μ0
|k| = λ0

N+1−|k|, μ0
−|k| = λ0

−N−1+|k|,

with sequences (ak), (bk) satisfying (11), where b|k| := aN+1−|k| and b−|k| := a−N−1+|k|. From (12), we have in
particular

|bk|2 + |b−k|2 ≤ (νk)4
(|ak|2 + |a−k|2

)
, νk = tan(kπh/2), k = 1, . . . , (N − 1)/2.

So, let us recall the original Ingham theorem [6]:

Theorem 1.1. Let γ > 0 and let (νk) be a strictly increasing sequence satisfying the gap assumption

νk+1 − νk > γ, for k ∈ N.

Then for T > 2π
γ , we have

c
∑

k

|ak|2 ≤
∫ T

0

∣∣∑
k

akeiνkt
∣∣2dt ≤ C

∑
k

|ak|2,

with constants c, C > 0 independent of the sequence (ak).

Remark 1.2. The inequality also holds true under the weaker assumption νk+1 − νk > γ, for k ≥ k0, for a
given integer k0 (cf. [3]). The constants may then depend on the first frequencies corresponding to k = 1, ..., k0

for which the gap condition is not guaranteed (see [12] for example).

Difficulties for an Ingham type approach. Asking for an Ingham type proof of uniform observability seems
quite natural in the context of the 1D wave equation, where the solution is explicitly given by its Fourier series.
It has been applied successfully for some semi-discretizations, like the filtering method [5] or the mixed finite
element method [1]. In the case of the two-grid method, the situation is trickier, we have to face an infinite
number of eigenvalues which can be arbitrarily close to one another. In particular, we cannot apply Theorem 1.1.
The literature in such cases is quite rare (see [10], where a situation of this type is considered, which is however
different from our problem).

Looking at the Figure 1, one can see that there is a compensation between the gaps of the sequences (λ0
k),

(μ0
k) and the coefficient νk. Indeed in the regions where the gap of (μk) is small, the coefficient νk is also small,

and the gap of (λk) is large, so that the term akeiλ0
kt will dominate the term bkeiμ0

kt. On the other hand, when
the coefficient νk gets larger, the gap of (μk) also becomes larger.

New Ingham type theorems. In order to face the situation above, we develop some new Ingham type
theorems, which take care of the situation just mentioned above. We have the following first result.

Theorem 1.3. Let N ∈ N
∗, γ > 0, α > 1/2 and M > 0. Let (λk)N

|k|=1 and (μk)N
|k|=1 be finite sequences such

that

λk+1 − λk > γ, k = 1, . . . , N − 1,−2, . . . ,−N, λ1 − λ−1 > γ, μN − λN > γ, λ−N − μ−N > γ,

μk − μk+1 > γ, |k| ≥ N −Nα, μk ≥ μN−Nα , 1 ≤ k ≤ N −Nα, μk ≤ μ−N+Nα , −1 ≥ k ≥ −N +Nα.
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Figure 1. Relative gaps (λ0
k+1 − λ0

k)/π, (μ0
k − μ0

k+1)/π and coefficient tan2(kπh/2) vs. k/N ,
for N = 101 and k = 1, . . . , (N − 1)/2; resp. a, b and c on the legend.

Then, for all T > 2π
γ

√
max(1, 1/2 +M), there exists a constant C(T ) > 0 such that

C(T )
N∑

|k|=1

|ak|2 ≤
∫ T

0

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt + bkeiμkt

∣∣∣∣∣∣
2

dt,

for all sequences of coefficients (ak)N
|k|=1 and (bk)N

|k|=1 satisfying

|bk|2 + |b−k|2 ≤M2(|ak|2 + |a−k|2), k = 1, . . . , N. (13)

The new feature in this theorem is that there is no gap assumption for the high frequencies, that are
represented by the sequence (μk)N−Nα

|k|=1 . We can remark that, for M > 1/2, the lower bound 2π/γ(M + 1/2) of
the time T is always greater than the bound 2π/γ corresponding to the first sequence (λk)N

|k|=1. In particular,

in the application to the two-grid method, the expected bound 2
√

2 of the sequence (λ0
k)(N−1)/2

|k|=1 cannot be
achieved by this theorem. In order to overcome this difficulty, we have developed another generalization of
Ingham’s theorem, which is the main result of the paper and which will give the sharp time condition T > 2

√
2

for the two-grid method.

Theorem 1.4. Let N ∈ N
∗ be an odd number, h := 1

N+1 and f ∈ C3([−1, 1]) an odd function. Suppose that
• f ′(x) > 0 for 0 ≤ x < 1;
• f ′(1) = 0 and f ′′(1) �= 0.

Define γ > 0 by

γ2 = min
x∈[0,1/2]

min
(
f ′(x)2 + f ′(1 − x)2

2
, f ′(x)2

)
,

and set λk := f(kh)
h , γk := |f ′(kh)| for |k| = 1, . . . , N .

Then for each T > 2π/γ, there exists a constant C(T ) > 0 independent of h, such that we have

∫ T

0

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt

∣∣∣∣∣∣
2

≥ C(T )
N∑

|k|=1

|ak|2,
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for every sequence (ak) satisfying

|aN+1−k|2 + |a−N−1+k|2 ≤
(
γN+1−k

γk

)4 (|ak|2 + |a−k|2
)
, k = 1, . . . , (N − 1)/2.

The main novelty here is that we can mix the gap γ|k| of the low frequencies λk with the gap γN+1−|k| of the

high ones μk, as if we had a mean gap
√

γ2
|k|+γ2

N+1−|k|
2 .

Application for the two-grid method. The main result concerning the application to the two-grid method
can be formulated as follows:

Theorem 1.5. Let I be an interval of length |I| > 2
√

2. Let N be an odd number, h := 1
N+1 .

Then there exists a constant C1(I) independent of h, such that

E0
h(0) ≤ C1(I)

∫
I

∣∣∣∣uN(t)
h

∣∣∣∣
2

dt, (14)

for all the solutions of (5), written in the form (6), with

|aN+1−k|2 + |a−N−1+k|2 ≤ ν4
k

(|ak|2 + |a−k|2
)
,

where νk = tan(kπh/2).

In particular, the solution of the two-grid method satisfies these assumptions (cf. (12)), so that we get the
uniform observability for |I| > 2

√
2. We will discuss in Section 4 the optimality of this result.

Now, we present the plan of the rest of the paper. Section 2 is devoted to analyze the finite difference scheme
by an Ingham type approach. We will at first consider the direct inequality and then prove Theorem 1.5. In
Section 3, we study a more general scheme, namely the θ-scheme (if we take θ = 0, we recover the finite difference
scheme of Sect. 2). We first study the direct inequality by an Ingham type approach. We then give observability
results for the two-grid method : we will apply the multiplier method to obtain a general observability result,
and as a relevant example, we will use Theorem 1.3 for the finite element semi-discretization (which corresponds
to θ = 1/6). In Section 4, we will give necessary conditions for having uniform observability for the schemes
under consideration. Finally, in Section 5, we will prove the Ingham type theorems, which have permitted us
to obtain Theorem 1.5 and the results in Sections 2 and 3.

Notations. In the sequel, the symbol a � b means that there exist two constants c1, c2 > 0 independent of h
and of the numbers ak, bk such that c1a ≤ b ≤ c2a. We will use similarly the notations 	 and 
.

2. Results and proofs for the finite difference case

2.1. The direct inequality

We have already mentioned that the direct inequality always holds by using discrete multipliers (see Sect. 3
for a proof). We may wonder if we can also obtain this result by using Fourier series. We have the following
proposition:

Proposition 2.1. Let N ∈ N
∗, and a finite sequence (λk)N

k=1. Let (Mk)N
k=1 be a positive finite sequence such

that there exist two constants M,γ > 0 verifying

Mk

∑
j,|λk−λj |<γ

Mj ≤M. (15)
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Then for each T > 0 there exists a constant C := C(T, γ,M) > 0 such that

∫ T

0

∣∣∣ N∑
k=1

Mkakeiλkt
∣∣∣2dt ≤ C

N∑
k=1

|ak|2

for all sequences of coefficients (ak)N
|k|=1.

As an application, we can obtain a new proof of (9). Such a proof has its own interest, because it certainly
could be applied to many other situations.

Proposition 2.2. Let N ∈ N
∗ and h := 1

N+1 . Then, for each T > 0, there exists a constant C2(T ) independent
of h, such that ∫ T

0

∣∣∣∣uN(t)
h

∣∣∣∣
2

dt ≤ C2(T )E0
h(0), (16)

for all the solutions of (5).

Proof of Proposition 2.1. We will use this time Ingham’s second method (see e.g. [8]). We use here that a 	 b,
for a ≤ cb, with a number c depending only on γ, T and M . We define

H(x) =
{

cos(π
γ x), if |x| ≤ γ

2

0 otherwise.

Its Fourier transform is given by

h(t) =
∫ ∞

−∞
H(x)e−itxdx =

2γπ cos(γt/2)
π2 − t2γ2

·

Let g be the Fourier transform of the convolution product G := H ∗H . There exists an interval Iγ = ]− rγ , rγ [
such that 1Iγ 	 g, since g(0) = 4γ2/π2 > 0, g = h2 is continuous, nonnegative and depends only on γ. On the
other hand, we have |G| 	 1]−γ,γ[, since H is continuous and vanishes outside ] − γ/2, γ/2[. We then obtain

∫
Iγ

∣∣ N∑
k=1

akeiλkt|2dt 	
∑

|λk−λj |≤γ

MkMj|ak||aj | 	
∑

|λk−λj |≤γ

MkMj(|ak|2 + |aj |2)

	
∑

|λk−λj |≤γ

MkMj|ak|2 =
N∑

k=1

|ak|2Mk

∑
j,|λk−λj |≤γ

Mj 	
N∑

k=1

|ak|2,

which yields the result since we can replace Iγ by [0, T ] with a classical translation argument. �

Proof of Proposition 2.2. The solution is of the form (6) and thus, it suffices to verify condition (15) for the
second term, with Mk = |kh| 
 | sin(kπh)|. We fix γ = π/

√
2, such that we have

|μk − μj | =
∣∣∣∣4h sin

(
(k − j)π

h

4

)
sin
(

(k + j)π
h

4

)∣∣∣∣ 
 |k2 − j2|h,

for |k|, |j| = 1, . . . , N−1
2 . Thus, the condition (15) may be written as

|k|h2
∑

j,|k2−j2|<δ/h

|j| 	 1,
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with a constant δ > 0. If k2 − δ/h ≥ 0, we have

|k|h2
∑

j,|k2−j2|<δ/h

|j| 	 |k|h2
√
k2 + δ/h(

√
k2 + δ/h−

√
k2 − δ/h) 	 |k|h2δ/h

√
k2 + δ/h√

k2 + δ/h+
√
k2 − δ/h

	 kh 	 1.

On the other hand, if k2 − δ/h < 0, we obtain

|k|h2
∑

j,|k2−j2|<δ/h

|j| 	 |k|h2
∑

j,j2�δ/h

|j| 	 |k|h2h−1 	 1,

which yields the result. �

2.2. Uniform observability for the two-grid method

We prove here Theorem 1.5 by applying Theorem 1.4 whose proof is postponed to Section 4.

Proof of Theorem 1.5. By applying Theorem 1.4 with f(x) = 2 sin(πx/2), we have γN+1−k

γk
= |νk|, and we get

∫ T

0

∣∣∣∣∣∣
N−1

2∑
|k|=1

ek
N

h
(akeiλ0

kt + bkeiμ0
kt)

∣∣∣∣∣∣
2

dt ≥ C(T )

N−1
2∑

|k|=1

∣∣∣∣ek
N

h

∣∣∣∣
2

(|ak|2 + |bk|2),

for all the sequences (ak), (bk) satisfying |bk|2 + |b−k|2 ≤ ν4
k

(|ak|2 + |a−k|2
)

and for T > 2
√

2. From the last
relation, and since |ek

N/h| = |λ0
k cos(kπh/2)| ≥ 1/2|λ0

k|, for k = 1, . . . , (N − 1)/2, we obtain that

∫ T

0

∣∣∣∣∣∣
N−1

2∑
|k|=1

ek
N

h
(akeiλ0

kt + bkeiμ0
kt)

∣∣∣∣∣∣
2

dt ≥ C(T )

N−1
2∑

|k|=1

|λ0
k|2|ak|2 ≥ C(T )

N∑
|k|=1

|λ0
k|2|ak|2·

�

3. Results and proofs for the θ-scheme case

3.1. Introduction

We consider here a generalization of the previous scheme (which has been introduced in [13]): the θ-scheme
which is obtained by replacing u′′j with u′′j + θ(u′′j+1 − 2u′′j + u′′j−1) in (5):

⎧⎨
⎩

u′′j + θ(u′′j+1 − 2u′′j + u′′j−1) = 1
h2

(
uj+1 − 2uj + uj−1

)
, 0 < t < T, j = 1, 2, . . . , N

u0 = uN+1 = 0, 0 < t < T
uj(0) = u0

j , u′j(0) = u1
j , j = 0, . . . , N + 1.

(17)

We can notice that (17) is inspired in a dispersive approximation of the wave equation:

utt − θh2Δutt = Δu.

Note that the finite difference scheme corresponds to the case θ = 0. The value θ = 1/6 corresponds to a
finite element semi-discretization (see e.g. [14]), and the value θ = 1/4 can also be derived from a finite element
method, by discretizing the position and the velocity differently and enters in the class of Mixed Finite Element
methods for approximating a given PDE.
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The solution can be developed in Fourier series as in (6), by replacing λ0
k with λθ

k which satisfies

−(λθ
k)2 + θh2(λθ

k)2(λ0
k)2 = −(λ0

k)2.

More precisely, for each initial condition (u0
j , u

1
j)

N+1
j=0 satisfying the compatibility conditions u0

0 = u0
N+1 = u1

0 =
u1

N+1 = 0, system (17) has a unique solution, which is explicitly given by

uj(t) =
N∑

|k|=1

akeiλθ
kte

|k|
j , e

|k|
j = sin(j|k|πh), (18)

where the coefficients (ak)N
|k|=1 are uniquely determined by the relations

u0
j =

N∑
k=1

(ak + a−k)ek
j , u1

j =
N∑

k=1

iλθ
k(ak − a−k)ek

j , j = 1, . . . , N.

The energy of the system is given by

Eθ
h(t) =

h

2

N∑
j=1

(
|u′j |2 − θ|u′j+1 − u′j |2 +

∣∣∣∣uj+1 − uj

h

∣∣∣∣
2
)
,

and it satisfies Eθ
h(t) = Eθ

h(0), for 0 < t < T . Note that Eθ
h(t) is positive for 0 ≤ θ ≤ 1/4:

N∑
j=0

|u′j|2 − θ|u′j+1 − u′j |2 =
N∑

j=0

|u′j|2(1 − 2θ) + 2θ
N∑

j=0

u′ju
′
j+1

≥
N∑

j=0

|u′j|2(1 − 2θ) − θ(|u′j |2 + |u′j+1|2) =
N∑

j=0

|u′j |2(1 − 4θ) ≥ 0.

The uniform observability or inverse inequality is: do we have

Eθ
h(0) ≤ C(T )

(∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣
2

dt+ θ

∫ T

0

∣∣u′N(t)
∣∣2dt

)
, (19)

with a constant C(T ) > 0 independent of the initial conditions and of h?
The direct inequality is: do we have

∫ T

0

∣∣∣∣uN (t)
h

∣∣∣∣
2

dt+ θ

∫ T

0

∣∣u′N(t)
∣∣2dt ≤ C(T )Eθ

h(0), (20)

with a constant C(T ) > 0 independent of the initial conditions and of h?
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3.2. The direct inequality

The direct inequality has been proven for θ = 0 in [5] and [11], for θ = 1/4 in [1], and for θ = 1/6 in [14]
(and can also be stated from [5]). We shall here give a proof with Fourier series, for 0 ≤ θ ≤ 1/4 by applying
Proposition 2.1. Note that we could also get the direct inequality with discrete multipliers by establishing the
following relation

∫ T

0

∣∣∣uN

h

∣∣∣2 + θ|u′N |2dt− Yh(t)|T0 = 2TEθ
h(0) + (2θ − 1/2)h

∫ T

0

N∑
j=0

(u′j+1 − u′j)
2dt,

with

Yh(t) = h

N∑
j=1

j
(
uj+1 − uj−1

)
(u′j + θ(u′j+1 − 2u′j + u′j−1)), which satisfies |Yh(t)| ≤ 2Eθ

h(0).

Proposition 3.1. For each 0 ≤ θ ≤ 1/4 and for T > 0, there exists a constant C(T ) > 0 such that

∫ T

0

∣∣∣∣uN(t)
h

∣∣∣∣
2

dt+
∫ T

0

∣∣u′N (t)
∣∣2dt ≤ C(T )Eθ

h, (21)

for all the solutions of (17).

Proof. We have to prove that

∫ T

0

∣∣∣∣∣∣
N∑

k=(N−1)/2

λ0
kakeiλθ

kt e
k
N

h

∣∣∣∣∣∣
2

≤ C(T )
N∑

k=(N−1)/2

|λ0
k|2|ak|2,

and that ∫ T

0

∣∣∣∣∣∣
N∑

k=(N−1)/2

λθ
ke

k
Nakeiλθ

kt

∣∣∣∣∣∣
2

≤ C(T )
N∑

k=(N−1)/2

|λ0
k|2|ak|2,

for 0 ≤ θ < 1/4. Thus, we have to check the assumptions of Proposition 2.1, with Mk = |kh|, since

∣∣∣∣∣ e
N+1−k
N

hλ0
N+1−k

∣∣∣∣∣ = | sin(kπh/2)| ≤ C|kh|, and

∣∣∣∣∣e
N+1−k
N λθ

N+1−k

λ0
N+1−k

∣∣∣∣∣ ≤ C|eN+1−k
N | ≤ C|kh|.

By following the proof of Proposition 2.2, we see that we only have to verify that

∣∣λθ
N+1−k − λθ

N+1−j

∣∣ ≥ Ch|k2 − j2|. (22)

For this, we set ϕ(x) = gθ(1 − x). Note that ϕ′(x) < 0 for 0 < x ≤ 1, ϕ′(0) = 0 and ϕ′′(0) �= 0, so that the
function ψ(x) = ϕ(

√
x) satisfies ψ′(x) �= 0, for 0 ≤ x ≤ 1. We then get

∣∣ϕ(x) − ϕ(x′)
∣∣ ≥ C|x2 − x′2|,

which gives (22). �
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3.3. Uniform observability for the two-grid method

As we will see in Section 4, the uniform observability inequality (19) cannot hold for all initial conditions,
for 0 ≤ θ < 1/4. It holds however when we apply the two-grid method.

By substituting the relations (10) into the Fourier series (18), we get for k = 0, . . . , N−1
2 :{

(λ0
k)2(ak + a−k) = −(λ0

N+1−k)2(aN+1−k + a−N−1+k),
(λ0

k)2λθ
k(ak − a−k) = −(λ0

N+1−k)2λθ
N+1−k(aN+1−k − a−N−1+k).

(23)

By taking the square of the relations and by adding the resulting identities, since λθ
k ≤ λθ

N+1−k for k =
1, . . . , (N − 1)/2, we obtain

|aN+1−k|2 + |a−N−1+k|2 ≤ (νk)4(|ak|2 + |a−k|2), νk =
λ0

k

λ0
N+1−k

, k = 1, . . . ,
N − 1

2
· (24)

The uniform observability has been obtained for the two-grid method [15] (for θ = 0), [14] (for θ = 0 and
θ = 1/6).

Proposition 3.2. For 0 ≤ θ ≤ 1/4, we have

∫ T

0

(∣∣∣uN

h

∣∣∣2 + θ|u′N |2
)

dt ≥ (T/(1 − 2θ) − 4)Eθ
h(0), (25)

for all solution of (17) written in the form (18) with (24).

Remark 3.3. • For θ = 0, we recover the results T > 4 obtained in [15] and [14].
• For θ = 1/6 we get the time T > 2 + 2/3, which is better than the condition T > 4 obtained in [14].
• As θ tends to 1/4, we approach the time 2 of the continuous case. Note that for θ = 1/4, we do not need the

restriction (10) of the initial data: we refer to [1], where the uniform observability of the mixed finite element
method is discussed.

• For each 0 ≤ θ ≤ 1/4, by applying the same techniques for the filtering method with parameter α = 1/2,
we would obtain the same time (see [5], where the case θ = 0 and θ = 1/6 are discussed).

Proof. We set Cθ := 1−4θ
1−2θ , which satisfies for k = 1, . . . , (N − 1)/2

(1/2 − 2θ)|λθ
N+1−k|2h2 ≥ Cθ.

Thus, thanks to the choice of the initial data, we obtain

(2θ− 1/2)h
N∑

j=0

|u′j+1 − u′j |2 −CθE
θ
h =

N∑
|k|=1

((2θ− 1/2)
h2

2
|λ0

k|2|λθ
k|2 −Cθ/2|λ0

k|2)|ak|2 ≤
(N−1)/2∑

k=1

d|k||λ0
k|2/2|ak|2,

where, for k = 1, . . . , (N − 1)/2 and 0 ≤ θ ≤ 1/4 we have

dk := ((1/2 − 2θ)|λθ
k|2h2 − Cθ) + |(1/2 − 2θ)|λθ

N+1−k|2h2 − Cθ| · |νk|2
= Cθ((1/2−θ)(|λθ

k|2h2+|λθ
N+1−k|2h2|νk|2)−1−|νk|2) = Cθ(|λ0

N+1−k|2h2(1−θh2|λ0
N+1−k|2)(1−θh2|λ0

k|2))−1ek,

with

ek := ((1/2 − θ)(|λ0
k||λ0

N+1−k|2h4(2 − 4θ) + |νk|2) − 4(1 − θh2|λ0
N+1−k|2)(1 − θh2|λ0

k|2))
= −4 + 16θ + |λ0

k|2|λ0
N+1−k|2h4((−θ + 1/2)(2 − 4θ) − 4θ2) = (−1 + 4θ)(4 − |λ0

k|2|λ0
N+1−k|2h4) ≤ 0.
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Figure 2. Relative gap (λθ
k+1 − λθ

k)/π vs. k/N , for N = 101 and k = 1, . . . , N in the case of
the finite element method (i.e. θ = 1/6).

We finally get ∫ T

0

(∣∣∣uN

h

∣∣∣2 + θ|u′N |2
)

dt ≥ ((2 − Cθ)T − 4)Eθ
h(0),

which means that (25) holds. �

The finite element method (θ = 1/6) and the Ingham type approach for the two-grid method. We
have already seen in Proposition 3.2 that with the multiplier method, the observability holds for T > 2 + 2/3.
We underline that this holds within the class of two-grid data. By applying an Ingham type approach, we can
improve this time as follows. Applying Theorem 1.3 we obtain the observability inequality for

T > 2π/γ
√
M + 1/2 = 2

√
3/2 =

√
6(< 2.45)

by taking M = 1 and γ = π. We can improve this further, because the gap γ̃ near k = N/2 is larger. We can
thus replace M by M

(
γ
γ̃

)2. We have here γ = π and γ̃ = 3
√

3π
4 , so that

M

(
γ

γ̃

)2

= 16/27,

and we get the observability property for

T > 2
√

1/2 + 16/27 = 2

√
59
54

(< 2.1).

Looking at Figure 2, we see that the gap of the low frequencies (the eigenvalues λθ
k, for |k| ≤ (N − 1)/2)

is always larger than π. This implies that the optimal time for the filtered solutions corresponding to the
parameter α = 1/2 is 2 (we will recall this fact in the subsection 4, for the case of the finite difference scheme,
but the proof is similar in the finite element method case). We may then obtain 2 as optimal time for the two
grid method by using the technic developed in [4].
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4. Necessary conditions for uniform observability

We establish here necessary conditions for the uniform observability, for the different schemes and methods
under consideration. Note that such results have already been pointed out (see [5]) and are often explained in
terms of the group velocity, by analyzing the dispersion curves (see e.g. [15] and [16]).

Lack of uniform observability for the θ-scheme (0 ≤ θ < 1/4). Even if the direct inequality (20) holds,
it turns out that the inverse inequality (19) fails, as it is explained e.g. in [5] or [17] (there, the inequality (19)
was considered for θ = 0 and θ = 1/6). We will prove here that we cannot have

Eθ
h ≤ C(T )

∫ T

0

(∣∣∣∣uN(t)
h

∣∣∣∣
2

+
∣∣u′N(t)

∣∣2)dt, (26)

for 0 ≤ θ < 1/4.
By substituting (6) into (26), the inequality (26) becomes

C(T )
N∑

|k|=1

|λ0
k|2|ak|2 ≤

∫ T

0

∣∣∣∣∣∣
N∑

|k|=1

akeiλθ
kt e

k
N

h

∣∣∣∣∣∣
2

dt+
∫ T

0

∣∣∣∣∣∣
N∑

|k|=1

akeiλθ
ktλθ

k

∣∣∣∣∣∣
2

dt, (27)

with a constant C(T ) > 0 independent of the sequence (ak)N
|k|=1 and of h. Since

∫ T

0

∣∣a+ beist
∣∣2dt =

∫ T

0

∣∣∣∣a+ b+ bs
eist − 1

s

∣∣∣∣
2

dt ≤ 2T |a+ b|2 + 2s2b2
∫ T

0

∣∣∣∣eist − 1
s

∣∣∣∣
2

dt ≤ 2T (|a+ b|2 + s2b2),

we would have, by taking ak+1 = 1/λ0
k+1 and ak = −1/λ0

k, and the other coefficients equal to zero in (27):

C(T )/T ≤ ∣∣cos(kπh/2) − cos((k + 1)πh/2)
∣∣2 +

∣∣λθ
k/λ

0
k − λθ

k+1/λ
0
k+1

∣∣2 + |λs
k+1 − λs

k|2(cos2(kπh/2) +
∣∣λθ

k/λ
0
k

∣∣2).
Note that λθ

k/λ
0
k = m(kh), with m(τ) = (1− 4θ sin(πτ/2))−1/2, which is bounded with bounded derivatives, for

0 ≤ θ < 1/4. By taking k = N − 1, we get

C(T )/T ≤ C(h2 + |λθ
N − λθ

N−1|2).

Now, we write

λθ
k =

gθ(kh)
h

, (1 − θg0(x)2)gθ(x)2 = g0(x)2, g0(x) = 2 sin(πx/2).

We cannot have gθ(1) = 0, and thus, since (g0)′(1) = 0 we get

2gθ(1)(gθ)′(1)(1 − θgθ(1)2) = 0 ⇒ θ =
1

g0(1)2
=

1
4

or (gθ)′(1) = 0,

so that we obtain, for 0 ≤ θ < 1/4: C(T )/T ≤ C′h2, since (gθ)′′ is bounded. Thus, the uniform observability
inequality does not hold. In fact combining more and more frequencies, it can be shown that the constant blows
up at an arbitrary large polynomial rate.

The filtering method for the finite difference scheme (θ = 0). By the multiplier method, we can obtain
the estimation T > 2/ cos2(απ/2) for the observability property, whereas we have the finer estimate T >
2/ cos(απ/2) by a Ingham type approach (see [5] for a proof).
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Let us show here that the latter estimation is optimal. Thus, we suppose that the uniform observability holds
for a time T . We then have

C1(T )
∑

k

|ak|2 ≤
∫ T

0

∣∣∑
k

akeiλ0
kt
∣∣2dt ≤ C2(T )

∑
|ak|2,

for each finite sequence (ak), such that ak = 0, if |kh| > α. In particular, for each 0 < α′ < α, for N large
enough, the latter inequality will hold, for each sequence ak = 0 such that |k − α′/h| > N1/4.

If |k − α′/h| ≤ N1/4, by developing λ0
k = 2/h sin(α′π/2 + (k − α′/h)πh/2), we have

λ0
k = 2/h sin(α′π/2) + π cos(α′π/2)(k − α′/h) − εk, |εk| ≤ 2/h|k − α′/h|2|πh/2|2 ≤ π2/2

√
h.

Let (ak) be a sequence whose coefficients are zero except a finite number of them. We can choose N large
enough so that, if |k| > N1/4 − 1, we have ak = 0. It follows that

∫ T

0

∣∣∣∣∣
∑

k

akeiπ cos(α′π/2)kt

∣∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣∣
∑

k

bkei(λ0
k+εk)t

∣∣∣∣∣
2

dt ≥
∫ T

0

∣∣∣∣∣
∑

k

bkeiλ0
kt

∣∣∣∣∣
2

dt−A ≥ C(T )
∑

k

|ak|2 −A,

with bk := ak−α′/h (so that if |k − α′/h| > N1/4, we have bk = 0), and with

A :=
∫ T

0

∣∣∣∣∣
∑

k

bkeiλ0
kt(eiεkt − 1)

∣∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣∣
∫ t

0

∑
k

εkbkeiλ0
kteiεksds

∣∣∣∣∣
2

dt ≤
∫ T

0

t2
∫ t

0

∣∣∣∣∣
∑

k

εkbkeiλ0
kteiεks

∣∣∣∣∣
2

ds dt

≤ T 2

∫ T

0

∫ T

0

∣∣∣∣∣
∑

k

εkbkeiλ0
kteiεks

∣∣∣∣∣
2

dt ds ≤ T 3π2/2
√
h
∑

k

|ak|2,

so that the sequence (π cos(α′π/2)k)k∈Z satisfies

∫ T

0

∣∣∣∣∣
∑

k

akeiπ cos(α′π/2)kt

∣∣∣∣∣
2

dt ≥ C(T )
∑

k

|ak|2,

and the constant being independent of the sequence (ak), this inequality cannot hold for T < 2/ cos(α′π/2),
and thus also for T < 2/ cos(απ/2), which ends the proof of the optimality.
The two-grid method for the finite difference scheme: optimal time invariant by translation. We
have seen in Theorem 1.5 that the uniform observability holds for |I| > 2

√
2 (which is better than the time 4

obtained by the multiplier method), within the class of two-grid data. Note that L. Ignat, in his thesis [4],
shows that observability holds in the class of filtered data for all time intervals of length greater than 2

√
2, by

using other methods. At this time, we may wonder if this result is optimal. Thus, let us suppose that a uniform
observability inequality

E0
h(0) ≤ C(T )

∫
I

∣∣∣∣uN (t)
h

∣∣∣∣
2

dt (28)

holds for solutions of the two-grid method, and for every interval I of length greater than T0. We shall prove
that T0 cannot be smaller that 2

√
2, which gives the optimality of the time invariant by translation for the

two-grid method. For this, we consider initial data such that

ak = a−k, N− := N/2 −N1/4 ≤ k ≤ N/2, ak = 0 |k| < N− (29)
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and suppose that we have (28), for I = (−T/2, T/2). We then have

∫
I

∣∣∣∣uN(t)
h

∣∣∣∣
2

dt ≤ 2
∫ T/2

−T/2

∣∣∣∣∣∣
N/2∑

k≥N−

ek
N

h
(akeiλkt + akν

2
keiλN+1−kt)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N/2∑

k≥N−

ek
N

h
(ake−iλkt + akν

2
ke−iλN+1−kt)

∣∣∣∣∣∣
2

dt,

and thus

C(T )
N/2∑

k=N−
|λk|2|ak|2 ≤

∫ T/2

−T/2

∣∣∣∣∣∣
N/2∑

k≥N−

ek
N

h
akeiλkt

∣∣∣∣∣∣
2

dt+
∫ T/2

−T/2

∣∣∣∣∣∣
N/2∑

k≥N−
ν2

k

ek
N

h
akeiλN+1−kt

∣∣∣∣∣∣
2

dt,

which gives (by using the fact that
∣∣ ek

N

λkh

∣∣ ≥ cos(π/4), as soon as N/2 −√
N − 1 ≤ k ≤ N/2),

C(T )
N/2∑

k=N−
|ak|2 ≤

∫ T/2

−T/2

∣∣∣∣∣∣
N/2∑

k≥N−
akeiλkt

∣∣∣∣∣∣
2

dt+
∫ T/2

−T/2

∣∣∣∣∣∣
N/2∑

k≥N−
ν2

kakeiλN+1−kt

∣∣∣∣∣∣
2

dt.

By decomposing λ0
k = 2/h sin(π/4 + (k − 1/(2h))πh/2) and λ0

N+1−k = 2/h cos(π/4 + (k − 1/(2h))πh/2), we
follow the previous proof and we get

∫ T/2

−T/2

∣∣∣∣∣
∑

k

akeiπ/
√

2kt

∣∣∣∣∣
2

dt+
∫ T/2

−T/2

∣∣∣∣∣
∑

k

ν2
kake−iπ/

√
2kt

∣∣∣∣∣
2

dt ≥ C(T )
∑

k

|ak|2. (30)

Now, by taking an upper bound of |ν2
k − 1| tending to zero, and since the interval is symmetric, this inequality

reduces to ∫ T/2

−T/2

∣∣∣∣∣
∑

k

akeiπ/
√

2kt

∣∣∣∣∣
2

dt ≥ C(T )
∑

k

|ak|2,

and thus we have T ≥ 2
√

2, so that T0 can effectively not be smaller than 2
√

2.

An example where observing on (0, T ) or on (−T/2, T/2) can change. We now look at a simplified case,
in order to show that in general it is different to study the observability problem in (0, T ) or (−T

2 ,
T
2 ).

Let α > 0. Then we have T ≥ π
α if and only if

C(T )
∑
k≥1

|ak|2 ≤
∫ T

0

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt

holds for all (ak). Indeed, we have for T ≥ π/α

2π
∑
k≥1

|ak|2 = 2
∑
k≥1

akak′

∫ π
α

0

cos((k − k′)αt)dt =

∫ π/α

0

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt ≤
∫ T

0

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt (31)
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Figure 3. (a) λ0
k, (b) λ0

(N+1)/2 + (k − (N + 1)/2)α, (c) λ0
N+1−k and (d) λ0

(N+1)/2 + ((N +
1)/2 − k)α, for α = π/

√
2, N = 1001 and k = (N + 1)/2 −√

N, . . . , (N − 1)/2.

and the inequality

C(T )
∑
k≥1

|ak|2 ≤
∫ T

0

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt =
1
2

∫ T

−T

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt ≤ 2
∫ T

−T

∣∣∣∣∣∣
∑
k≥1

akeikαt

∣∣∣∣∣∣
2

dt

can only hold for all (ak) if 2T ≥ 2π
α . On the other hand, we have T ≥ 2π

α if and only if

C(T )
∑
k≥1

|ak|2 ≤
∫ T/2

−T/2

∣∣∣∣∣∣
∑
k≥1

ak(eikαt + e−ikαt)

∣∣∣∣∣∣
2

dt (32)

holds for all (ak).
Now, we consider again the case of the two-grid method for the finite difference scheme. Note that the

behaviour may be similar to the simplified sequence. As an example, Figure 3 illustrates the fact that the
sequence λ0

k (resp. λ0
N+1−k) is close to the simplified sequence λ0

(N+1)/2 + (k − (N + 1)/2)α (resp. λ0
(N+1)/2 +

((N + 1)/2 − k)α), for k near and smaller than (N − 1)/2, with α = π/
√

2, for which we have seen that the
time of observability can differ if the observation is made on (0, T ) or on (−T/2, T/2).

Motivated by the latter observation, we state the following question, as an open problem: changing the
interval of observation to (0, T ), is it possible to observe the system in a shorter time than the optimal time
invariant by translation?

Thus, in the case of the two-grid method (i.e. for solutions satisfying only the assumption (23)), the optimal
time on (0, T ) needs a more careful investigation, whereas the estimate T > 2

√
2 is optimal on (−T/2, T/2), as

we have seen it in the preceding paragraph.
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5. Proof of the Ingham type theorems

In this section we will prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We use Ingham’s first method, following at first [10]. We consider the function

G(t) =
{

cos πt
T if |t| ≤ T/2

0 si |t| > T/2.

Its Fourier transform K̃ satisfies

K̃(τ) =
∫ ∞

−∞
G(t)eiτtdt = −2Tπ cos(τT/2)

τ2T 2 − π2
=

2T
π
KT (τ),

with

K(τ) =
cos(π

2 τ)
1 − τ2

, KT (τ) = K

(
T

π
τ

)
. (33)

Thus we have

∫ T/2

−T/2

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt + bkeiμkt

∣∣∣∣∣∣
2

dt ≥ 2T
π

N∑
|k|,|j|=1

KT (λk − λj)akaj

+ bkbjKT (μk − μj) + akbjKT (λk − μj) + akbjKT (μk − λj),

because 0 ≤ k ≤ 1[−T/2,T/2]. On the other hand, since G is positive, we also have

N∑
|k|,|j|=1

bkbjKT (μk − μj) =
∫
G(t)

∣∣∣∣∣∣
N∑

|k|=1

bkeiμkt

∣∣∣∣∣∣
2

dt ≥ 0. (34)

We thus get rid of these terms, as it was noticed in [10]; note that this argument is not valid if we use Ingham’s
second method (and thus we have not been able to follow the shorter proof of the result of [10] in [8]). We thus
obtain, thanks to the triangle inequality

∫ T/2

−T/2

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt + bkeiμkt

∣∣∣∣∣∣
2

dt ≥ 2T
π

⎡
⎣ N∑
|k|=1

KT (0)|ak|2

−
N∑

|k|=1

∑
j 
=k

|ak||aj ||KT (λk − λj)| − 2
N∑

|k|,|j|=1

|ak||bj ||KT (λk − μj)|
⎤
⎦ .

We now have to proceed differently than in [10], in order to treat the coefficients bk whose sum may not be
bounded independently of N .

We already have from the gap assumption of the sequence (λk) that |λk − λj | ≥ γ|k − j|.
It follows from the gap assumption on the mixed terms that

|λk − μj | = μj − μN + μN − λN + λN − λk ≥ (N − j)γ + γ + (N − k)γ = (2N + 1 − j − k)γ,

if k, j ≥ N −Nα, and

|λk − μj | = λk − λ−N + λ−N − μ−N + μ−N − μj ≥ (N + k)γ + γ + (N + j)γ = (2N + 1 + j + k)γ,
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if k, j ≤ Nα −N , by using the assumptions

μk ≤ μNα−N ≤ · · · ≤ μ−N ≤ λ−N ≤ · · · ≤ λNα−N ≤ · · · ≤ λ−1

≤ λ1 ≤ · · · ≤ λN−Nα ≤ · · · ≤ λN ≤ μN ≤ · · · ≤ μN−Nα ≤ μ�,

for 1 ≤ � ≤ N −Nα and −1 ≥ k ≥ Nα −N . We also get

|λk − μj | = μj − λk ≥ μN − λN−Nα ≥ λN − λN−Nα ≥ CNα, if 1 ≤ k ≤ N −Nα, j ≥ 1,
|λk − μj | = μj − λk ≥ μN−Nα − λN ≥ μN−Nα − μN ≥ CNα, if k ≥ 1, 1 ≤ j ≤ N −Nα,
|λk − μj | = λk − μj ≥ λNα−N − μ−N ≥ λNα−N − λ−N ≥ CNα, if Nα −N ≤ k ≤ −1, j ≤ −1,
|λk − μj | = λk − μj ≥ λ−N − μNα−N ≥ μ−N − μNα−N ≥ CNα, if k ≤ −1, Nα −N ≤ j ≤ −1.

We thus have |λk − μj | ≥ γdk,j with a sequence dk,j satisfying

dk,j = 2N +1− k− j, k, j ≥ N −Nα, dk,j = 2N +1− k− j, k, j ≤ −N +Nα, dk,j ≥ CNα, otherwise.

We then have

|KT (λk − μj)| ≤
(

2π
Tγ

)2 1
4d2

k,j − 1
, dk,j = dj,k, |k|, |j| = 1, . . . , N,

and

∫ T/2

−T/2

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt + bkeiμkt

∣∣∣∣∣∣
2

dt ≥ 2T
π

⎡
⎣ N∑
|k|=1

KT (0)|ak|2

−
(

2π
Tγ

)2
⎛
⎝ N∑

|k|=1

∑
j 
=k

|ak||aj | 1
4(k − j)2 − 1

− 2
N∑

|k|,|j|=1

|ak||bj | 1
4d2

k,j − 1

⎞
⎠
⎤
⎦ .

For the mixed terms, we compute

N∑
|k|,|j|=1

|ak||bj| 1
4d2

k,j − 1
≤

N∑
|k|,|j|=1

(
M

2
|ak|2 +

1
2M

|bj|2
)

1
4d2

k,j − 1
=

N∑
|k|=1

(
M

2
|ak|2 +

1
2M

|bk|2
) N∑

|j|=1

1
4d2

k,j − 1

=
N∑

k=1

(
M

2
(|ak|2 + |a−k|2) +

1
2M

(|bk|2 + |b−k|2)
) N∑

|j|=1

1
4d2

k,j − 1
≤

N∑
k=1

M |ak|2
N∑

|j|=1

1
4d2

k,j − 1
·

We also have classically

N∑
|k|=1

∑
j 
=k

|ak||aj | 1
4(k − j)2 − 1

≤
N∑

k=1

|ak|2
N∑

j 
=k

1
4(k − j)2 − 1

·

We then get ∫ T/2

−T/2

∣∣∣∣∣∣
N∑

|k|=1

akeiλkt + bkeiμkt

∣∣∣∣∣∣
2

dt ≥ 2T
π

N∑
|k|=1

(
2π
Tγ

)2

ck|ak|2,

with

ck :=
(
Tγ

2π

)2

KT (0) −
N∑

|j|=1,j 
=k

1
4(k − j)2 − 1

− 2M
N∑

j=1

1
4d2

k,j − 1
· (35)
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We compute, for k ≥ N −Nα

ck =
(
Tγ

2π

)2

−
⎛
⎝ k−1∑

j=−N

+
N∑

j=k+1

⎞
⎠ 1

4(k − j)2 − 1
− 2M

N∑
j=N−Nα

1
4(2N + 1 − k − j)2 − 1

) + CN1−2α

=
(
Tγ

2π

)2

− o(1) −
(

N+k∑
�=1

+
N−k∑
�=1

+ 2M
N+1−k+Nα∑
�=N+1−k

)
1
2

( −1
2�+ 1

+
1

2�− 1

)
(
Tγ

2π

)2

− o(1) −
(

1 +
(
M − 1

2

)
1

2(N − k) + 1

)(
Tγ

2π

)2

− o(1) −
(

1,M +
1
2

)
,

and we obtain similarly the same result for k ≤ −N + Nα, so that the proof is done, by taking N large
enough. �

In order to prove Theorem 1.4, we give at first technical conditions that are satisfied, from the hypotheses.

Proposition 5.1. Suppose that the hypotheses of Theorem 1.4 are satisfied. Let 0 < ε′ < ε, N ∈ N
∗. The

sequences (λk)N
|k|=1, (μk)N

|k|=1, (γk)N
|k|=1, (γ′k)N

|k|=1 are such that
(o) the hypotheses of Theorem 1.3 are satisfied;
(i) |λk−λj |

|k−j| ≥ √
γkγj − c1N

−1/2−ε, for 0 < |k − j| ≤ N1/2+ε′
;

(ii) |μk−μj |
|k−j| ≥

√
γ′kγ

′
j − c2N

−1/4−ε, for 0 < |k − j| ≤ N1/4+ε′
;

(iii) |μk − μj | ≥ c3|k − j|
√
γ′kγ

′
j, for |k − j| ≥ N1/4+ε′

;

(iv) γk = γ−k and γ′k = γ′−k for |k| = 1, . . . , N ;
(v) γk ≥ c4 > 0, for |k| = 1, . . . , N ;
(vi) |γk − γj | ≤ c5|k − j|h, |γ′k − γ′j | ≤ c6|k − j|h, for |k|, |j| = 1, . . . , N ;

where the constants c1, . . . , c6 are independent of N , and γ satisfies

0 < γ2 ≤ γ2
k + γ′2k

2
, γ ≤ γk.

Proof. We extend f into an odd function, such that f ∈ C3[−1, 1].
(o): it follows from the Taylor-Lagrange formula f((k+1)h)−f(kh)

h = f ′(c), c ∈ (kh, kh+ h);
(i): by using a Taylor development around the point k+j

2 h, we get

∣∣∣∣
∣∣∣∣λk − λj

k − j

∣∣∣∣− f ′
(
k + j

2
h

)∣∣∣∣ 	 |k − j|2h2,
∣∣√γkγj − f ′

(
k + j

2
h

)∣∣ 	 |k − j|2h2;

(ii): idem;
(iii): for 1 ≥ x ≥ 0, we define g(x) = f(1 −√

1 − x). Since f ′(1) = 0, and f ′′(1) �= 0, g is differentiable at 1
and we have g′(1) �= 0. We define g similarly on [−1, 0]. We get

|μk − μj |
|k − j|

√
γ′kγ

′
j


 |f(|N + 1 − k|h) − f(|N + 1 − j|h)|
h2|k − j||(|k| + |j|)/2| ,

and by writing α = (N + 1 − k/2)h, β = (N + 1 − j/2)h, we thus obtain

|μk − μj |
|k − j|

√
γ′kγ

′
j


 |g(1 − (1 − α2)) − g(1 − (1 − β)2)|
|(α− β)(2 − α− β)| 
 1;
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(iv): by definition;
(v): because |f ′(x)| 
 1 for x ∈ [0, 1/2];
(vi): because f ∈ C2([−1, 1]). �

In order to prove the main theorem, we will use again Ingham’s first method, and we take the definition (33)
of KT .

Beginning of the proof of Theorem 1.4. We will prove that

∫ T/2

−T/2

|
N∑

|k|=1

γ2
kakeiλkt + bkγ

′2
k eiμkt|2dt 


N∑
|k|=1

γ4
k|ak|2 + γ′4k |bk|2 (36)

with sequences (ak), (bk) satisfying |bk|2 + |b−k|2 ≤ |ak|2 + |a−k|2, and this will yield the result, by changing ak

to γ2
kak and bk to γ′2k bk.

We take Ingham’s first function used in Theorem 1.3, and we proceed at the beginning like in Theorem 1.3,
but this time we do not get rid of the high frequency terms (34). We obtain:

∫ T/2

−T/2

∣∣∣∣∣∣
N∑

|k|=1

γ2
kakeiλkt + bkγ

′2
k eiμkt

∣∣∣∣∣∣
2

dt 

N∑

|k|=1

(|ak|2γ4
k + |bk|2γ′4k

)− N∑
|k|,|j|=1,j 
=k

(|ak||aj |γ2
kγ

2
j |KT (λk − λj)|

+ |bk||bj |γ′2k γ′2j |KT (μk − μj)|
)−B := A−B, B := 2

N∑
|k|,|j|=1

γ2
kγ

′2
j |ak||bj||KT (λk − μj)|.

By using the Young inequality

|ak||aj | ≤ (|ak|2 + |aj |2)/2 := ãk,j , |bk||bj | ≤ (|bk|2 + |bj|2)/2 := b̃k,j

we obtain for the first term

A ≥
N∑

|k|=1

(|ak|2γ4
k + |bk|2γ′4k

)− N∑
k=1

N∑
|j|=1,j 
=k

(
ãk,jγ

2
kγ

2
j |KT (λk − λj)| + b̃k,jγ

′2
k γ

′2
j |KT (μk − μj)|

)

−
N∑

k=1

( N∑
|j|=1,j 
=k

ã−k,−jγ
2
kγ

2
j |KT (λ−k − λ−j)| + b̃−k,−jγ

′2
k γ

′2
j |KT (μ−k − μ−j)|

)
,

because of (iv).
From the notations ak,j := ãk,j + ã−k,−j , Kλ

T (k, j) := max(|KT (λk − λj)|, |KT (λ−k − λj)|) and Kμ
T (k, j) :=

max(|KT (μk − μj)|, |KT (μ−k − μ−j)|), we get

A ≥
N∑

k=1

(
ak,kγ

4
k + bk,kγ

′4
k

)− N∑
k=1

N∑
|j|=1,j 
=k

(
ak,jγ

2
kγ

2
jK

λ
T (k, j) + bk,jγ

′2
k γ

′2
j K

μ
T (k, j)

) ≥ N∑
k=1

(ak,kγ
4
k + bk,kγ

′4
k )

−
N∑

k=1

N∑
|j|=1,j 
=k

ck,j(ak,jγ
2
kγ

2
j + bk,jγ

′2
k γ

′2
j ), with ck,j :=

ak,jγ
2
kγ

2
jK

λ
T (k, j) + bk,jγ

′2
k γ

′2
j K

μ
T (k, j)

ak,jγ2
kγ

2
j + bk,jγ′2k γ

′2
j

, for j �= k.
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Since we have ck,j = cj,k = c−k,−j , we get

A−
N∑

k=1

(ak,kγ
4
k + bk,kγ

′4
k ) ≥ −

N∑
k=1

N∑
|j|=1,j 
=k

ck,j

(
ak,kγ

2
kγ

2
j + bk,kγ

′2
k γ

′2
j

)
= −

N∑
k=1

N∑
|j|=1,j 
=k

ck,j

(
ak,k + aj,j

2
γ2

kγ
2
j

+
bk,k + bj,j

2
γ′2k γ

′2
j

)
≥ −

N∑
k=1

N∑
j=1,j 
=k

ck,j

(
ak,kγ

2
kγ

2
j + bk,kγ

′2
k γ

′2
j

)− N∑
k=1

−1∑
j=−N,j 
=k

ck,j

(
ak,k + aj,j

2
γ2

kγ
2
j

+
bk,k + bj,j

2
γ′2k γ

′2
j

)
≥ −

N∑
k=1

N∑
j=1,j 
=k

ck,j

(
ak,kγ

2
kγ

2
j + bk,kγ

′2
k γ

′2
j

)− N∑
k=1

−1∑
j=−N,j 
=k

ck,j

(
ak,k

2
γ2

kγ
2
j +

bk,k

2
γ′2k γ

′2
j

)

−
−1∑

j=−N

N∑
k=1,j 
=k

ck,j

(
ak,k

2
γ2

kγ
2
j +

bk,k

2
γ′2k γ

′2
j

)
. A ≥

N∑
k=1

(ak,kγ
4
k + bk,kγ

′4
k )

⎛
⎝1−

N∑
|j|=1,j 
=k

ck,j

ak,kγ
2
kγ

2
j + bk,kγ

′2
k γ

′2
j

ak,kγ4
k + bk,kγ′4k

⎞
⎠.

We now consider

Φ(x) =
γ2

kγ
2
j + xγ′2k γ

′2
j

γ4
k + xγ′4k

·

Since bk,k ≤ ak,k, we have Φ( bk,k

ak,k
) ≤ max

(
Φ(0),Φ(1)

)
, and thus

A ≥
N∑

k=1

(ak,kγ
4
k + bk,kγ

′4
k )

⎛
⎝1 −

N∑
|j|=1,j 
=k

ck,jγk,j

⎞
⎠ ,with γk,j := max

(
γ2

kγ
2
j + γ′2k γ

′2
j

γ4
k + γ′4k

,
γ2

j

γ2
k

)
.

�
In order to estimate the term ck,j which mixes the high and the low frequencies, we define the function

g(x) = min
(

1,
1

|x− 1|
)
,

and we can check the following property:

Lemma 5.2. The function g : R
+ → R

+ satisfies
• |KT (x)| ≤ gT (x) := g(T 2x2

π2 ), x ∈ R
+;

• g is decreasing;
• g satisfies the following estimate:

x2g(x) + y2g(y) ≤ (x2 + y2)g
(
x+ y

2

)
, x, y ∈ R

+. (37)

Proof. The second point is clear. For the first point it suffices to prove that∣∣∣cos
(π

2
x
)∣∣∣ ≤ |1 − x2|, x ∈ R

+,

and this can be done by computing the variations of ψ : x→ 1− x2 − cos(π
2x), for 0 ≤ x ≤ 1 (we have ψ(3) ≤ 0,

ψ(2)(0) = −2 + (π
2 )2 > 0, ψ(2)(1) = −2 < 0 ψ′(0) = 0, ψ′(1) = −2 + π

2 < 0, ψ(0) = 0 and ψ(1) = 0), the
variations of χ = −ψ, for 1 ≤ x ≤ √

2 (we have χ(3) ≥ 0, χ(2)(1) > 0, χ′(1) > 0 and χ(1) = 0), and by remarking
that | cos(π

2x)| ≤ 1 ≤ |1 − x2|, for x ≥ √
2.
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For the last point, by symmetry, it suffices to consider the following three cases.
(i) If x ≤ 2, y ≤ 2, we have g(x) = g(y) = g(x+y

2 ), and we get the result.
(ii) If x ≥ 2, y ≥ 2, the function ψ : t→ t2

t−1 is increasing for t ≥ 2 (ψ′(t) = t(t−2)
(t−1)2 ≥ 0), and thus we get

2(x2+y2)−(x+y−2)
(

x2

x− 1
+

y2

y − 1

)
= x2+y2−(y−1)

x2

x− 1
−(x−1)

y2

y − 1
= (x−y)

(
x2

x− 1
− y2

y − 1

)
≥ 0.

(38)

This yields the result.
(iii) If x ≤ 2, y ≥ 2 (the case x ≥ 2, y ≤ 2 can be treated by symmetry), we have

2x2 + 2y2 − (x+ y − 2)
(
x2 +

y2

y − 1

)
= x2(2 + 2 − x− y) +

y2

y − 1
(2y − 2 + 2 − x− y)

=
(
x2 +

y2

y − 1

)
(2− x) + (x2 − 4)(2− y) + 4(2− y) +

y2

y − 1
(y− 2) ≥ (y− 2)

(
−4 +

y2

y − 1

)
=

(y − 2)3

y − 1
≥ 0

and the proof is completed. �
The following lemma gives a sharper estimate, and allows us to improve the observability time in the appli-

cations.

Lemma 5.3. If x, y ∈ R
+ satisfy x+ y −√

xy ≥ 4, then we have

x2g(x) + y2g(y) ≤ (x2 + y2)g(x+ y −√
xy) ≤ (x2 + y2)g

(
x+ y

2

)
.

Proof. The right hand side comes from the decreasingness of g and from the Young inequality xy ≤ x2+y2

2 .
We distinguish three cases:
(i) If x ≥ 3, y ≥ 3, then the function ψ : t → t3/2

t−1 is increasing (ψ′(t) =
√

t(t−3)
2(t−1)2 ≥ 0), and thus, using (38),

we get

2(x2 + y2)− 2(x+ y−√
xy− 1)

(
x2

x− 1
+

y2

y − 1

)
= 2(x2 + y2)− (x+ y− 2 + (

√
x−√

y)2)
(

x2

x− 1
+

y2

y − 1

)

= (x− y)
(

x2

x− 1
− y2

y − 1

)
− (

√
x−√

y)2
(

x2

x− 1
+

y2

y − 1

)

=(
√
x−√

y)
(
(
√
x+

√
y)
(

x2

x− 1
− y2

y − 1

)
−(

√
x−√

y)
(

x2

x− 1
+

y2

y − 1

))
=2(

√
x−√

y)
√
xy

(
x3/2

x− 1
− y3/2

y − 1

)
≥0.

(ii) If 2 ≤ x ≤ 3 (the case 2 ≤ y ≤ 3 can be treated by symmetry), since y−√
x
√
y+x−4 ≥ 0 and 0 ≤ x ≤ 4,

we have
√
y ≥

√
x+

√
16 − 3x

2
=:

√
z0(x).

We can notice that the function z0 is decreasing for x ∈ (2, 3), and thus y ≥ z0(x) ≥ z0(3) = (
√

3+
√

7
2 )2 ≥ 4 and

x ≤ y. Therefore, we infer from (i) that ψ(y) ≥ ψ(z0(x)) and it remains to prove that

ψ(z0(x)) − ψ(x) ≥ 0. (39)

Setting z := z0(x), for brevity, we have

z3/2(x−1)−x3/2(z−1) = (
√
z−√

x)xz+x3/2−z3/2 = (
√
z−√

x)(xz−x−z−√
xz) = (

√
z−√

x)(xz−2
√
xz−4),
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because x+ z −√
xz = 4. We notice that x → √

xy is increasing, so that
√
xy ≥√2z0(2) = 1 +

√
5, and thus

xz − 2
√
xz − 4 is positive. From the previous computation, we finally obtain (39).

(iii) If x ≤ 2 (the case y ≤ 2 can be treated similarly by symmetry), we notice that z0 is increasing for
0 ≤ x ≤ 4/3, and decreasing for 4/3 ≤ x ≤ 2, and we have y ≥ 4, so that ψ(z0) varies like y, for 0 ≤ x ≤ 2.
Now, if 0 ≤ x ≤ 4/3, we have

y3/2

y − 1
= ψ(y) ≥ ψ(z0(x)) ≥ ψ(z0(0)) =

8
3
≥
(

4
3

)3/2

≥ x3/2.

On the other hand, if 4/3 ≤ x ≤ 2, we obtain also y3/2

y−1 ≥ ψ(z0(2)) = 23/2 ≥ x3/2. We thus get

2(x2+y2)−2(x+y−√
xy−1)

(
x2 +

y2

y − 1

)
= 2(x2+y2)−(x+y−2+(

√
x−√

y)2)
(
x2 +

y2

y − 1

)
= x2(4−x−y)

+
y2

y − 1
(y−x)−(

√
x−√

y)2
(
x2 +

y2

y − 1

)
=x2(4−2x)+(x−y)

(
x2− y2

y − 1

)
−(

√
x−√

y)2
(
x2+

y2

y − 1

)
=x2(4−2x)

+(
√
x−√

y)((
√
x+

√
y)
(
x2− y2

y − 1

)
−(

√
x−√

y))
(
x2+

y2

y − 1

)
=x2(4−2x)+2(

√
y−√

x)
√
xy

(
y3/2

y − 1
− x3/2

)
≥0,

so that we conclude the proof. �
The next lemma gives the useful estimates for the errors with the approximative case where we have |λk−λj | ≥

|(k − j)√γkγj | and |μk − μj | ≥ |(k − j)
√
γ′kγ

′
j |, to which we will apply the preceding lemma. For convenience,

we will write es for a sequence depending on j, k,N and satisfying

N∑
|j|=1

es 	 N−εs , εs > 0.

Lemma 5.4. With the hypotheses (o)–(iv) of Theorem 1.4, and for N large enough, we have

|KT (λk − λj)| ≤ gT ((k − j)
√
γkγj) + es, (40)

and (
γ′kγ

′
j

)2|KT (μk − μj)| ≤
(
γ′kγ

′
j

)2
gT ((k − j)

√
γ′kγ

′
j) + max(1, (γ′kγ

′
j)

2)es. (41)

Proof. We first consider (40). Suppose at first that |k − j| > N1/2+ε, then we have from assumption (o) that

|λk − λj | 
 |k − j| 
 N1/2+ε,

and thus
|KT (λk − λj)| 	 N−1−ε =: e1.

Now, if 0 < |k − j| ≤ N1/2+ε, we define

es :=
∣∣gT (|k − j|√γkγj) − gT (|k − j|(√γkγj − c1N

−1/2−ε))
∣∣.

Since γ ≤ √
γkγj and T > 2π/γ, we obtain

es 	 |k − j|
N1/2+ε

· 1
|k − j|3 	 1

N1/2+ε|k − j|2 ,
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using that x3g′T (x) is bounded for |x − |k − j|√γkγj | 	 N−1/2−ε, and N large enough. By taking es = 0, for
k = j, we get (40).

We now consider (41). We define

es :=
(
γ′kγ

′
j

)2∣∣gT (|k − j|
√
γ′kγ

′
j) − gT (|k − j|(

√
γ′kγ

′
j − c2N

−1/4−ε))
∣∣,

for 0 < |k − j| ≤ N1/4+ε′
.

We define δk,j := |k − j|(
√
γ′kγ

′
j − c2N

−1/4−ε). Since c2 ≥ 0, we always have δk,j ≤ |k − j|
√
γ′kγ

′
j .

Now, if δk,j ≤ 0, we obtain es 	 (γ′kγ
′
j)

2 	 N−1−4ε.

If 0 ≤ δk,j ≤
√
γ′kγ

′
j |k − j| ≤ √

2 π
T , we have

1 = gT (0) ≥ gT (δk,j) ≥ gT (
√
γ′kγ

′
j |k − j|) ≥ gT (

√
2
π

T
) = 1,

and thus es = 0.
If 0 ≤ δk,j ≤ √

2 π
T ≤

√
γ′kγ

′
j |k − j|, we have

∣∣gT (|k − j|
√
γ′kγ

′
j) − 1

∣∣ 	 ∣∣√2
π

T
− |k − j|

√
γ′kγ

′
j

∣∣ 	 |k − j|N−1/4−ε,

and thus,
es 	 (γ′kγ

′
j)

2|k − j|N−1/4−ε 	 (γ′kγ
′
j)

2Nε′−ε.

Since 0 ≤ δk,j ≤ √
2 π

T , we obtain

(γ′kγ
′
j)

2 	
(

1
|k − j| +

1
N1/4+ε

)4

	 1
|k − j|4 +

1
N
,

which yields

es 	
(

1
|k − j|4 +

1
N

)
Nε′−ε.

It remains the case where |k − j|
√
γ′kγ

′
j ≥ δk,j ≥ √

2 π
T . We subdivide it in two subcases. Suppose first that

|γ′kγ′j | ≤ N−1/8−ε′/2. We first have

|gT (|k − j|
√
γ′kγ

′
j) − gT (δk,j)| 	 N−1/4−ε|k − j| 	 Nε′−ε,

and thus
N1/4+ε′

es 	 N1/4+ε′
(γ′kγ

′
j)

2Nε′−ε 	 Nε′−ε.

Now, if we have instead |γ′kγ′j | ≥ N−1/8−ε′/2, we obtain
√
γ′kγ

′
j ≥ N−1/4−ε′/4, and then

δk,j/
√
γ′kγ

′
j 
 1 −N−1/4−ε/

√
γ′kγ

′
j 
 1 − |k − j|Nε′/4−ε 
 1,

which yields δk,j 

√
γ′kγ

′
j , and thus

es 	 (γ′kγ
′
j)

2|k − j|N−1/4−ε 1
|k − j|3(γ′kγ′j)3/2

	
√
γ′kγ

′
jN

−1/4−ε 1
|k − j|2 ,

which gives the result, by changing es into es/(max 1, (γ′kγ
′
j)

2).
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It remains now to consider the case where |k − j| ≥ N1/4+ε′
. We suppose now that |k − j| ≤ Nα; we will

prove that we can find es, for |k − j| ≥ N3/4α+ε̃, with a number ε̃ ≤ 1/16. This will yield the result, since we
can begin with α = 1 and obtain by recurrence α =

(
3
4

)n(1 − 4ε̃) + 4ε̃, which will then be smaller 1/4 + ε′, for
n large enough.

We suppose therefore that N3/4α+ε̃ ≤ |k − j| ≤ Nα. Now, if |μk − μj | ≤ Nα/2+ε̃, we have

Nα|KT (μk − μj)| 	 NαN−2(α/2+ε̃) 	 N−2ε̃,

which ensures the existence of es. On the other hand, if |μk − μj | ≤ Nα/2+ε̃, we then have

Nα(γ′kγ
′
j)

2|KT (μk − μj)| 	 Nα
(√

γ′kγ
′
j

)4

	 N3α+2ε̃

|k − j|4 	 N−2ε̃,

from assumption (iii), which ensures the existence of es and this ends the proof. �
Now, we can estimate the term ck,j .

Lemma 5.5. We have for j �= k

|ck,j | ≤ es +
1

|T 2

π2 (k − j)2γ2 − 1| ·

Proof. We have at first

|ck,j | ≤
ak,jγ

2
kγ

2
j gT ((k − j)√γkγj) + bk,jγ

′2
k γ

′2
j gT ((k − j)

√
γ′kγ

′
j)

ak,jγ2
kγ

2
j + bk,jγ′2k γ

′2
j

+B1 := A1 +B1,

with B1 := es
ak,jγ2

kγ2
j + bk,j max(1,(γ′

kγ′
j)

2)

ak,jγ2
kγ2

j + bk,jγ′2
k γ′2

j
. Now, for B1, if γ′kγ

′
j ≤ 1, we obtain

B1 	 es

ak,j(γ2
kγ

2
j + 1)

ak,jγ2
kγ

2
j

	 es,

since bk,j ≤ ak,j , and γk 
 1, from assumption (v). On the other hand, if γ′kγ
′
j ≥ 1, we have

B1 	 es

(
ak,jγ

2
kγ

2
j

ak,jγ2
kγ

2
j

+
bk,jγ

′2
k γ

′2
j

bk,jγ′2k γ
′2
j

)
	 es.

Concerning A1, we have at first A1 = Φ(bk,j/ak,j), with

Φ(z) =
γ2

kγ
2
j gT ((k − j)√γkγj) + zγ′kγ

′
jgT ((k − j)

√
γ′kγ

′
j)

γ2
kγ

2
j + zγ′2k γ

′2
j

·

Since bk,j ≤ ak,j , we have Φ(z) ≤ max(Φ(0),Φ(1)). As γ ≤ γk, we already have

Φ(0) ≤ 1
|T 2

π2 (k − j)2γ2 − 1| ·

Concerning Φ(1), we use at first formula (37) with x = (T
π )2(k − j)2γkγj and y = (T

π )2(k − j)2γ′kγ
′
j , so that we

obtain
Φ(1) ≤ 1

|( T
2π )2(k − j)2(γkγj + γ′kγ

′
j) − 1| ·
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Now, if |k − j| ≥ N1/2+εs , with a number εs > 0, we get

NΦ(1) 	 N

|k − j|2 	 N−εs ·

On the other hand, if |k − j| ≤ N1/2+εs , we define

ψ(x) =
1∣∣∣(T

π

)2
(k − j)2

(
γ2

k+γ′2
k

2

)
x− 1

∣∣∣ ·
We then have

Φ(1) ≤ 1∣∣T 2

π2 (k − j)2γ2 − 1
∣∣ + |ψ(1) − ψ(x0)|, with x0 :=

γkγj + γ′kγ
′
j

γ2
k + γ′2k

·
Now we have

|x0 − 1| ≤ γk|γj − γk|
γ2

k + γ′2k
+
γ′k|γ′k − γ′j |
γ2

k + γ′2k
≤ γk + γ′k
γ2

k + γ′2k
|k − j|h ≤ 1

|γk|
1 + γ′

k

γk

1 +
(

γ′
k

γk

)2 |k − j|h 	 |k − j|h,

by using assumption (vi). Computing the derivative, we get |ψ′(x)| 	 1
|k−j|2 , for x 
 1, so that

Φ(1) ≤ 1∣∣T 2

π2 (k − j)2γ2 − 1
∣∣ +

C

|k − j|2 |k − j|h ≤ 1∣∣T 2

π2 (k − j)2γ2 − 1
∣∣ + Ch,

by taking εs small enough, so that x0 
 1. We thus have

|ck,j | ≤ 1∣∣T 2

π2 (k − j)2γ2 − 1
∣∣ + es, k �= j.

�
We also have an estimate for γk,j .

Lemma 5.6. We have γk,j ≤ 1 + C|k − j|h 	 1.

Proof. We compute
γ2

j

γ2
k

≤ 1 +
|γj − γk|

γk

|γk + γj |
γk

≤ 1 +
|γj − γk|

γk

(
2 +

|γj − γk|
γk

)
.

Now, since |γk − γj | 	 |k − j|h, and since γk 
 1, we get γ2
j

γ2
k
≤ 1 + C|k − j|h 	 1. We compute again

γ2
kγ

2
j + γ′2k γ

′2
j

γ4
k + γ′4k

≤ 1 +
γ2

k|γj + γk||γj − γk|
γ4

k + γ′4k
+
γ′2k |γ′j + γ′k||γ′j − γ′k|

γ4
k + γ′4k

≤

1 + C
(γ3

k + γ′3k )|k − j|h+ (γ2
k + γ′2k )|k − j|2h2

γ4
k + γ′4k

,

since |γk − γj | 	 |k − j|h and |γ′k − γ′j | 	 |k − j|h. From γk 
 1, we obtain

γ3
k + γ′3k
γ4

k + γ′4k
=

1
γk

1 +
(γ′

k

γk

)3
+
(γ′

k

γk

)4 	 1, and similarly,
γ2

k + γ′2k
γ4

k + γ′4k
	 1,

which ends the proof. �
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Proof of Theorem 1.4. We have A ≥∑N
k=1(γ

4
kak,k + γ′4k bk,k)(1 − dk), with

dk :=
N∑

|j|=1,j 
=k

(
1

|T 2

π2 (k − j)2γ2 − 1| + es

)
(1 + C|k − j|h) ≤
⎛
⎝ N∑

|j|=1,j 
=k

1
|T 2

π2 (k − j)2γ2 − 1| + C

N∑
|j|=1,j 
=k

|k − j|h
(k − j)2

⎞
⎠+ o(1).

Since
∑N

|j|=1,j 
=k
|k−j|h
(k−j)2 ≤∑2N

|j|=1
h
j = o(1), we have

dk ≤
⎛
⎝ N∑

|j|=1,j 
=k

1
|T 2

π2 (k − j)2γ2 − 1|

⎞
⎠+ o(1) ≤

(
2π
Tγ

)2
⎛
⎝ N∑

|j|=1,j 
=k

1
|4(k − j)2 − 1|

⎞
⎠+ o(1).

Now, from the proof of Theorem 1.3, we have

B ≤ 2
N∑

|k|,|j|=1

γ2
kγ

′2
j |ak||bj |

(
2π
Tγ

)2 1
4d2

k,j − 1
≤

N∑
|k|,|j|=1

(γ4
k|ak|2 + γ′4j |bj |2)

(
2π
Tγ

)2 1
4d2

k,j − 1

=
N∑

|k|=1

(γ4
k|ak|2 + γ′4k |bk|2)

N∑
|j|=1

(
2π
Tγ

)2 1
4d2

k,j − 1
=

N∑
k=1

(γ4
kak,k + γ′4k bk,k)

(
2π
Tγ

)2 N∑
|j|=1

1
4d2

k,j − 1
·

We finally have

A−B ≥
N∑

k=1

(
2π
Tγ

)2

(γ4
kak,k+γ′4k bk,k)wk,with wk :=

(
Tγ

2π

)2

−o(1)−
N∑

|j|=1,j 
=k

1
4(k − j)2 − 1

−
N∑

|j|=1

1
4d2

k,j − 1

 1,

by using (35), for M = 1/2, and this gives (36). �
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Masson, Paris, RMA 8 (1988).
[10] P. Loreti and V. Valente, Partial exact controllability for spherical membranes. SIAM J. Control Optim. 35 (1997) 641–653.
[11] S. Micu, Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math. 91 (2002) 723–766.
[12] S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Cont.

Optim. 35 (1997) 1614–1638.



AN INGHAM TYPE PROOF FOR A TWO-GRID OBSERVABILITY THEOREM 631

[13] A. Münch, Family of implicit and controllable schemes for the 1D wave equation. C. R. Acad. Sci. Paris Sér. I 339 (2004)
733–738.

[14] M. Negreanu, Numerical methods for the analysis of the propagation, observation and control of waves. Ph.D. thesis, Univer-
sidad Complutense Madrid, Spain (2003). Available at http://www.uam.es/proyectosinv/cen/indocumentos.html

[15] M. Negreanu and E. Zuazua, Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Acad.
Sci. Paris, Sér. I 338 (2004) 413–418.

[16] M. Negreanu and E. Zuazua, Discrete Ingham inequalities and applications. SIAM J. Numer. Anal. 44 (2006) 412–448.
[17] E. Zuazua, Propagation, observation, control and numerical approximation of waves approximated by finite difference methods.

SIAM Rev. 47 (2005) 197–243.
[18] E. Zuazua, Control and numerical approximation of the wave and heat equations, in Proceedings of the ICM 2006, Vol. III,

“Invited Lectures”, European Mathematical Society Publishing House, M. Sanz-Solé et al. Eds. (2006) 1389–1417.
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