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Abstract

This work is devoted to the study of field-aligned interpolation in semi-Lagrangian codes.1 In the
context of numerical simulations of magnetic fusion devices, this approach is motivated by the observation
that gradients of the solution along the magnetic field lines are typically much smaller than along a
perpendicular direction. In toroidal geometry, field-aligned interpolation consists of a 1D interpolation
along the field line, combined with 2D interpolations on the poloidal planes (at the intersections with
the field line). A theoretical justification of the method is provided in the simplified context of constant
advection on a 2D periodic domain: unconditional stability is proven, and error estimates are given which
highlight the advantages of field-aligned interpolation. The same methodology is successfully applied to
the solution of the gyrokinetic Vlasov equation, for which we present the ion temperature gradient (ITG)
instability as a classical test-case: first we solve this in cylindrical geometry (screw-pinch), and next in
toroidal geometry (circular Tokamak). In the first case, the algorithm is implemented in Selalib (semi-
Lagrangian library), and the numerical simulations provide linear growth rates that are in accordance
with the linear dispersion analysis. In the second case, the algorithm is implemented in the Gysela code,
and the numerical simulations are benchmarked with those employing the standard (not aligned) scheme.
Numerical experiments show that field-aligned interpolation leads to considerable memory savings for
the same level of accuracy; substantial savings are also expected in reactor-scale simulations.
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1 Introduction

In a Tokamak, due to the large confining magnetic field, a fast homogenisation of the different physical
quantities occurs along the magnetic field lines; this leads to very smooth and small variations along the
field lines, whereas the scale length of the variations is very small (comparable to the gyro-radius) in a
perpendicular direction. This should be taken into account for more efficient simulations. It is typically
done by using field aligned coordinates in many gyrokinetic codes. However this approach has the drawback
of needing a non-conformal correction after one turn, either in the poloidal or the toroidal direction, which
yields a break of symmetry on one section of the torus. More importantly, field-aligned coordinates become
singular when approaching the separatrix in a divertor configuration, with potentially serious consequences
on the robustness of the numerical algorithm that employs them.

A very promising alternative, which is very flexible in regard to the choice of coordinates, has been
introduced by Hariri and Ottaviani [1], and an equivalent approach by Stegmeier et al. [2]. The main idea
is to compute the derivatives locally along the field lines, getting the needed values for finite differences by
interpolation to the intersection points of a field line with the poloidal planes. We are interested here in a
thorough numerical investigation of this idea in the context of gyrokinetic simulations using semi-Lagrangian
methods. Pioneering in this sense is the recent work by Kwon, Yi, Piao and Kim [3], where “field-aligned
interpolation” is employed in a semi-Lagrangian gyrokinetic code for full-f turbulence simulations. Our work
complements the above on the numerical analysis side, and it focuses on the following topics: convergence
analysis (i.e. stability proof and error estimates), numerical verification against analytical solutions, and
benchmarking with the classical (not aligned) algorithm. The reader interested in the physics context can
consult the review article [4], and exhaustive information about the semi-Lagrangian method which was
introduced in the context of gyrokinetic simulations in [5] and the GYSELA code are provided in [6].

In this work we use the so-called ‘backward’ semi-Lagrangian method, which consists of an advection
phase, where the characteristic trajectories ending at the grid points are traced back in time from t + ∆t
to t, and an interpolation phase, where the particle distribution function is interpolated at the origin of these
trajectories using the known grid values at time t. By virtue of the method of characteristics, the solution on
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the grid is therefore known at time t+ ∆t. Moreover, in the GYSELA code the motion is split between the
poloidal plane and the toroidal direction (and also the parallel velocity, but this will not play any role in this
paper). In this context, the idea of taking derivatives along magnetic field lines can be naturally extended
to semi-Lagrangian methods by replacing the advection and interpolation in the toroidal (ϕ coordinate in
the torus geometry) direction by an advection and interpolation along magnetic field lines (combining a ϕ
and θ motion).

1.1 Model equations

We are interested in solving the gyrokinetic Vlasov equation(
∂

∂t
+ u(t,x, v‖, µ) · ∇+ a‖(t,x, v‖, µ)

∂

∂v‖

)
f(t,x, v‖, µ) = 0, (1.1)

where (x, v‖, µ) are the gyro-center phase-space coordinates: x is the gyro-center position, v‖ is the parallel
velocity of the gyro-center, and µ ≈ mv2

⊥/(2B) is the modified magnetic moment (which is an exact invariant
of motion). The equilibrium magnetic field B(x) is assumed to be static (B = ‖B‖ is its magnitude). In a
semi-Lagrangian method we use the fact that the exact solution to (1.1) is constant along the phase-space
characteristics

(
X(t), V‖(t),M(t)

)
, namely

d

dt
f(t,X(t), V‖(t),M(t)) = 0 with



dX

dt
= u(t,X, V‖,M),

dV‖

dt
= a‖(t,X, V‖,M),

dM

dt
= 0.

(1.2)

The fields u and a‖, and therefore the characteristic trajectories in (1.2), are completely defined by the
modified magnetic field B∗(x, v‖) = B(x) + (m/q)v‖∇ × b(x), where m and q are the mass and charge of
a particle, and b = B/B, and by the gyro-center Hamiltonian H(t,x, v‖, µ). Then, defining B∗‖ = b ·B∗ =

B +mv‖/(qB)b · ∇ ×B, we have (see for example [7])

u(t,x, v‖, µ) =
1

B∗‖

(
1

m

∂H

∂v‖
B∗ +

1

q
b×∇H

)
, (1.3a)

a‖(t,x, v‖, µ) =
1

B∗‖

(
− 1

m
B∗ · ∇H

)
. (1.3b)

We now neglect µ and focus on the reduced phase-space (x, v‖), where we define the phase-space velocity
ξ = (u, a‖). The phase-space divergence of this field is

div(ξ) =
1

B∗‖

[
∇ ·
(
B∗‖u

)
+

∂

∂v‖

(
B∗‖a‖

)]
,

where B∗‖(x, v‖) is present because it is the Jacobian determinant of the coordinate transformation that was
used to obtain the gyrokinetic Vlasov equation. It is straightforward to see that

∇ ·
(
B∗‖u

)
=

1

m
B∗ · ∇

(
∂H

∂v‖

)
+

1

q
(∇× b) · ∇H

∂

∂v‖

(
B∗‖a‖

)
= − 1

m
B∗ · ∇

(
∂H

∂v‖

)
− 1

q
(∇× b) · ∇H

and therefore: div(ξ) = 0.

Since the phase-space velocity field is incompressible (i.e. divergence-free), an equivalent formulation of (1.1)
is the conservation equation

∂

∂t

(
B∗‖f

)
+∇ ·

(
uB∗‖f

)
+

∂

∂v‖

(
a‖B

∗
‖f
)

= 0.
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In the electrostatic case the gyro-center Hamiltonian reads

H(t,x, v‖, µ) =
1

2
mv2
‖ + µB(x) + q〈φ〉α(t,x),

where φ is the electrostatic potential, and 〈·〉α is the gyro-average operator. (In the zero-Larmor-radius
limit, we simply have that 〈φ〉α = φ.)
In general one should solve one gyrokinetic Vlasov equation for each particle species, and couple these to
a Poisson equation for the self-consistent φ. For simplicity, in this paper we model only one ion species
kinetically, we assume an adiabatic response of the electrons, and we make use of the quasi-neutrality
approximation [6]. Under these hypotheses the electrostatic potential φ(t,x) satisfies the integro-differential
equation

−

(
∇⊥ ·

ρ2
th,i

λ2
D,i

∇⊥

)
φ+

1

λ2
D,e

(φ− 〈φ〉f ) =
σi
ε0
,

where ∇⊥ = ∇ − b(b · ∇) is the perpendicular gradient operator, 〈·〉f represents an averaging operator
over the whole magnetic flux surface passing through x, ρth,i(t,x) is the thermal ion Larmor radius, and
λD,i(t,x) and λD,e(t,x) are the Debye lengths for ions and electrons respectively. On the right-hand-side,
the ion charge density σi(t,x) is reconstructed from the gyro-center distribution function f as

σ(t,x) = qi

∫
f(t,x′, v‖, µ) δ(x′ + ρ− x)B∗‖ dx

′dv‖dµ dα,

where α is the gyro-phase angle and ρ(x′, µ, α) is the gyro-radius vector.
We refrain from giving more details on the equations here; the interested reader may refer for example to [4]
and references therein. In fact, since our focus is on assessing the field-aligned interpolation method, and
not on performing a realistic turbulence simulation, the equations presented in this section will be further
simplified for implementation in the Selalib and Gysela codes (sections 4 and 5).

1.2 Magnetic configurations

For our numerical simulations in Gysela (see Section 5), we will consider a circular magnetic equilibrium
in a torus as defined in [6], with magnetic field

B =
B0R0

R

(
ζ(r)θ̂ + ϕ̂

)
, ζ(r) =

r

q(r)R0
, (1.4)

where R0 and B0 are respectively the major radius and the magnetic field intensity at the magnetic axis,
R(r, θ) = R0 + r cos θ, and q(r) is the classical safety factor in the large aspect ratio limit (r/R0 → 0).

The unit vectors (r̂, θ̂, ϕ̂) form an orthogonal basis of R3 as long as R > 0. We notice that the magnetic
field (1.4) depends on r and θ through R, but not on ϕ. In order to verify that ∇ ·B = 0, we recall that the

divergence of a vector a = ar r̂ + aθθ̂ + aϕϕ̂ in toroidal components reads

∇ · a =
1

rR

[
∂

∂r
(rR ar) +

∂

∂θ
(Raθ) + r

∂aϕ
∂ϕ

]
,

and we observe that the magnetic field in (1.4) has Br = 0, ∂θ(RBθ) = 0 and ∂ϕBϕ = 0. With regard to

the unit vector b, we have br = 0, bθ = ζ/
√

1 + ζ2 and bϕ = 1/
√

1 + ζ2, so that ∇ · b = −(bθ sin θ)/R 6= 0.
The magnetic field lines, parametrized by (r, θ, ϕ), are defined by the equations

dr

ds
= Br = 0, r

dθ

ds
= Bθ =

B0R0

R
ζ(r), R

dϕ

ds
= Bϕ =

B0R0

R
. (1.5)

From this it follows that
dθ

ds
= R

ζ(r)

r

dϕ

ds
=

1 + (r/R0) cos θ

q(r)

dϕ

ds
,

and so in tokamaks with a large aspect ratio (i.e. with small r/R0) the magnetic field lines are almost, but
not exactly, straight lines in the (θ, ϕ) plane for a given r.
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For our numerical simulations in Selalib (see Section 4) we shall consider the simplified case of a straight
periodic cylinder, which amounts to taking R = R0 in (1.4), and replacing the toroidal angular variable ϕ
by a straight variable z. Then

B = B0

(
ζ(r)θ̂ + ẑ

)
, ζ(r) =

ι(r)r

R0
. (1.6)

We see that the magnetic field is characterized by its central modulus B0, the major radius R0 and the
rotational transform iota, which satisfies

ι(r) =
bθ/r

bz/R0
=

1

q(r)
. (1.7)

In order to verify that ∇ ·B = 0, we recall that the divergence of a vector a = ar r̂ + aθθ̂+ az ẑ in cylindrical
components reads

∇ · a =
1

r

∂

∂r
(rar) +

1

r

∂aθ
∂θ

+
∂az
∂z

,

and we observe that the magnetic field in (1.6) has Br = 0, ∂θBθ = 0 and ∂zBz = 0. In a similar fashion we
also notice that ∇ · b = 0 in this case. The magnetic field lines, parametrized by (r, θ, z), are defined by the
equations

dr

ds
= 0, r

dθ

ds
= Bθ = B0ζ(r),

dz

ds
= Bz = B0, (1.8)

so that
dθ

ds
=
ζ(r)

r

dz

ds
=
ι(r)

R0

dz

ds
.

Therefore the magnetic field lines are straight oblique lines in the (θ, z) plane for each given r.

1.3 Overview

The remainder of the paper is structured as follows. Section 2 describes the numerical algorithms that are
employed for performing interpolation and differentiation in a ‘field-aligned’ fashion. Section 3 details the
field-aligned semi-Lagrangian scheme in the simplified setting of the constant advection equation in 2D,
and provides a rigorous proof of unconditional stability, together with an extensive error analysis. Section 4
presents a simplified gyrokinetic model in cylindrical geometry (screw pinch), which is implemented in Selalib
(semi-Lagrangian library) and verified against an analytical solution. Section 5 presents a gyrokinetic model
in toroidal geometry (circular Tokamak), which is implemented in the Gysela code and benchmarked against
a standard (not aligned) version of the same code. Finally, Section 6 gives our conclusions and an outlook
on possible future investigations.

2 Description of the Numerical Tools

2.1 Numerical scheme for a 2D aligned interpolation

To describe the 2D aligned interpolation method, we consider here a 2D plane along the dimensions θ and
ϕ for example. Let us consider ∆θ = 2π/Nθ, θi = i∆θ and ∆ϕ = 2π/Nϕ, ϕj = j∆ϕ with (i, j) ∈
[0..Nθ − 1] × [0..Nϕ − 1] to discretize the 2D plane. By periodicity we can extend this to (i, j) ∈ Z2. Let
us consider a position (θ?, ϕ?) where we want to interpolate a function g, given that the values g(θi, ϕj) are
already known. There exists a unique index j? ∈ Z and 0 ≤ β < ∆ϕ such that

ϕ? = ϕj? + β .

We then define
ϕj?+k = ϕj? + k∆ϕ, k = r, .., s .

We will use information stored in the 1D slices g(θ = ∗, ϕ = ϕj?+k)k=r,..,s to perform the aligned interpolation
at (θ?, ϕ?). Let us define a function fieldlineθ(θ, ϕ, j) that gives a θ-value that corresponds to the intersection
of the field line (or an approximation of the field line) that passes by the point (θ, ϕ) and the line (θ = ∗, ϕj).
This function is the cornerstone of the method, it provides a way to interpolate using values that are close
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(θ*,φ*)

θ

φ

φ
j*

φ
j*+1

φ
j*-1

Figure 1: Illustration of the aligned interpolation scheme for a target point at position (θ?, ϕ?); the squares
are located at (θ = fieldlineθ(θ

?, ϕ?, j? + k), ϕ = ϕj?+k)k=r,..,s; the values at square positions are
interpolated using values known at black small points; the value at the red circle position (θ∗, ϕ∗) is

interpolated using values known at the square positions.

each other, because locations of these values are aligned on the physical structures. The fieldlineθ function
is chosen such as all interpolated points hk are aligned on a single field line.

The first stage of the method is to compute uθ?,ϕ?(k)k=r,..,s by interpolating g at positions
(fieldlineθ(θ

?, ϕ?, j? + k), ϕj?+k)k=r,..,s. We currently employ cubic splines to interpolate along the θ direc-
tion on the 1D slices g(θ = ∗, ϕ = ϕj?+k)k=r,..,s. The formula for fieldlineθ that we have been using so far
is the linear approximation

fieldlineθ(θ
?, ϕ?, j? + k) = θ? + ι(r) (ϕj?+k − ϕ?) ,

which is the equation of a straight line. This approximation is exact in the case of the screw-pinch described
in Section 4, and it is very accurate in the case of the circular Tokamak in Section 5 (because of its large
aspect-ratio). In any case, this function can be easily changed in the code: it is effectively a parameter of
the method.

The second stage of the method consists in interpolating g(θ?, ϕ?) using the values aligned on the parallel
direction we just get: uθ?,ϕ?(k)k=r,..,s. To achieve this, we use Lagrange polynomials of degree 2d + 1
LAG(2d+1) and take r = −d, s = d + 1. The pseudo-code implementation of the scheme is presented in
Algorithm 1, and an illustration is given in Figure 1.

Input : g, theta?, phi?

Output : g†

for j = 0, Nϕ do
η(i = ∗, j)← spline coefficients for
g(i = ∗, j)

for j = 0, Nϕ do
for i = 0, Nθ do

ϕ? ← phi?(i, j); θ? ← theta?(i, j);
j? ← index of the left grid

point close to ϕ? ;
for k = −d, d+1 do

θk ← fieldlineθ(θ
?, ϕ?, j? + k);

uk ← 1D spline interpolation along
θ

at θk using η(i = ∗, j? + k);
g†(i, j)← 1D Lagrange interpolation

using values (uk)k=−d,d+1

Algorithm 1: Aligned interpolation in 2D

Input : g, ε
Output : dg/dϕ

for j = 0, Nϕ do
η(i = ∗, j)← spline coefficients for g(i = ∗, j)

for j = 0, Nϕ do
for i = 0, Nθ do

for k = −d, d+1 do
θ+k ← fieldlineθ(θi, ϕj + ε, j + k);
θ−k ← fieldlineθ(θi, ϕj − ε, j + k);
u+
k ← 1D spline interpolation along θ

at θ+k using η(i = ∗, j + k);
u−k ← 1D spline interpolation along θ

at θ−k using η(i = ∗, j + k);

u+ ← 1D Lagrange interpolation

using values (u+
k )k=−d,d+1;

u− ← 1D Lagrange interpolation
using values (u−k )k=−d,d+1;

dg
dϕ

(i, j)← u++u−

2ε

Algorithm 2: Derivatives along ϕ with aligned

scheme
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2.2 Algorithm for the aligned computation of derivatives

In the Gysela code (in Section 5), we need to evaluate ϕ derivatives of the electric potential to compute
the non-linear terms appearing in the advection equations, but also in the diagnostics that compute a set
of macroscopic physics variables. In order to do so with a reduced number of points in the ϕ direction
(authorized by the aligned interpolation approach), a scheme should be designed to get an accurate ap-
proximation of these derivatives. We have evaluated two alternatives to estimate the dΦ/dϕ derivative: the
first one relies on estimating the derivative along the parallel direction b and then projecting over the ϕ
direction, the second one uses aligned interpolation to compute two values of Φ at ϕ± ε and then computes
the derivative by a finite difference formula. Algorithm 2 describes the second solution, which is effectively
used in the Gysela code. The main idea is to compute Φ(θi, ϕj) with the values of Φ(θi, ϕj ± ε) that are
accurately estimated with an aligned interpolation similar to Algorithm 1.
In the Selalib code (in Section 4), we do not need to evaluate ϕ derivatives of the electric potential, as
in the equations everything is expressed in terms of derivatives in the poloidal plane or along the parallel
direction b. To evaluate the electric field along b, we use for example a finite difference formula of order 6,
which reads

∇Φ · b(ri, θj , ϕk) ' 1

∆ϕ

3∑
`=−3

w`Φ̃(ri, fieldlineθ(θj , ϕk, k + `), ϕk+`),

with coefficients

w0 = 0, w1 = −w−1 =
3

4
, w2 = −w−2 = − 3

20
, w3 = −w−3 =

1

60
,

and Φ̃(ri, fieldlineθ(θj , ϕk, k + `), ϕk+`) is obtained by interpolation (for example cubic splines) from the
values Φ(ri, θl, ϕk+`), l = 0, . . . , Nθ.

3 Theoretical Justification of the Approach for 2D Advection

Our drift-kinetic simulations with the GYSELA code (presented in section 5) will emphasize the practical
advantages of the field-aligned approach over traditional tensor-product 2D interpolation schemes. Never-
theless, in order to trust the output of such a code when no analytical solutions are at hand, it is very
desirable to have proven convergence (that is, consistency and stability) of the numerical methods employed.
As it often happens in computational physics, we can provide such a proof only for a drastically reduced
mathematical model; but even so, we gain useful insight and a certain degree of confidence in the final
numerical scheme. Therefore, in this section we assess the convergence of our field-aligned semi-Lagrangian
method when applied to the 2D constant advection equation for f : R+× R2 → R,

(∂t + bθ∂θ + bϕ∂ϕ) f(t, θ, ϕ) = 0, f(t = 0, θ, ϕ) = f0(θ, ϕ),

where the initial function f0 : R2 → R is 2π-periodic in θ and ϕ, and b = (bθ, bϕ) is the unit vector of a
constant magnetic field (therefore bθ, bϕ ∈ R such that b2θ + b2ϕ = 1). We assume that bϕ 6= 0, because this
hypothesis is required by the scheme. The exact solution reads

f(t, θ, ϕ) = f0(θ − bθt, ϕ− bϕt),

while the numerical solution fni,j ≈ f(tn, θi, ϕj) is computed on a uniform grid with indices n, i, j ∈ Z and

discretization parameters ∆t ∈ R, ∆θ = 2π
Nθ

, and ∆ϕ = 2π
Nϕ

, where Nθ, Nϕ ∈ N∗. Specifically, we have

tn = n∆t and (θi, ϕj) = (θ0 + i∆θ, ϕ0 + j∆ϕ) with θ0, ϕ0 ∈ R. In our ‘backward’ semi-Lagrangian scheme,
the solution at time tn+1 is obtained from the solution at time tn as

fn+1
i,j = fn(θi − bθ∆t, ϕj − bϕ∆t),

where fn(θ, ϕ) is reconstructed from fni,j through field-aligned interpolation. By virtue of the linearity of the
interpolation operator (essentially a linear discrete convolution), the stability of the scheme will be assessed
by means of a standard Von Neumann analysis: upon taking the semi-discrete Fourier transform on both
sides of the previous equation, we will get

f̂n+1(ωθ, ωϕ) = ρ(ωθ, ωϕ)f̂n(ωθ, ωϕ),
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where ρ : [−π, π] × [−π, π] → C is the ‘Fourier symbol’, or ‘amplification factor’, for a given choice of
discretization parameters. We will then prove stability by showing that

|ρ(ωθ, ωϕ)| ≤ 1 ∀ ωθ, ωϕ.

In the present version of our field-aligned semi-Lagrangian scheme, we make use of centered Lagrange inter-
polation along both directions b and θ. In particular, we assume odd order 2db + 1 along b, and 2dθ + 1
along θ, with db, dθ ∈ N. For any choice of (db, dθ), we prove that such a scheme is unconditionally stable,
i.e. stable for all values of (∆t,Nθ, Nϕ),

Finally, we analyze the truncation error for single-mode initial conditions, proving that the scheme
converges to the exact solution with order 2dθ + 2 in Nθ and 2db+ 2 in Nϕ, as expected. Our error estimates
correctly recover the asymptotic behavior for bθ → 0, where the scheme reduces to 1D Lagrange interpolation.
In comparison to classical tensor-product 2D interpolation, we clarify how field-aligned interpolation allows
for a reduced Nϕ in those situations where the gradients along b are smaller than along the ϕ direction,
as typical in magnetic confinement devices. Because of the additional interpolations along θ, our estimates
suggest a slight increase in the error constant along this direction, but we expect such an effect to be
negligible in practice. In fact, the numerical experiments in sections 4 and 5 will confirm that this is more
than compensated by the gain along ϕ.

The outline of this section is as follows: section 3.1 provides the explicit update formula of our field-
aligned scheme, section 3.2 gives a rigorous proof of unconditional stability, and section 3.3 assesses the
truncation error of our scheme and compares it with the standard (not field-aligned) algorithm.

3.1 Update formula for field-aligned semi-Lagrangian scheme

For any given grid point (θi, ϕj), we trace the magnetic field line backward in time to obtain the foot of
the characteristic (θ∗i , ϕ

∗
j ), where ϕ∗j ∈ [ϕj∗ , ϕj∗+1). Since bϕ 6= 0 by assumption, the same magnetic field

line intersects the grid lines at constant ϕ at the locations (θ∗i,k, ϕj∗+k) with k ∈ Z. The basic idea of the
field-aligned semi-Lagrangian method is to use 1D interpolation along θ to obtain the intermediate values
fn+1
i,j,k = fn(θ∗i,k, ϕj∗+k), and then 1D interpolation along b to obtain fn+1

i,j = fn(θ∗i , ϕ
∗
j ). Thanks to the

constant b and uniform discretization, the concepts above will be succinctly formalized in the following
discussion, leading to a very compact algorithm.

First, we consider the normalized displacement −bϕ∆t/∆ϕ along the ϕ direction and decompose it into
its integer and fractional parts:

−bϕ∆t = (rϕ + αϕ)∆ϕ, rϕ ∈ Z, 0 ≤ αϕ < 1.

For Lagrange interpolation along b, the integer shift rϕ is used to correctly place the stencil on the grid,
and αϕ is the interpolation variable. We now turn to finding the displacements in the θ coordinate, which
correspond to the intersections between the magnetic field line and the various grid lines at constant ϕ. For
this purpose, we first define the flight times ∆tk such that

−bϕ∆tk = (rϕ + k)∆ϕ, k = −db, . . . , db + 1.

This is possible, as bϕ 6= 0. At each ϕj∗+k–intersection we now have the normalized diplacements along the θ
direction as −bθ∆tk/∆θ, which we also decompose into integer and fractional parts:

−bθ∆tk = (rθ,k + αθ,k)∆θ, rθ,k ∈ Z, 0 ≤ αθ,k < 1.

For Lagrange interpolation along θ, the integer shifts rθ,k are used to correctly place each stencil k on the
grid, and αθ,k are the interpolation variables. We are now ready to compute the intermediate values fn+1

i,j,k

at each ϕj∗+k–intersection through Lagrange interpolation along θ, as

fn+1
i,j,k =

dθ+1∑
`=−dθ

Ldθ` (αθ,k)fni+rθ,k+`,j+rϕ+k. k = −db, . . . , db + 1,

and from these we compute the new solution fn+1
i,j , using Lagrange interpolation along b:

fn+1
i,j =

db+1∑
k=−db

Ldbk (αϕ)fn+1
i,j,k .
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Combining the last two equations leads to the compact update formula

fn+1
i,j =

dθ+1∑
`=−dθ

db+1∑
k=−db

Ldbk (αϕ)Ldθ` (αθ,k)fni+rθ,k+`,j+rϕ+k. (3.1)

Here we recall that i, j ∈ Z, and that f0
i,j is Nθ-periodic in i and Nϕ-periodic in j. As a result, fni,j is

Nθ-periodic in i and Nϕ-periodic in j for n ∈ N. For completeness, we also recall that Ldk are the elementary
Lagrange basis functions defined by

Ldk(α) =

d+1∏
`=−d, ` 6=k

α− `
k − `

, k = −d, . . . , d+ 1, α ∈ R, d ∈ N.

3.2 Proof of stability

3.2.1 Fourier symbol

We now turn to studying the Fourier symbol of our numerical scheme (3.1) and, for simplicity, we redefine i :=√
−1 as the imaginary unit. Because of its periodicity, the Fourier spectrum of fni,j contains only Nθ ×Nϕ

modes. Therefore, we can proceed by taking the 2D discrete Fourier transform of both sides of (3.1). For
i1, j1 ∈ Z we get

Nθ−1∑
i2=0

Nϕ−1∑
j2=0

fn+1
i2,j2

exp

(
2πi

i1i2
Nθ

)
exp

(
2πi

j1j2
Nϕ

)
=

= ρ

(
2πi1
Nθ

,
2πj1
Nϕ

)Nθ−1∑
i2=0

Nϕ−1∑
j2=0

fni2,j2 exp

(
2πi

i1i2
Nθ

)
exp

(
2πi

j1j2
Nϕ

)
,

where the Fourier symbol ρ : [−π, π]2 → C is

ρ(ωθ, ωϕ) =

dθ+1∑
`=−dθ

db+1∑
k=−db

Ldbk (αϕ)Ldθ` (αθ,k) exp(i(rθ,k + `)ωθ) exp(i(rϕ + k)ωϕ).

Thanks to the relation

rθ,k + αθ,k = (rϕ + k)λ, λ =
bθNθ
bϕNϕ

∈ R,

we can parametrize the symbol in the variables (λ, rϕ, αϕ) as

ρλ,rϕ,αϕ(ωθ, ωϕ) =

dθ+1∑
`=−dθ

db+1∑
k=−db

Ldbk (αϕ)Ldθ` ((rϕ+k)λ−b(rϕ+k)λc) exp(i(b(rϕ+k)λc+`)ωθ) exp(i(rϕ+k)ωϕ),

(3.2)
where b·c : R→ Z is the floor function. In the spirit of the Von Neumann stability analysis, we are now led
to compute the maximum absolute value S of the symbol above,

S = sup
0≤αϕ<1, rϕ∈Z, λ,ωθ,ωϕ∈R

∣∣ρλ,rϕ,αϕ(ωθ, ωϕ)
∣∣ = sup

0≤αϕ,
ωθ
2π ,

ωϕ
2π <1, rϕ∈Z, λ∈R

∣∣ρλ,rϕ,αϕ(ωθ, ωϕ)
∣∣ ,

and to prove that S ≤ 1.

3.2.2 Relation to discrete Fourier transform (DFT) for rational λ

We suppose for the moment that λ ∈ Q, and we represent it as

λ =
m

q
, with m ∈ Z, q ∈ N∗, and m, q coprime.
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So, for any rϕ ∈ Z, we observe that αθ,k can only assume at most q different values, all rational:

αθ,k = (rϕ + k)λ mod 1 =
(rϕ + k)m mod q

q
=
sk
q
, k = −db, . . . , db + 1,

where we have introduced the natural sequence

sk = (rϕ + k)m mod q ∈ {0, . . . , q − 1}.

Under this assumption for λ we can use the following identity for any complex sequence ak:

db+1∑
k=−db

ak =

db+1∑
k=−db

q−1∑
p=0

δp,skak =

q−1∑
p=0

db+1∑
k=−db

δp,skak.

Here δ : Z2 → {0, 1} is Kronecker’s delta: for any u, v ∈ Z, δu,v = 1 if u = v, and 0 otherwise. In particular,
if we let ak = G(αθ,k)ck with G : [0, 1)→ C and ck ∈ C, we get the important relation

db+1∑
k=−db

G(αθ,k)ck =

q−1∑
p=0

db+1∑
k=−db

δp,sk G

(
sk
q

)
ck =

q−1∑
p=0

G

(
p

q

) db+1∑
k=−db

δp,skck.

We can then write

ρλ,rϕ,αϕ(ωθ, ωϕ) =

=

dθ+1∑
`=−dθ

db+1∑
k=−db

Ldbk (αϕ)Ldθ` (αθ,k) exp(i((rϕ + k)λ− αθ,k + `)ωθ) exp(i(rϕ + k)ωϕ)

=

q−1∑
p=0

[
dθ+1∑
`=−dθ

Ldθ`

(
p

q

)
exp

(
i

(
`− p

q

)
ωθ

)] db+1∑
k=−db

δp,skL
db
k (αϕ) exp(i(rϕ + k)(ωϕ + λωθ)).

We now focus on the term between square brackets, a complex sequence wp ∈ C with p = 0, . . . , q − 1, and
we represent it as a sum of q Fourier modes by means of a discrete Fourier transform (DFT) and its inverse:

dθ+1∑
`=−dθ

Ldθ`

(
p

q

)
exp

(
i

(
`− p

q

)
ωθ

)
= wp =

q−1∑
p1=0

tp1 exp

(
i2π

p p1

q

)
, (3.3a)

tp1 =
1

q

q−1∑
p2=0

wp2 exp

(
−i2πp1p2

q

)
. (3.3b)

Incidentally, we notice that the sum of the Fourier coefficients defined in (3.3b) is equal to 1, as can be
proven by looking at the term w0 in (3.3a):

q−1∑
p1=0

tp1 = w0 =

dθ+1∑
`=−dθ

Ldθ` (0) exp (i`ωθ) =

dθ+1∑
`=−dθ

δ`,0 exp (i`ωθ) = 1. (3.4)

By substituting (3.3a) into the Fourier symbol ρλ,rϕ,αϕ(ωθ, ωϕ) we can get rid of one of the sums, as well as
of the Kronecker delta:

ρλ,rϕ,αϕ(ωθ, ωϕ) =

=

q−1∑
p1=0

tp1

q−1∑
p=0

exp

(
i2π

p1p

q

) db+1∑
k=−db

δp,skL
db
k (αϕ) exp(i(rϕ + k)(ωϕ + λωθ))

=

q−1∑
p1=0

tp1

q−1∑
p=0

db+1∑
k=−db

δp,skL
db
k (αϕ) exp(i(rϕ + k)(ωϕ + λωθ)) exp

(
i2π

p1sk
q

)

=

q−1∑
p1=0

tp1

db+1∑
k=−db

Ldbk (αϕ) exp(i(rϕ + k)(ωϕ + λωθ)) exp(i2πp1αθ,k).

10



Because exp(i2π) = 1, we now multiply the right-hand side by exp(i2πp1rθ,k) = 1, use the fact that rθ,k +
αθ,k = (rϕ + k)λ, and then change p1 with p to obtain

ρλ,rϕ,αϕ(ωθ, ωϕ) =

q−1∑
p=0

tp

db+1∑
k=−db

Ldbk (αϕ) exp(i(rϕ + k)(ωϕ + λωθ)) exp(i2πp(rϕ + k)λ).

By properly rearranging the complex exponential factors according to their dependence on the indexes p
and k, we also get

ρλ,rϕ,αϕ(ωθ, ωϕ) =

q−1∑
p=0

tp exp(irϕωp)

db+1∑
k=−db

Ldbk (αϕ) exp(ikωp), (3.5a)

where we have introduced the frequencies ωp ∈ R for p = 0, . . . , q − 1 as

ωp = 2πpλ+ ωϕ + λωθ. (3.5b)

We now turn to studying the absolute value of the Fourier symbol in (3.5), which is the sum over p of q
complex terms. We apply the triangular inequality to such a sum, and use the fact that the modulus of a
complex exponential is equal to 1, to obtain the estimate

∣∣ρλ,rϕ,αϕ(ωθ, ωϕ)
∣∣ ≤ q−1∑

p=0

|tp|

∣∣∣∣∣
db+1∑
k=−db

Ldbk (αϕ) exp(ikωp)

∣∣∣∣∣ ,
which can be factorized as

∣∣ρλ,rϕ,αϕ(ωθ, ωϕ)
∣∣ ≤ (q−1∑

p=0

|tp|

)(
sup

0≤ω≤2π

∣∣∣∣∣
db+1∑
k=−db

Ldbk (αϕ) exp(ikω)

∣∣∣∣∣
)
. (3.6)

The second factor on the right-hand side is typical of backward semi-Lagrangian schemes applied to the 1D
advection equation. The stability analysis in [8], for example, has already shown that

sup
0≤ω≤2π

∣∣∣∣∣
db+1∑
k=−db

Ldbk (αϕ) exp(ikω)

∣∣∣∣∣ ≤ 1. (3.7)

Therefore our attention will focus on the first factor, which must also be ≤ 1. If we can prove that tp ∈ R+

for each p = 0, . . . , q − 1, then |tp| = tp and we can use our previous result in (3.4) to obtain

q−1∑
p=0

|tp| =
q−1∑
p=0

tp = 1. (3.8)

For this purpose we first notice, because exp(i` 2πp) = 1, that we can rewrite (3.3b) as

tp =
1

q

q−1∑
p1=0

dθ+1∑
`=−dθ

Ldθ`

(
p1

q

)
exp

(
i

(
`− p1

q

)
(ωθ + 2πp)

)
, p = 0, . . . , q − 1. (3.9)

Our stability analysis will now proceed in three stages. In section 3.2.3 we will prove that the Fourier
coefficients tp are all real, and in section 3.2.4 that they are non-negative. This implies (3.8) and therefore
stability of our numerical scheme for any rational λ, according to (3.6) and (3.7). Finally, in section 3.2.5
we will extend this result to the general situation of real λ.

Remark 3.1. This result of positivity of the DFT has direct connection with results of Ferretti [9, 10]
stating equivalence between semi-Lagrangian and Lagrange-Galerkin methods under some assumptions, one
of it being the positivity of the (continuous) Fourier transform. Such link may be further studied.
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3.2.3 Proving that the DFT is real

We now prove that tp ∈ R for each p = 0, . . . , q − 1. Given that the tp coefficients are obtained through the
DFT (3.3), this follows from the symmetry property wq−p = w∗p for p = 1, . . . , q − 1.
If we introduce the complex function of real variable

Sq,d(ω) =

q−1∑
p1=0

d+1∑
`=−d

Ld`

(
p1

q

)
exp

(
i

(
`− p1

q

)
ω

)
, 0 ≤ ω ≤ 2πq, (3.10)

such that

tp =
1

q
Sq,dθ (ωθ + 2πp), p = 0, . . . , q − 1, (3.11)

it suffices to prove that the imaginary part of Sq,d(ω) is always zero in [0, 2πq]. To show this, we start from
Euler’s formula exp(ix) = cos(x) + i sin(x) and then make use of the symmetry of Lagrange basis functions
on a uniform grid, namely

Ld` (α) = Ld−`+1(1− α), ` = 1, . . . , d+ 1, 0 ≤ α ≤ 1,

together with the identities

d+1∑
`=−d

c` =

d+1∑
`=1

(c` + c−`+1),

q−1∑
p=1

cp =

q−1∑
p=1

cq−p,

to obtain

Im
{
Sq,d(ω)

}
=

q−1∑
p=0

d+1∑
`=−d

Ld`

(
p

q

)
sin

((
`− p

q

)
ω

)
=

=

d+1∑
`=−d

Ld` (0) sin(`ω) +

q−1∑
p=1

d+1∑
`=1

[
Ld`

(
p

q

)
sin

((
`− p

q

)
ω

)
+ Ld−`+1

(
p

q

)
sin

((
−`+ 1− p

q

)
ω

)]

=

d+1∑
`=−d

δ`,0 sin(`ω) +

q−1∑
p=1

d+1∑
`=1

[
Ld`

(
p

q

)
sin

((
`− p

q

)
ω

)
+ Ld`

(
1− p

q

)
sin

((
−`+ 1− p

q

)
ω

)]

= sin(0) +

q−1∑
p=1

d+1∑
`=1

Ld`

(
p

q

)[
sin

((
`− p

q

)
ω

)
+ sin

((
−`+

p

q

)
ω

)]
= 0.

Therefore we have proven that tp ∈ R for p = 0, . . . , q − 1.

3.2.4 Proving that the DFT is non-negative

Now, it remains to see if we can prove that

Sq,d(ω) ≥ 0 for all 0 ≤ ω ≤ 2πq. (3.12)

If this inequality is true for d = dθ, from (3.11) we obtain that tp ≥ 0 for p = 0, . . . , q−1, and therefore (3.8)
holds. From this follows the stability of our numerical scheme for any rational λ.
For q = 1, we have

S1,d(ω) =

d+1∑
`=−d

Ld` (0) cos(`ω) = 1 ≥ 0.

For q > 1, the situation is much more complicated and it requires a careful study of the function Sq,d in the
interval [0, 2πq]. We first notice that we can explicitly compute the values Sq,d(2πn) for n ∈ N, because (3.10)
simplifies to

Sq,d(2πn) =

q−1∑
p=0

[
d+1∑
`=−d

Ld`

(
p

q

)]
exp

(
−ip
q

2πn

)
=

q−1∑
p=0

exp

(
−ip
q

2πn

)
,

12



where we have used the identity (exp(i2π))n` = 1 together with the partition of unity of the Lagrange

interpolant, namely
∑d+1
`=−d L

d
` (α) = 1, for all α ∈ R. From the last equation we obtain that

Sq,d(0) = q, Sq,d(2πn) = 0 for n = 1, . . . , q − 1, Sq,d(2πq) = q, (3.13)

and therefore Sq,d has at least q − 1 zeros in (0, 2πq) and is strictly positive at the boundaries. In the
following discussion we will show that there are no other zeros in the same interval, and that the function
is convex at all zeros (and therefore positive in some open interval around each zero). By continuity, this
proves that Sq,d(ω) ≥ 0 for all 0 ≤ ω ≤ 2πq. Our derivation is somewhat involved because most information
will be extracted from S′q,d, as in [11].
The derivative of (3.10) reads:

S′q,d(ω) = i

q−1∑
p=0

d+1∑
`=−d

Ld`

(
p

q

)(
`− p

q

)
exp

(
i

(
`− p

q

)
ω

)
.

Now, for ` = −d, . . . , d+ 1, we have Ld` (x) =
∏d+1
k=−d, k 6=` x−k∏d+1
k=−d, k 6=` `−k

Ld`

(
p

q

)(
p

q
− `
)

=
1∏`−1

k=−d(`− k)
∏d+1
k=`+1(`− k)

d+1∏
k=−d

(
p

q
− k
)

=
(−1)d+1−`

(d+ `)!(d+ 1− `)!

d+1∏
k=−d

(
p

q
− k
)
,

so that

S′q,d(ω) = −i

[
d+1∑
`=−d

(−1)d+1−`

(d+ `)!(d+ 1− `)!
exp(i`ω)

]
q−1∑
p=0

exp

(
−ip
q
ω

)
wd

(
p

q

)
,

with

wd(x) =

d+1∏
k=−d

(x− k), x ∈ R. (3.14)

We point out that wd(x) is symmetric about the point x = 1/2, as

wd(x) =

d∏
k=0

(x− k + 1)(x+ k) =

d∏
k=0

((
x− 1

2

)2

−
(
k +

1

2

)2
)
.

Now, if we multiply by exp(idω) the term within square brackets in the expression for S′q,d(ω), we can identify
the sum therein as the polynomial expansion of a binomial power,

d+1∑
`=−d

(−1)d+1−`

(d+ `)!(d+ 1− `)!
exp(i(`+ d)ω) =

2d+1∑
`=0

(−1)2d+1−`

`!(2d+ 1− `)!
exp(i`ω) =

=
(−1)2d+1

(2d+ 1)!

2d+1∑
`=0

(
2d+ 1

`

)
(− exp(iω))` =

(exp(iω)− 1)2d+1

(2d+ 1)!
,

and obtain therefore

S′q,d(ω) =
−i exp(−iωd)(exp(iω)− 1)2d+1

(2d+ 1)!

q−1∑
p=0

exp

(
−ip
q
ω

)
wd

(
p

q

)
.

The coefficient that appears in front of the summation can be reformulated as

− i exp(−iωd)(exp(iω)− 1)2d+1 = −i exp
(
i
ω

2

)(
exp

(
−iω

2

))2d+1

(exp(iω)− 1)2d+1

= −i exp
(
i
ω

2

)(
exp

(
i
ω

2

)
− exp

(
−iω

2

))2d+1

= (−1)d22d+1 sin2d+1
(ω

2

)
exp

(
i
ω

2

)
,
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which yields an expression for S′q,d(ω) where all terms are real, apart from the complex exponential coefficients
in the summation:

S′q,d(ω) = (−1)d22d+1 sin2d+1
(ω

2

) q−1∑
p=1

exp

(
i

(
1

2
− p

q

)
ω

)
wd

(
p

q

)
.

Because Sq,d is real valued, so must be its derivatives. In fact, the imaginary part of the summation above
is zero thanks to the fact that wd(0) = 0 by definition, and wd(x) = wd(1 − x) by symmetry. Finally, we
obtain

S′q,d(ω) = (−1)d
22d+1

(2d+ 1)!
sin2d+1

(ω
2

)
σq,d(ω), (3.15)

with

σq,d(ω) =

q−1∑
p=1

cos

((
1

2
− p

q

)
ω

)
wd

(
p

q

)
. (3.16)

We will now study separately the two factors sin2d+1(ω/2) and σq,d(ω) that appear in (3.15). The former
has zeros at 2nπ for n ∈ N, with 2d derivatives also zero at the same location. In fact, if we look at the
asymptotic behavior near any of the points ω = 2nπ, we have

sin2d+1
(ω

2

)
=

[
(−1)

n
sin

(
ω − 2nπ

2

)]2d+1

∼
ω=2nπ

(−1)n
(ω − 2nπ)

2d+1

22d+1
, (3.17)

where we used the angle sum identity for sines, together with cos(nπ) = (−1)n and sin(nπ) = 0. A
comparison with the Taylor expansions around the same locations yields[

sin2d+1
(ω

2

)](j)
ω=2nπ

= 0 for j = 0, . . . , 2d,[
sin2d+1

(ω
2

)](2d+1)

ω=2nπ
= (−1)n

(2d+ 1)!

22d+1
.

We now turn to study the term σq,d(ω) at the same locations. If we multiply (3.16) by (−1)n+d and then
use the angle sum identity for cosines, again with cos(nπ) = (−1)n and sin(nπ) = 0, we obtain

(−1)n+dσq,d(2nπ) = (−1)n+d

q−1∑
p=1

cos

((
1

2
− p

q

)
2nπ

)
wd

(
p

q

)
= (−1)d

q−1∑
p=1

cos

(
2nπ

p

q

)
wd

(
p

q

)
.

We then will use the following discrete form of a lemma relating real convex functions to positive Fourier
transforms (see [12,13] and [14] for historical notes).

Lemma 3.1. Let q ≥ 2 be an integer and fj be a sequence of q+ 1 real numbers with j = 0, . . . , q, such that
f0 = fq = 0 and

fj+1 − 2fj + fj−1 ≥ 0, j = 1, . . . , q − 1.

Then, we have
q−1∑
p=1

cos

(
2nπ

p

q

)
fp ≥ 0, n = 1, . . . , q − 1. (3.18)

Moreover, if we have additionally f1 > f2/2, then (3.18) is strict for all n = 1, . . . , q − 1.

Proof. Since fq = f0 = 0, and 0 < n < q, we have

q−1∑
p=1

cos

(
2nπ

p

q

)
fp =

q−1∑
p=0

sin(2nπ p+1/2
q )

2 sin(nπq )
fp −

q∑
p=1

sin(2nπ p−1/2
q )

2 sin(nπq )
fp =

q−1∑
p=0

sin(2nπ p+1/2
q )

2 sin(nπq )
(fp − fp+1).

Now, as n ∈ N, we have

q−1∑
p=1

cos

(
2nπ

p

q

)
fp =

q−2∑
p=0

cos(2nπ p+1
q )− 1

4 sin2(nπq )
(fp+1 − fp) +

q−1∑
p=1

cos(2nπ pq )− 1

4 sin2(nπq )
(fp − fp+1).
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This leads to
q−1∑
p=1

cos

(
2nπ

p

q

)
fp =

q−1∑
p=1

cos(2nπ pq )− 1

4 sin2(nπq )
(2fp − fp+1 − fp−1) ≥ 0.

Finally, if we also have f1 >
f2
2 , we get

q−1∑
p=1

cos

(
2nπ

p

q

)
fp ≥

cos(2nπ 1
q )− 1

4 sin2(nπq )
(2f1 − f2) > 0.

Proposition 3.1. Let d ∈ N and wd(x) =
∏d+1
k=−d(x− k). Then (−1)dwd is strictly convex on [0, 1].

Proof. We know that wd is a polynomial of degree 2d + 2 whose roots are k, k = −d, . . . d + 1. By Rolle’s
theorem and since w′d is a polynomial of degree 2d+1, w′d vanishes exactly one time in each interval (k, k+1).
We also have wd(1/2 + x) = wd(1/2 − x) by symmetry, so the unique zero of w′d in (0, 1) is 1/2. By
Rolle’s theorem and since w′′d is a polynomial of degree 2d, looking at the variation table, we can see that
(−1)dw′′d < 0 on (t−1, s−1)∪ (s1, t1) and (−1)dw′′d > 0 on (s−1, s1), with t−1 the unique zero of w′d in (−1, 0)
and t1 the unique zero of w′d in (1, 2), and we have s−1 ∈ (t−1, 1/2), s1 ∈ (1/2, t1). From the expression

wd(x) = x(x − d − 1)
∏d
k=1(x2 − k2) we get w′′d (0) = 2

∏d
k=1(−k2) (with the convention

∏0
k=1 = 1), and

thus (−1)dw′′d (0) > 0, which implies that s−1 < 0. By symmetry we have (−1)dw′′d (1) > 0, and thus s1 > 1.
Finally, we have (−1)dw′′d > 0 on [0, 1].

From Lemma 3.1, Proposition 3.1 and as wd(0) = wd(1) = 0, we deduce that

(−1)n+dσq,d(2nπ) > 0, n = 1, . . . , q − 1, q > 2, d ∈ N. (3.19)

We now turn to study the asymptotic behavior of Sq,d(ω) as ω → 2nπ for n = 1, . . . , q−1. Thanks to (3.19),
we can substitute (3.17) into (3.15) to obtain an asymptotic expression for S′q,d, which we integrate once
using (3.13). Finally, we obtain the asymptotic equivalence

Sq,d(ω) ∼
ω=2nπ

(−1)n+dσq,d(2nπ)

(2d+ 2)!
(ω − 2nπ)2d+2, n = 1, . . . , q − 1, q = 2, 3, . . . , d ∈ N, (3.20)

which we compare with the Taylor expansion of Sq,d about ω = 2nπ for n = 1, . . . , q − 1 to find

S
(j)
q,d(2nπ) = 0 for j = 0, . . . , 2d+ 1,

S
(2d+2)
q,d (2nπ) = (−1)n+dσq,d(2nπ) > 0.

(3.21)

Because the first non-zero derivative is of even order and positive, we conclude that Sq,d is convex at each
of its zeros 2nπ for n = 1, . . . , q − 1. If we can prove that Sq,d has no other zeros in [0, 2qπ], it follows
that Sq,d ≥ 0 in the whole interval.
We have now the following lemma.

Lemma 3.2. If q ≥ 2, then σq,d(ω) as defined in (3.16) is a polynomial in cos( ω2q ) of degree ≤ q − 2.

Proof. The result follows from the formula

cos

(
ω

2q
(q − 2p)

)
= Re

{[
exp

(
i
ω

2q

)]q−2p
}

= Re

{[
i sin

(
ω

2q

)
+ cos

(
ω

2q

)]q−2p
}

=

= Re

{
q−2p∑
k=0

(
q − 2p

k

)
ik sink

(
ω

2q

)
cosq−2p−k

(
ω

2q

)}
=

=

q−2p∑
k=0
k even

(
q − 2p

k

)
(−1)k/2

(
1− cos2

(
ω

2q

))k/2
cosq−2p−k

(
ω

2q

)
.
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Because of this lemma and the fact that cos( ω2q ) is monotonically decreasing in (0, 2qπ), we have that σq,d(ω)
has at most q − 2 zeros in the same interval.
Since Sq,d(2nπ) = 0 for n = 1, . . . , q− 1, according to Rolle’s theorem there exist un ∈ (2nπ, 2(n+ 1)π) such
that S′q,d(un) = 0, for n = 1, . . . , q− 2. We then also have σq,d(un) = 0, because sin(ω/2) has no zeros inside
those intervals. So, we have found q − 2 distinct roots for the polynomial of Lemma 3.2, which is non zero
and of degree ≤ q − 2. We deduce that there is exactly one zero of σq,d in the interval (2nπ, 2(n+ 1)π) for
n = 1, . . . , q− 2 and no zero of σq,d in the interval (0, 2π) and (2(q− 1)π, 2qπ), and this is the same for S′q,d.
If we combine this information with the convexity of Sq,d at ω = 2nπ, we conclude that:

• Sq,d decreases monotonically from Sq,d(0) = q to Sq,d(2π) = 0, and therefore Sq,d ≥ 0 in [0, 2π];

• In each interval [2nπ, 2(n + 1)π] for n = 1, . . . , q − 2, Sq,d increases monotonically from Sq,d(2nπ) =
0 to Sq,d(un) > 0 and then decreases monotonically to Sq,d(2(n + 1)π) = 0, therefore Sq,d ≥ 0
in [2π, 2(q − 1)π];

• Sq,d increases monotonically from Sq,d(2(q − 1)π) = 0 to Sq,d(2qπ) = q, and therefore Sq,d ≥ 0
in [2(q − 1)π, 2qπ].

This proves that Sq,d(ω) ≥ 0 for all 0 ≤ ω ≤ 2qπ, and therefore tp ∈ R+ for p = 1, . . . , q − 1. Accordingly,
we obtain the identity (3.4) and hence the stability of our numerical scheme for any λ ∈ Q.

3.2.5 Statement of unconditional stability

The stability of our numerical scheme for a general λ ∈ R follows from the stability proof already given,
thanks to the density of the rational numbers in R. Let A : R→ R be the modulus of our Fourier symbol as
a function of λ, for a given choice of rϕ, αϕ, ωθ and ωϕ:

A(λ) = |σλ,rϕ,αϕ(ωθ, ωϕ)|.

Because of the floor function that appears in the Fourier symbol (3.2), A presents discontinuities of the first
kind at a set of isolated rational locations,{

n

rϕ + k

∣∣∣∣ n ∈ N; k ∈ {−db, . . . , db + 1} \ {−rϕ}
}
⊂ Q,

so that the minimum distance between two discontinuities is 1/(1+db+|rϕ|). Everywhere else A is continuous,
and specifically so at all irrational values of λ. We now have two cases:

1. If λ ∈ Q, we have already proven that A(λ) ≤ 1;

2. If λ ∈ R \ Q, the function A is continuous in some open interval (λ − δ, λ + δ) with δ > 0. We now
suppose that A(λ) > 1 and show that this leads to a contradiction. Because of continuity, there exists
an open interval (λ − ε, λ + ε) with 0 < ε ≤ δ where A > 1. Because of the density of Q in R, there
exists λ∗ ∈ Q ∩ (λ − ε, λ + ε) such that A(λ∗) > 1, but this contradicts case 1. Therefore we obtain
again that A(λ) ≤ 1.

With this we have proven that |σλ,rϕ,αϕ(ωθ, ωϕ)| ≤ 1 for all λ ∈ R, rϕ ∈ Z, αϕ ∈ [0, 1), and (ωθ, ωϕ) ∈ [0, 2π]2.
The numerical scheme so presented is unconditionally stable.

3.3 Truncation error and convergence

3.3.1 Approximation error for 1D centered Lagrange interpolation

We now focus on the truncation error due to 1D centered Lagrange interpolation on a uniform grid, of odd
order 2d+1 with d ∈ N. To this end we repeat here part of the analysis done in [15], with a slight refinement
on the final error estimates. The results of this section will then be used for assessing the error of our 2D
field-aligned semi-Lagrangian scheme, and to compare it to the classical (non field-aligned) scheme.
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Consider a function g : R → C smooth enough, which we sample on a uniform grid zj = j∆z with j ∈ Z
and ∆z ∈ R∗+. Without loss of generality, we focus on the location z = α∆z with 0 ≤ α ≤ 1. If we write the
interpolation error at α∆z in terms of divided differences, which we reformulate in Peano form, we obtain

g(α∆z)−
d+1∑
k=−d

Ldk(α)g(k∆z) = ∆z2d+2

∏d+1
`=−d (α− `)
(2d+ 1)!

∫ (d+1)∆z

−d∆z

Q2d+2
α,∆z(z)∂

2d+2
z g(z)dz, (3.22)

where Q2d+2
α,∆z is the B-spline function over the points α∆z and `∆z, for ` = −d, . . . , d+ 1, satisfying∫ (d+1)∆z

−d∆z

Q2d+2
α,∆z(z)dz =

1

2d+ 2
.

If we introduce the linear change of coordinates η(z) = (z+d∆z)/((2d+ 1)∆z)), we can write Q2d+2
α,∆z(z)dz =

B2d+2,α(η)dη, where B2d+2,α is the B-spline function over the 2d+ 3 points

0 <
1

2d+ 1
< · · · < d

2d+ 1
≤ d+ α

2d+ 1
≤ d+ 1

2d+ 1
< · · · < 2d

2d+ 1
< 1,

with the (same) normalization
∫ 1

0
B2d+2,α(η)dη = (2d+ 2)−1. We note that B2d+2,α(η) ≥ 0 for 0 ≤ η ≤ 1.

The identity (3.22) then rewrites

g(α∆z)−
d+1∑
k=−d

Ldk(α)g(k∆z) = ∆z2d+2

∏d+1
`=−d (α− `)
(2d+ 1)!

∫ 1

0

B2d+2,α(η)∂2d+2
z g((−d+ (2d+ 1)η)∆z)dη.

We now suppose that the function g is harmonic, i.e. g(z) = exp(i(ωz + φ)) with ω ∈ R and φ ∈ [0, 2π], and
we proceed with estimating the maximum magnitude of the interpolation error over all possible values of α
and φ. Since ∂2d+2

z g(z) = (iω)2d+2g(z), the absolute value of the error is∣∣∣∣∣g(α∆z)−
d+1∑
k=−d

Ldk(α)g(k∆z)

∣∣∣∣∣ = (ω∆z)2d+2

∏d+1
`=−d |α− `|
(2d+ 1)!

∣∣∣∣∫ 1

0

B2d+2,α(η) exp(i(ωz(η) + φ))dη

∣∣∣∣ .
The maximum magnitude of the integral factor is difficult to compute, nevertheless we can obtain an upper
bound by using the triangular inequality for integrals, as∣∣∣∣∫ 1

0

B2d+2,α(η) exp(i(ωz(η) + φ))dη

∣∣∣∣ ≤ ∫ 1

0

B2d+2,α(η)
∣∣∣exp(i(ωz(η) + φ))

∣∣∣dη =

∫ 1

0

B2d+2,α(η)dη =
1

2d+ 2
,

with the understanding that such an estimate is sharp in the limit as ∆z → 0, which does not depend on α
or φ:

lim
∆z→0

∣∣∣∣∫ 1

0

B2d+2,α(η) exp(i(ωz(η) + φ))dη

∣∣∣∣ =

∣∣∣∣exp(iφ)

∫ 1

0

B2d+2,α(η)dη

∣∣∣∣ =
1

2d+ 2
.

The product in front of the integral can be written as

d+1∏
`=−d

|α− `| =
0∏

`=−d

(α− `)
d+1∏
`=1

(`− α) =

d+1∏
`=1

(`− (1− α))(`− α) = α(1− α)

d+1∏
`=2

[(
`− 1

2

)2

−
(
α− 1

2

)2
]
,

where we have extracted the ` = 1 factor because it goes to zero in the limits as α → 0 and as α →
1, and we would like to retain such an asymptotic behavior in our estimates. All factors in the final
multiplication are strictly positive and achieve their maximum value for α = 1/2, and the missing ` = 1
term has value (1− 1/2)2 = 1/4. Therefore we can write the upper bound

d+1∏
`=−d

|α− `| ≤ 4α(1− α)

d+1∏
`=1

(
`− 1

2

)2

,
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which reduces to an equality for α ∈ {0, 1/2, 1}. We point out that, although this expression converges to
the correct limit for α→ 0, it overestimates the linear rate of convergence. In other words, this upper bound
is not sharp. Such an expression can be explicitly evaluated as[

d+1∏
`=1

(
`− 1

2

)]2

=

[
1

2d+1

d+1∏
`=1

(2`+ 1)

]2

=

[
1

2d+1

∏2d+2
k=1 k∏d+1
`=1 2`

]2

=

[
(2d+ 2)!

22d+2(d+ 1)!

]2

=
(2d+ 2)!

(22d+2)2

(2d+ 2)!

(d+ 1)!(d+ 1)!
=

(2d+ 2)!

42d+2

(
2d+ 2

d+ 1

)
,

where the central binomial coefficient can be approximated very accurately with the following upper bound,
which is sharp in the limit as d→∞ and can be obtained in various ways (e.g. from Stirling’s formula):(

2d+ 2

d+ 1

)
<

22d+2√
π(d+ 1)

.

Putting everything together we obtain the following upper bound, which is sharp in the limit as ∆z → 0
and d→∞: ∣∣∣∣∣g(α∆z)−

d+1∑
k=−d

Ldk(α)g(k∆z)

∣∣∣∣∣ ≤
(
ω∆z

2

)2d+2
4α(1− α)√
π(d+ 1)

.

This formula will be used directly to construct an error bound for the 2D classical semi-Lagrangian scheme,
which in turn will be the base of comparison for our 2D field-aligned method. Based on this estimate, we
observe that:

1. The approximation error decreases with order 2d+ 2 in the discretization parameter ∆z, as expected;

2. In practical applications one seeks the largest value ∆z that yields an error smaller than a certain
threshold ε� 1; regardless of the order of the polynomial, this always implies that ω∆z < 2, that is,
at least π grid points must fit within the characteristic wavelength of g(z);

3. When the interpolation procedure is part of a semi-Lagrangian scheme, the time step size ∆t must be
taken into consideration, because it directly effects the value of α; particularly important is the fact
that, in the limit of ∆t/∆z → 0, we have α → 0 and therefore the error also goes to zero. For an
extended discussion over the role of ∆t in the convergence of semi-Lagrangian schemes we refer to [15].

3.3.2 Error estimate for field-aligned semi-Lagrangian scheme

We let f(tn) be the exact solution, and f (n) the numerical solution, at time tn. We introduce some notation

(see [15]): Π : f → (fi,j) is the discretization (sampling) operator on a uniform 2D grid, and T (resp. T̃ )
is the numerical (resp. exact) transport operator in direction b, over one time step ∆t. The (global) error
then reads

e(n+1) = Πf(tn+1)− f (n+1) = ΠT̃ f(tn)− T
(

Πf(tn)− e(n)
)

=
(

ΠT̃ − T Π
)
f(tn) + T e(n),

where we identify in (ΠT̃ − T Π)f(tn) the “truncation error” introduced by the numerical scheme between
time tn and tn + ∆t. Since the scheme is proven to be unconditionally stable, the error cannot grow in the
L2-norm when transported by the numerical scheme, i.e. ‖T e(n)‖2 ≤ ‖e(n)‖2. The triangular inequality then
yields ∥∥∥e(n+1)

∥∥∥
2
≤
∥∥∥(ΠT̃ − T Π)f(tn)

∥∥∥
2

+
∥∥∥e(n)

∥∥∥
2
,

and if we proceed recursively up to time t0, where e(0) = 0 by construction, we obtain the upper bound

∥∥∥e(n)
∥∥∥

2
≤

n−1∑
k=0

∥∥∥(ΠT̃ − T Π)f(tk)
∥∥∥

2
, (3.23)
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that is, the norm of the (global) error at time tn cannot be larger than the sum of the norms of the previous
n truncation errors. Here we made use of the discrete L2-norm, defined as

‖f‖2 =

 1

NθNϕ

Nθ∑
iθ=1

Nϕ∑
iϕ=1

(
fiθ,iϕ

)2 1
2

. (3.24)

The upper bound (3.23) provides us with an error estimate at time tn, if an upper bound for the truncation
error is available. Similarly to the analysis in the previous section, we now compute the truncation error for
harmonic initial condition f0(θ, ϕ) = exp(i(nϕϕ+mθθ)), for which the exact solution is simply

f(t, θ, ϕ) = exp(i(nϕ(ϕ− bϕt) +mθ(θ − bθt))).

Under this assumption, the local truncation error for our field-aligned semi-Lagrangian scheme can be de-
composed into two parts, as (

ΠT̃ − T Π
)
f(tn)iθ,iϕ = A1 +A2,

where A1 is the approximation error introduced by Lagrange interpolation in direction b,

A1 = f(tn, θiθ − bθ∆t, ϕiϕ − bϕ∆t)−
db+1∑
k=−db

Ldbk (αϕ)f(tn, θiθ − bθ∆tk, ϕiϕ+rϕ+k),

and A2 is the approximation error of Lagrange interpolation along θ, which is then interpolated along b:

A2 =

db+1∑
k=−db

Ldbk (αϕ)

(
f(tn, θiθ − bθ∆tk, ϕiϕ+rϕ+k)−

dθ+1∑
`=−dθ

Ldθ` (αθ,k)f(tn, θiθ+rθ,k+`, ϕiϕ+rϕ+k)

)
.

Here we recall the following definitions:

−bϕ∆t = ∆ϕ (rϕ + αϕ) with rϕ ∈ Z and αϕ ∈ R[0,1),

−bϕ∆tk = ∆ϕ (rϕ + k) with ∆tk ∈ R and k = −db, . . . , db + 1,

−bθ∆tk = ∆θ (rθ,k + αθ,k) with rθ,k ∈ Z and αθ,k ∈ R[0,1).

Furthermore, in the following calculation we will write θiθ = 2πiθ/Nθ and ϕiϕ = 2πiϕ/Nϕ. We first com-
pute A2: similarly to the previous section, we formulate the interpolation error in integral form and obtain

A2 =

(
i
mθ

Nθ

)2dθ+2
(2π)2dθ+2

(2dθ + 1)!
f(tn, θiθ , ϕiϕ+rϕ)

db+1∑
k=−db

Ldbk (αϕ)

e
2πi
(
mθ
Nθ

rθ,k+k
nϕ
Nϕ

) dθ+1∏
`=−dθ

(αθ,k − `)
∫ 1

0

B2dθ+2,αθ,k(σ)e
2πi(−dθ+(2dθ+1)σ)

mθ
Nθ dσ.

We then have

|A2| ≤
(
|mθ|
Nθ

)2dθ+2
(2π)2dθ+2

(2dθ + 1)!

∫ 1

0

∣∣∣∣∣
db+1∑
k=−db

Ldbk (αϕ)e
2πi
(
mθ
Nθ

rθ,k+k
nϕ
Nϕ

) dθ+1∏
`=−dθ

(αθ,k − `)B2dθ+2,αθ,k(σ)

∣∣∣∣∣ dσ.
We then get

|A2| ≤
(
|mθ|
Nθ

)2dθ+2
(2π)2dθ+2

(2dθ + 2)!

db+1∑
k=−db

|Ldbk (αϕ)|
dθ+1∏
`=−dθ

|αθ,k − `| .

As in the analysis for 1D interpolation, we can provide an error bound for the product term and write
therefore

|A2| ≤
(
π|mθ|
Nθ

)2dθ+2
4√

π(dθ + 1)

db+1∑
k=−db

|Ldbk (αϕ)|αθ,k(1− αθ,k). (3.25)
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For A1 we have, writing nb = mθ
bθ
bϕ

+ nϕ

A1 =

(
i
nb
Nϕ

)2db+2
(2π)2db+2

(2db + 1)!
f(tn, θiθ+

bθ
bϕ
rϕ, ϕiϕ+rϕ)

db+1∏
`=−db

(αϕ − `)
∫ 1

0

B2db+2,αϕ(σ)e
2πi(−db+(2db+1)σ)

nb
Nϕ dσ,

which leads to

|A1| ≤
(
|nb|
Nϕ

)2db+2
(2π)2db+2

(2db + 2)!

db+1∏
`=−db

|αϕ − `| ,

and therefore

|A1| ≤
(
π|nb|
Nϕ

)2db+2
4αϕ(1− αϕ)√
π(db + 1)

. (3.26)

Now we want an upper bound for the L2-norm of the global error at time tn. We have

∥∥∥e(n)
∥∥∥

2
≤
n−1∑
k=0

 1

NθNϕ

Nθ∑
iθ=1

Nϕ∑
iϕ=1

(
[A1 +A2]

(k)
iθ,iϕ

)2

 1
2

≤
n−1∑
k=0

max
iθ,iϕ

∣∣∣[A1 +A2]
(k)
iθ,iϕ

∣∣∣
≤ n max

iθ,iϕ,k

∣∣∣[A1]
(k)
iθ,iϕ

∣∣∣+ n max
iθ,iϕ,k

∣∣∣[A2]
(k)
iθ,iϕ

∣∣∣ .
Our estimates for |A1| and |A2| are independent of the grid indices iθ and iϕ, and therefore they also apply to
the maximum over the domain. Moreover, we observe that such estimates apply to any time instant, because
they are invariant to the rigid translation that the exact solution undergoes in time. Accordingly, our upper
bound for the global error of the field-aligned semi-Lagrangian scheme is simply ‖e(n)‖2 ≤ n|A1| + n|A2|,
with |A1| bounded by (3.26) and |A2| bounded by (3.25):

∥∥∥e(n)
∥∥∥

2
≤ n

(
π|mθ|
Nθ

)2dθ+2 4
∑db+1
k=−db |L

db
k (αϕ)|αθ,k(1− αθ,k)√
π(dθ + 1)

+ n

(
π|nb|
Nϕ

)2db+2
4αϕ(1− αϕ)√
π(db + 1)

. (3.27)

We notice that for sufficiently small values of bθ we have rθ,k = 0 and αθ,k(1 − αθ,k) ∝ |bθ|. Therefore
in the limit as bθ → 0 the first error term goes to zero and we recover the classical error bound for 1D
semi-Lagrangian schemes with nb = nϕ. In the following discussion we will assume that bθ 6= 0.
We now want to assess the consistency of the scheme, that is, whether at a fixed time tn = n∆t = T the
global error goes to zero in the limit as ∆t,∆θ,∆ϕ→ 0 (or equivalently in the limit as n,Nθ, Nϕ →∞). If
we assume that the three parameters converge to zero according to the algebraic relationships

∆ϕ = c∆θ, ∆t = ∆θγ , c, γ ∈ R∗+,

we can distinguish between two different cases:

1. If 0 < γ ≤ 1, the Courant numbers along θ and ϕ either grow as ∆t → 0 (for γ < 1) or they are
constant (γ = 1), therefore it is appropriate to use the upper bound 4α(1− α) ≤ 1. Moreover, we use
the identities

n =
T

∆t
=

T

∆θγ
= T

(
2π

Nθ

)−γ
= T

(
π|mθ|
Nθ

)−γ ( |mθ|
2

)γ
,

n =
T

∆t
=

T

(∆ϕ/c)γ
= T

(
2π

cNϕ

)−γ
= T

(
π|nb|
Nϕ

)−γ (
c|nb|

2

)γ
,

to obtain∥∥∥e(n)
∥∥∥

2
≤ T

(
π|mθ|
Nθ

)2dθ+2−γ
(|mθ|/2)γ Gdb√

π(dθ + 1)
+ T

(
π|nb|
Nϕ

)2db+2−γ
(c|nb|/2)γ√
π(db + 1)

, (3.28)

where

Gd = max
α∈[0,1]

(
d+1∑
k=−d

∣∣Ldk(α)
∣∣) , d ∈ N,
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is the central local maximum of the Lebesgue function for Lagrange interpolation on 2d+ 2 equispaced
nodes [16,17]. Such a maximum is obtained for α = 1/2, and corresponds to the Landau constant [18,
19]. The asymptotic behavior Gd ∼ log(d)/π for d → ∞ was predicted by Landau [20], and various
bounds valid for all d have been given by many authors (e.g., see [21]). Here we report the computed
values of practical interest:

G0 = 1, G1 = 1.25, G2 ≈ 1.39, G3 ≈ 1.49, G4 ≈ 1.56,

G5 ≈ 1.62, G6 ≈ 1.67, G7 ≈ 1.72, G8 ≈ 1.76, G9 ≈ 1.79.

2. If γ > 1, the Courant numbers along θ and ϕ go to zero, and therefore for ∆t sufficiently small we
have one of these two situations:

a) if bϕ < 0:


rϕ = 0

αϕ → 0+

αθ,0 = 0

b) if bϕ > 0:


rϕ = −1

αϕ → 1−

αθ,1 = 0

For the sake of brevity, we only consider case (a); since our Lagrange interpolant is constructed on an
even number of equispaced nodes, it can be shown that the final result of this discussion is identical
for case (b). As αϕ goes to zero, we now have

Ldb0 (αϕ) ∼
0

1, Ldbk (αϕ) ∼
0

(
1

k

db+1∏
`=−db
`/∈{0,k}

`

`− k

)
αϕ = Ddb

k αϕ for k 6= 0.

In general for bθ 6= 0 we have αθ,k 6= 0 for k 6= 0. Therefore, if we use the upper bound 4αθ,k(1−αθ,k) ≤
1 and the asymptotic equivalence

db+1∑
k=−db

|Ldbk (αϕ)| ∼
0

(
db+1∑
k=−db
k 6=0

∣∣∣Ddb
k

∣∣∣)αϕ = Cdbαϕ,

we obtain the estimate

4

db+1∑
k=−db

|Ldbk (αϕ)|αθ,k(1− αθ,k) ≤ (Cdb +O(∆t))αϕ,

where the O(∆t)αϕ term represents the error that results from truncating the MacLaurin expansion

of
∑db+1
k=−db |L

db
k (αϕ)|. Finally, we use this last estimate together with the identities

nαϕ =
T

∆t

|bϕ|∆t
∆ϕ

= T

(
2π

Nϕ

)−1

|bϕ| = T

(
π|nb|
Nϕ

)−1 |bϕnb|
2

,

nαϕ =
T

∆t

|bθ|∆t
∆θ

∣∣∣∣ bϕ∆θ

bθ∆ϕ

∣∣∣∣ = T

(
2π

Nθ

)−1 ∣∣∣∣bθλ
∣∣∣∣ = T

(
π|mθ|
Nθ

)−1 |bθmθ|
2|λ|

,

to get the approximate upper bound (not valid in the limit as bθ → 0)

∥∥∥e(n)
∥∥∥

2
≤ T

(
π|mθ|
Nθ

)2dθ+1
2|bθmθ|√
π(dθ + 1)

[
Cdb
|4λ|

+O(∆t)

]
+ T

(
π|nb|
Nϕ

)2db+1
2|bϕnb|√
π(db + 1)

. (3.29)

The magnitude of λ = bθNθ/(bϕNϕ) is discussed in the next section, where a comparison with the
classical scheme is presented. Here we compute Cdb , which grows logarithmically with db and has
values

C0 = 1, C1 = 1.5, C2 ≈ 1.83, C3 ≈ 2.08, C4 ≈ 2.28,

C5 = 2.45, C6 ≈ 2.59, C7 ≈ 2.71, C8 ≈ 2.83, C9 ≈ 2.93.
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For all possible values of γ, we have shown that our field-aligned semi-Lagrangian scheme is consistent
(i.e., the error goes to zero as ∆t,∆θ,∆ϕ→ 0). Given stability and consistency, we have proven convergence
of our method.

Remark 3.2. We point out that the limit as γ → 0 corresponds to a constant ∆t, i.e. no time refinement:
the scheme correctly converges to the exact solution as Nθ and Nϕ are increased, and our first estimate (3.28)
applies. Conversely, the limit as γ →∞ corresponds to constant Nθ and Nϕ, i.e. no spatial refinement: our
second estimate (3.29) applies, because it is independent of γ, and the error goes to a constant value, without
diverging, as ∆t is reduced.

3.3.3 Comparison with classical (not aligned) approach

If a standard tensor-product 2D interpolation is used, one could show that the two 1D interpolation opera-
tors exactly commute, and their corresponding approximation errors independently contribute to the local
truncation error. As a result, an upper bound for the L2-norm of the global error is simply∥∥∥e(n)

∥∥∥
2
≤ n

(
π|mθ|
Nθ

)2dθ+2
4αθ(1− αθ)√
π(dθ + 1)

+ n

(
π|nϕ|
Nϕ

)2dϕ+2
4αϕ(1− αϕ)√
π(dϕ + 1)

. (3.30)

By comparing (3.27) with (3.30), we immediately notice that the second error term is much smaller in the
field-aligned case if |nb| < |nϕ|, that is, if the gradients along b are smaller than the gradients along ϕ.
Specifically, if we assume that dϕ = db = d, the error is reduced by a factor (nb/nϕ)2d+2. Vice versa, if
we seek to reduce the number of points along the ϕ direction for a given error level, then the field aligned
scheme allows us to use only Nϕ|nb/nϕ| points.
The first error term is more difficult to compare, because it has a more complicated form in the field aligned
case. In general terms, we can say that the error constant is somewhat larger because of the additional
interpolations that are required; in order to quantify this overhead, we now look at the rate of convergence
of the classical scheme for the various values of γ:

1. For 0 ≤ γ ≤ 1 we have the estimate∥∥∥e(n)
∥∥∥

2
≤ T

(
π|mθ|
Nθ

)2dθ+2−γ
(|mθ|/2)γ√
π(dθ + 1)

+ T

(
π|nϕ|
Nϕ

)2dϕ+2−γ
(c|nϕ|/2)γ√
π(dϕ + 1)

,

therefore the first error term of the field-aligned scheme in (3.28) is larger by a factor equal to the
Landau constant Gdb , which is smaller than 2 for the cases of practical interest;

2. For γ > 1 we have the estimate∥∥∥e(n)
∥∥∥

2
≤ T

(
π|mθ|
Nθ

)2dθ+1
2|bθmθ|√
π(dθ + 1)

+ T

(
π|nϕ|
Nϕ

)2dϕ+1
2|bϕnϕ|√
π(dϕ + 1)

,

therefore the first error term of the field-aligned scheme in (3.29) is multiplied by a factor [Cdb/|4λ|+
O(∆t)]. We have already shown that Cd < 3 for d ≤ 9, therefore Cdb/4 < 1 for the cases of practical
interest. It now remains to see if |λ| ≥ 1, which is not an obvious task given that both |bθ/bϕ| and
Nϕ/Nθ are small numbers in practice. Here we assume that |nb/nϕ| � 1, which is the condition that
justifies the use of a field-aligned approach. An appropriate mesh for the classical scheme would require
c = Nθ/Nϕ ≈ |mθ/nϕ|, which yields the estimate

|λ| = bθNθ
bϕNϕ

≈
∣∣∣∣bθmθ

bϕnϕ

∣∣∣∣ =

∣∣∣∣ bθbϕ 1

nϕ

bϕ
bθ

(nb − nϕ)

∣∣∣∣ =

∣∣∣∣ nbnϕ − 1

∣∣∣∣ ≈ 1,

while an appropriate mesh for the field-aligned scheme would be coarser in ϕ, specifically c = Nθ/Nϕ ≈
|mθ/nb|, yielding

|λ| ≈
∣∣∣∣bθmθ

bϕnϕ

nϕ
nb

∣∣∣∣ =

∣∣∣∣1− nϕ
nb

∣∣∣∣� 1.

Therefore, we can say that |λ| ≥ 1 in all situations where the mesh is not overly refined in ϕ. This leads
to Cdb/|4λ| < 1: for sufficiently small ∆t the first error term is smaller for the field-aligned scheme
than for the classical scheme.
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Overall we can conclude that the field-aligned semi-Lagrangian scheme allows for important computational
savings, of the order of |nϕ/nb|, for those situations where the gradients are smaller along b than along ϕ. The
price to pay is an increased error constant for convergence in Nθ. Such an increase is negligible for 0 ≤ γ ≤ 1,
which are the conditions where refinement usually occurs. In the unusual situation where the ∆t refinement
dominates (γ > 1), the increase may be substantial only if the mesh is overly refined in ϕ (which are not
the conditions in which we intend to use the field-aligned scheme). In all cases, the order of convergence is
unaffected.

4 A Screw Pinch Model in Cylindrical Geometry with Selalib

In order to validate the field aligned approach, we consider now a first simplified gyrokinetic simulation,
developed in the framework of the Selalib library [22]. It consists in a 4D drift-kinetic equation in cylindrical
geometry with an oblique magnetic field as defined in (1.6); the complete derivation is given in Appendix
A. It is a generalization of the 4D drift-kinetic equation in cylindrical geometry with a uniform magnetic
field in the z direction (corresponding to ι(r) = 0 and thus ζ(r) = 0 in (1.6)), which has been first developed
in [5] and then reproduced in [23] for example. In the uniform case, we are able to check the linear phase
behaviour, by solving numerically the dispersion relation and compare the simulation outputs with it (see
also [24, 25]). Note that the dispersion relation depends on k‖: this permits to compare simulations in the
oblique and uniform case, in order to check the correctness of the simulations in the oblique case, as we will
see. Another (more straightforward) way to validate the code will be to double the number of points along
the ϕ direction (in practice, we will compare Nϕ = 32 with Nϕ = 64) and to observe that the results do
not significantly change (convergence of numerical discretizations). We could also have compared the code
with a standard (i.e. not using a field aligned interpolation) approach with a refined mesh, but this would
have required to develop the corresponding code. Such an approach is not tackled in Section 4, but it will
be employed in Section 5 in the framework of the GYSELA code.

4.1 Model equations

We look for f = f(t, r, θ, z, v‖) satisfying

∂tf + [φ, f ] + v‖∇‖f −∇‖φ∂v‖f = 0,

with

[φ, f ] = − ∂θφ
rB0

∂rf +
∂rφ

rB0
∂θf, ∇‖ = b · ∇,

so that

∂tf −
∂θφ

rB0
∂rf +

(
∂rφ

rB0
+ v‖

bθ
r

)
∂θf + v‖bz∂zf −

(
bθ
∂θφ

r
+ bz∂zφ

)
∂v‖f = 0, (4.1)

for t ∈ [0, tend], (r, θ, z) ∈ [rmin, rmax]× [0, 2π]× [0, 2πR0], and v‖ ∈ [−vmax, vmax]. Here, we have z = R0ϕ.
The self-consistent potential φ = φ(t, r, θ, z) solves the quasi-neutral equation without zonal flow

−
(
∂2
rφ+

(
1

r
+
∂rn0

n0

)
∂rφ+

1

r2
∂2
θφ

)
+

1

Te
φ =

1

n0

(∫ ∞
−∞

(f − feq)dv‖
)
. (4.2)

When ι = bθ/r
bz/R0

= 0, we recover the classical drift kinetic model given in [5,23] for example. A similar model

has been simulated in [26], with ι = 0.8 as an example, using a Particle in Cell method.
We note that all quantities appearing in these equations are non-dimensional. The equations themselves can
be derived from (1.1), (1.3a), (1.3b) neglecting terms in power of ιr/R0 (see Appendix A).
The boundary conditions on f are the following:

• Periodicity along θ, z and v‖;

• Zeroth-order extrapolation along r, i.e. we give values to f outside the domain (for interpolation at
the foot of the characteristic) according to the scheme

f(t, r, θ, z, v‖) =

{
f(t, rmin, θ, z, v‖) if r < rmin,

f(t, rmax, θ, z, v‖) if r > rmax.
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The boundary conditions on φ are the following:

• Periodicity along θ and z;

• Neumann mode 0 (see [23]) at r = rmin, that is, if we decompose φ into its Fourier modes φ̂k along θ:

– homogeneous Neumann boundary condition for the Fourier mode 0 (∂rφ̂0(t, rmin) = 0), i.e.∫ 2π

0
∂rφ(t, rmin, θ)dθ = 0;

– homogeneous Dirichlet boundary condition for all other Fourier modes (φ̂k(t, rmin) = 0 ∀k), i.e.
∂θφ(t, rmin, θ) = 0.

• Homogeneous Dirichlet at r = rmax, that is φ(t, rmax, θ) = 0;

The initial function is given by

f(t = 0, r, θ, z, v‖) = feq(r, v‖)

[
1 + ε exp

(
− (r − rp)2

δr

)
cos

(
mθ +

n

R0
z

)]
,

where the equilibrium function is

feq(r, v‖) =
n0(r)√
2πTi(r)

exp

(
−

v2
‖

2Ti(r)

)
.

The radial profiles {Ti, Te, n0} have the analytical expressions

P(r) = CP exp

(
−κP δrP tanh

(
r − rp
δrP

))
, P ∈ {Ti, Te, n0},

where the constants are

CTi = CTe = 1, Cn0 =
rmax − rmin∫ rmax

rmin
exp

(
−κn0δrn0 tanh

(
r−rp
δrn0

))
dr
.

The dispersion relation reads (see Appendix B)

− ∂2
rφ−

(
1

r
+
∂rn0

n0

)
∂rφ+

m2

r2
φ+

1

Te
φ =

=

[
− 1

Ti
(1 + z̃Z(z̃)) +

m

k∗rB0

(
Z(z̃)

(
∂rn0

n0
− ∂rTi

2Ti

)
+ z̃(1 + z̃Z(z̃))

∂rTi
Ti

)]
φ,

with z̃ = ω/k∗, k∗ = k‖
√

2Ti, and k‖ = (bθm/r + bzn/R0). Here Z is the so-called ‘plasma dispersion
function’ [27], defined as

Z(u) =
1√
π

∫ ∞
−∞

exp(−x2)

x− u
dx = i

√
π exp(−u2)(1 + erf(iu)), erf(x) =

2√
π

∫ x

0

exp(−t2)dt.

Note that the dispersion relation depends on m and k‖ and not directly on n. This means that taking
different values of ι and n but with same m and k‖ will lead to the same dispersion relation.

4.2 Numerical methods

For time-stepping of (4.1) we use a predictor-corrector scheme closely related to the explicit midpoint rule for
ordinary differential equations: starting from the solution at time t, the fields at time t+ ∆t/2 are evaluated
to first order accuracy in ∆t (predictor), and are then used to update the solution at time t+ ∆t to second
order accuracy (corrector). Both the predictor and the corrector algorithms are splitting methods, where
the 4D gyrokinetic Vlasov equation (4.1) is decomposed into three separate advection equations:

A. 2D advection on a magnetic flux surface (θ, z), with constant velocity v‖b;

∂tf + v‖∇‖f = 0;
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B. 1D advection along v‖, with constant velocity ∇‖φ̃,

∂tf +∇‖φ̃ ∂v‖f = 0;

C. 2D advection on the poloidal plane (r, θ),

∂tf + [φ̃, f ] = 0.

Here φ̃(r, θ, z) is a constant-in-time approximation of the time varying field φ(t, r, θ, z). The three equations
above are all solved using backward semi-Lagrangian methods. Specifically, for equation A we use the field-
aligned algorithm described in Section 3, with a slight modification: we use cubic spline interpolation in
the θ direction, and 5th order Lagrange interpolation (field-aligned) in the z direction. For equation B we
use 1D cubic spline interpolation, and the parallel gradient of φ̃ is computed by 2nd order finite differences in
the b direction. For equation C we use 2D tensor-product cubic spline interpolation, and since the flow field
is not uniform, we calculate the feet of the 2D characteristic trajectories by means of the Verlet algorithm:
let Ẋ = u1(X,Y ) and Ẏ = u2(X,Y ) be the characteristic equations of C, and (Xn+1, Y n+1) = (ri, θj) be
the final position of one characteristic trajectory at time tn+1; the foot (Xn, Y n) of the characteristic is
calculated as

X∗ = Xn+1 − ∆t

2
u1(X∗, Y n+1),

Y n = Y n+1 − ∆t

2

(
u2(X∗, Y n+1) + u2(X∗, Y n)

)
,

Xn = X∗ − ∆t

2
u1(X∗, Y n).

We use Lie splitting (1st order) as predictor and Strang splitting (2nd order) as corrector; the complete
time-stepping algorithm then reads:

1. Compute φ̃ from fn by solving the quasi-neutral equation (4.2);

2. Compute f̃n+1/2 using Lie splitting: f̃n+1/2 = C(∆t
2 )B(∆t

2 )A(∆t
2 )fn;

3. Compute φ̃ from f̃n+1/2 by solving (4.2) again;

4. Compute fn+1 using Strang splitting: fn+1 = A(∆t
2 )B(∆t

2 )C(∆t)B(∆t
2 )A(∆t

2 )fn.

The quasi-neutral equation (4.2) is an elliptic partial differential equation in the variables (r, θ), therefore
it can be solved independently on each poloidal plane z = z∗. Taking advantage of the linearity of the
differential operator and of the periodicity of the domain, we apply the discrete Fourier transform in θ to
both sides of (4.2). Since the factor in front of ∂2

θ does not depend on θ and the boundary conditions in r

are homogeneous, each Fourier coefficient φ̂k(r) solves a separate 1D boundary value problem on [rmin, rmax]
and is independent of the other coefficients:

−
[
∂2
r +

(
1

r
+
∂rn0(r)

n0(r)

)
∂r +

(
1

Te(r)
− k2

r2

)]
φ̂k(r) = ρ̂k(r), k = 0, 1, . . . , Nθ − 1.

For each mode k, this ordinary differential equation is collocated at the grid points r = ri, and the derivatives
are approximated by 2nd-order central finite differences. Once the proper boundary conditions are taken into
account (see previous section), calculating {φ̂k(ri) : ∀i} requires the solution of a tridiagonal linear system
of size Nr. When all modes k are computed, the potential on the polar plane z = z∗ is reconstructed.

4.3 Numerical results

We consider the parameters of [24] (MEDIUM case)

rmin = 0.1, rmax = 14.5, κn0 = 0.055, κTi = κTe = 0.27586, δrTi = δrTe =
δrn0

2
= 1.45,

ε = 10−6, R0 = 239.8081535, rp =
rmin + rmax

2
, δr =

4δrn0

δrTi
.

25



We take B0 = −1. Given the magnetic field (1.6), we recall that bθ = ζbz and ζ = ιr/R0, therefore
k‖ = (ιm + n)bz/R0. As our first test-case we consider a straight magnetic field with ι = 0 and excite the
mode (m,n) = (15, 1), which leads to k‖ = 1/R0. In our second test-case we consider a twisted magnetic
field with ι = 0.8 and choose (m,n) = (15,−11), which leads to k‖ = (0.8 · 15− 11) bz/R0 = bz/R0. We

note that we have for the second case bz = 1/
√

1 + ζ2 with 0 ≤ ζ = ιr/R0 ≤ ιrmax/R0 ≤ 0.05, so that
|bz − 1| ≤ 1.25 · 10−3. The two cases have the same value of m and, thanks to the fact that bz ≈ 1, almost
identical values of k‖. Thus the dispersion relation, which only depends on m and k‖, yields almost the same
result in both cases, which means that the two simulations should give very similar results in the poloidal
plane, at least in the linear phase (as it is also observed in [26]). The test-case parameters are summarized
in Table 1, together with the resulting frequencies calculated from the analytical dispersion relation.

ι m n k‖ <(ω) =(ω)
Case 1 0 15 1 1/R0 2.0480× 10−3 3.8174× 10−3

Case 2 0.8 15 -11 bz/R0 2.0471× 10−3 3.8166× 10−3

Table 1: Screw-pinch gyrokinetic model: input parameters and linear response. ι is the (constant) magnetic
rotational transform, m and n are the polar and axial mode numbers of the initial conditions, k‖ is the
resulting parallel wave number, and ω is the complex frequency calculated from the dispersion relation.
The first three significant digits of ω (both real and imaginary parts) are the same in both test-cases.

We take LAG5 for the interpolation along the parallel direction and cubic splines for the interpolation
along θ. Finite differences of order 6 are used for the derivative computation along the parallel direction
and cubic splines are used otherwise. When ι = 0, we use the classical method with cubic splines for the
interpolation along the z direction. In all simulations we take Nr = 256, Nθ = 512 and Nv = 128; we use
Nϕ = 32 for ι = 0, and Nϕ ∈ {32, 64} for ι = 0.8.
On Figure 2 we see the evolution of the diagnostic quantity

D(t) =

√∫ rmax

rmin

∫ 2π

0

φ2(t, r, θ, z = 0) drdθ, (4.3)

which is closely related to the total potential energy on the plane z = 0. The linear phase (left plot) is in
accordance with the dispersion relation, and differences between the three runs become significant only in
the non linear phase (right plot).
On Figure 3, we see the poloidal cut f(t, r, θ, z = 0, v‖ = 0) at time T = 4000 (end of the linear phase)
and time T = 6000 (non-linear phase). Again there is accordance between the the figures with more visible
differences in the non linear phase. Note that the solution becomes very complex at T = 6000 with lot of
small scales which are difficult to capture; we already observe some diffusion effect, due to finite size of the
grid; this is not the case at time T = 4000, where convergence still seems to occur.
On Figure 4, we see cuts in the θ − z plane of the distribution function. We clearly see the structure of the
mode (m,n) = (15, 1) in the straight case and (m,n) = (15,−11) in the oblique case for T = 4000. Note
that in these figures we use raw data for the visualisation. Since the number of points in Nϕ is purposely
low, the corresponding plots in the θ− z plane are necessarily coarse. This is not an indication of numerical
problems. Indeed a better visualisation in this plane can be achieved by reconstructing the distribution
function on a finer mesh using the field aligned interpolation (it will be done in next section).
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Figure 2: Screw-pinch gyrokinetic model: time evolution of the diagnostic quantity (4.3). On the left-hand
side we plot the linear phase (t ∈ [0, 4000]) using a semi-logarithmic scale: all simulations follow the
exponential growth rate computed from the dispersion relation. On the right-hand side we plot the

non-linear phase (t ∈ [4000, 8000]): differences between the different simulations are visible on a linear scale.

5 Physical Cases in Gysela (Toroidal Geometry)

5.1 Gysela model

Let z = (r, θ, ϕ, v‖, µ) be a variable describing the 5D phase space. The gyrokinetic Vlasov equation used
by GYSELA is (1.1) in the electrostatic limit; further, all quantities are normalized. Temperatures are
normalized to Te0, i.e. the initial electron temperature at the mean radius rp = (rmin + rmax)/2, the electric
potential is normalized to KTe0/ei, where K is the Boltzmann constant, and the magnetic field is normalized
to B0, i.e. the intensity at the magnetic axis. Time is normalized to the inverse of the ion cyclotron frequency
ωc = eiB0/mi and velocities are given in units of the ion sound speed vT0 =

√
KTe0/mi. Consequently,

lengths are normalized to the Larmor radius ρs = mi vT0/(eiB0) and the magnetic moment µ to KTe0/B0.
Finally the characteristic equations read

B∗‖
dX

dt
= v‖B

∗ + b×∇ (µB + 〈φ〉α) ,

B∗‖
dV‖

dt
= −B∗ · (µB + 〈φ〉α) ,

with B∗ = B+v‖∇×b and B∗‖ = b ·B∗. In tokamak configurations, the plasma quasi-neutrality approxima-

tion is often made [5]. Electron inertia is ignored, which means that an adiabatic response of the electrons
is assumed. We define the operator ∇⊥ = (∂r,

1
r∂θ), and we let n0(r) be the initial equilibrium density

(integral over phase space - except r - of a reference equilibrium distribution function fref), and Te(r) be the
electronic temperature. Further, J0 the Bessel function of first order and k⊥ the transverse component of
the wave vector. Hence, the quasi-neutrality equation can be written in dimensionless variables as

− 1

n0(r)
∇⊥ .

[
n0(r)

B0
∇⊥φ(r, θ, ϕ)

]
+

1

Te(r)
[φ(r, θ, ϕ)− 〈 φ 〉] = ρi(r, θ, ϕ), (5.1)

where ρi is defined by

ρi(r, θ, ϕ) =
1

n0(r)

∫ ∫
Jv J0(k⊥

√
2µ)(f − fref)(r, θ, ϕ, v‖, µ) dv‖ dµ.

The potential φ couples back into the gyrokinetic Vlasov equation (1.1) through its derivatives, which play
a major role in the term dz

dtB
∗
‖f . A detailed description of the model can be found in [6].
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Figure 3: Screw-pinch gyrokinetic model: poloidal cut of the solution. We show f(t = T, r, θ, z = 0, v‖ = 0)
at T = 4000 (left column) and T = 6000 (right column) for the three simulations: ι = 0, Nϕ = 32 (top

row), ι = 0.8, Nϕ = 32 (middle row) and ι = 0.8, Nϕ = 64 (bottom row).
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Figure 4: Screw-pinch gyrokinetic model: magnetic-surface cut of the solution. We show
f(t = T, r = (rmin + rmax)/2, θ, z, v‖ = 0) at T = 4000 for the three simulations: ι = 0, Nϕ = 32 (top),

ι = 0.8, Nϕ = 32 (middle) and ι = 0.8, Nϕ = 64 (bottom).
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5.2 Parallel algorithms

The algorithms and the parallelization strategies used in the Gysela code have been already described in
previous works [28–30]. Algorithm 3 sketches the main features concerning the Vlasov solver that we are
interested in here. The usual way to perform a single Vlasov solving in the Gysela code [5] consists of a

series of directional advections: (v̂‖/2, ϕ̂/2, r̂θ, ϕ̂/2, v̂‖/2). Each directional advection is performed with the
semi-Lagrangian scheme. This procedure is named Strang-splitting and converges in O(∆t2). It decomposes
the Vlasov solver into four 1D advections and one central 2D advection (in the poloidal plane (r, θ)). This
solver uses two parallel domain decompositions for the distribution function f . The main rationale that
justifies this approach is that advections along a given dimension need all points along this dimension in f .
This constraint comes from the spline interpolants that we use actually. Therefore, the 1D advections along
ϕ and v‖ are performed with a domain decomposition that retains all points of f along these two dimensions
(ϕ, v‖) locally in the MPI process. Then, a transpose of the distributed data structure f is performed that
involves large collective communications. Then, the 2D advection along both r and θ dimensions can be
done, this step uses a local subdomain in ϕ, v‖ and µ directions. After a second tranposition of f , two 1D
advections are again performed.

1D advection in v‖ [∆t/2] (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
1D advection in ϕ [∆t/2] (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
Transpose f ;
2D advection in (r, θ) [∆t] (∀(µ, ϕ, v‖) = [local],∀(r, θ) = [∗]);
Transpose f ;
1D advection in ϕ [∆t/2] (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
1D advection in v‖ [∆t/2] (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);

Algorithm 3: Standard Gysela Vlasov solver

1: 1D advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
2: Get feet for 2D advection in (θ, ϕ) (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);
3: Transpose f , and redistribute feet;
4: 2D aligned advection in (θ, ϕ) (∀(µ, v‖) = [local], ∀(r, θ, ϕ) = [∗]);
5: Transpose f ;
6: 2D advection in (r, θ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
7: Get feet for 2D advection in (θ, ϕ) (∀(µ, ϕ, v‖) = [local], ∀(r, θ) = [∗]);
8: Transpose f , and redistribute feet;
9: 2D aligned advection in (θ, ϕ) (∀(µ, v‖) = [local],∀(r, θ, ϕ) = [∗]);
10: Transpose f ;
11: 1D advection in v‖ (∀(µ, r, θ) = [local], ∀(ϕ, v‖) = [∗]);

Algorithm 4: New aligned Vlasov solver

In order to depart from the original algorithm to accommodate the aligned strategy, one can list the
different constraints that must be taken into account. First, to use the aligned advection approach in (θ, ϕ)
plane, it is of outmost importance to treat these two directions in a single step, it permits to apply easily the
scheme introduced in section 2.1. Second, 2D advections in (r, θ) can not be suppressed or transformed into
a simple advection along the r direction, because the non-linear terms in r and θ interact tightly. Third, to
evaluate a new algorithm and a new Strang splitting, we should not undermine the existing parallelization
strategy (to keep it simple in the Gysela code).

The proposed Algorithm 4 fulfills these constraints. The advections along v‖ are unchanged. The aligned
advections along (θ, ϕ) (lines 2, 4, 7, 9) replace the previous advections along the ϕ direction. All advective
terms (except the non-linear ones) along the θ direction are treated in this aligned advection in (θ, ϕ). The
2D advections along (r, θ) are modified in order to keep only nonlinear terms in the θ direction. Advective
terms along θ are split suitably between the 2D advection operator in (θ, ϕ) and 2D advection in (r, θ).
Finally, this solution uses a new parallel decomposition at one single location only (distributing over MPI
processes along µ, v‖) in the 2D aligned advection (lines 4, 9). Compared to the standard algorithm, the extra
transpose and redistribute steps constitute a communication overhead. Another overhead comes from the
computation of the feet of the characteristics (lines 2 and 7) that are performed in an already known parallel
decomposition in order to have access to needed values that are stored with these parallel decompositions.

We then have a robust parallel solution that does not requires an entire overhaul of the Gysela code.
Nevertheless some extra communications are created that we measure in the following. In a future work,
we will be able to cut costs with a more sophisticate implementation. Indeed, several fixes can be foreseen.
One among other solutions is described shortly hereafter. First, one can execute aligned advections (lines
4 and 7) using the usual parallel decomposition of line 6 (∀(µ, ϕ, v‖) = [local],∀(r, θ) = [∗]). It will require
tricky (but not so costly) communication patterns to deal with the parallel decomposition along ϕ direction.
Second, when this first change will be made we can mix the computations of feet (lines 2 and 7) with the
corresponding 2D aligned advections and then eliminate the transposes of lines 5 and 8. Finally, with this
new solution to come, we will reduce the communication volume: avoid transfer of the feet (lines 3 and 8)
and remove the need of specific data distribution (lines 4 and 9) and associated data redistribution.
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5.3 Numerical results with Gysela

In a gyrokinetic simulation with kinetic ions and adiabatic electrons it is to be expected that the smallest
length scale is of the order of the ion Larmor radius ρs. This is due in part to the gyroaverage operator in
configuration space, and in part to the averaging over µ that takes place when computing the charge density.
Since ρs is also the quantity used for normalization of all lengths, we can say that a well-refined numerical
simulation requires ∆r � 1 and rmax∆θ � 1. A fundamental non-dimensional parameter in magnetic fusion
devices is the ratio ρ∗ = ρs/A, where A is the minor radius of the device. (In terms of non-dimensional
quantities, the minor radius of the device is a = A/ρs and therefore ρ∗ = 1/a.) The number of degrees of
freedom needed to represent a poloidal cut of the solution scale with (ρ∗)−2, therefore smaller values of ρ∗

lead to larger numerical simulations.
In order to have accurate and converged simulations, in this section we use a setup with a relatively large

value of ρ∗ = 1/40, and we consider a single µ-value of µ = 0. Strictly speaking, in such a situation there
is neither gyro-averaging nor µ-averaging, therefore there is no physical lower bound on the characteristic
length scales; nevertheless, the solution is still well resolved at the end of our simulations. We investigate
two physical cases with geometrical parameters

a = 40, rmin = 0.1 a, rmax = 1.0 a, R0 = 3 a,

that differ in their safety factor profiles q(r). Benchmarks have been realized with the 4D toroidal version
of the Gysela code, on a fine computational domain of size

Nr = 256, Nθ = 256, Nϕ =< not fixed >, Nv‖= 48.

Figure 5: Potential energy plots for aligned or
standard strategies. Toroidal configuration with
almost constant safety factor along r direction.

Figure 6: Potential energy plots for aligned or
standard strategies. Toroidal configuration with

safety factor depending on r coordinate.

A first case with an almost constant safety factor q(r), slowly varying between q(rmin) = 1 and q(rmax) =
1.1, is illustrated by Figures 5, 7, and 8. A second case with a safety factor strongly depending on r, varying
between q(rmin) = 1 and q(rmax) = 2.5, is illustrated by Figures 6, 9, and 10. The second case could be
slightly more difficult to handle for the aligned approach, because the b direction depends on the r position
through equation (1.7). Indeed, for each hyper-plane at a given r, the aligned advection algorithm uses
possibly a different direction than for another r value. One can see on Fig. 5 that the standard approach
with Nϕ = 128 gives a similar result compared to aligned method with Nϕ = 32. The two other curves with
standard method and Nϕ = 32 and Nϕ = 64 are not converged along the ϕ direction and give substantially
different potential energy evolutions. Figures 7 and 8 corroborate this fact by showing different cuts of the
electric potential. In Figure 7, the two graphs at middle and bottom position show quite identical structures.
It is important to notice that we have reconstructed finely the graph with Nϕ = 32 in order to recover a
fine resolution on the plots (through 4 aligned interpolations per original grid point, leading to a virtual
Nϕ = 128). In order to do that, we use Algorithm 1 with (θ?, ϕ?) being the grid points on the fine mesh.
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Figure 7: Cross-section of the electric potential at
r = 0.5 and t = 1672. Standard simulation with
Nϕ = 32 (top), Aligned simulation with Nϕ = 32

(middle), Standard simulation with Nϕ = 128
(bottom).

Figure 8: Poloidal cross-section of the electric
potential at ϕ = 0 and t = 1672. Standard simulation

with Nϕ = 32 (top), Aligned simulation with
Nϕ = 32 (middle), Standard simulation with

Nϕ = 128 (bottom).

Figures 6, 9 and 10 show results for the second simulation with a strongly varying safety factor. Con-
clusions are quite analogous as the first simulation. On the left-hand side, one can see elongated structures
along the parallel direction, which constitute the rationale that justifies why the aligned method reduces
interpolation approximation errors. For these two simulations, we conclude that the aligned approach works
well and permits to reduce by a factor of 4 the number of grid points in the ϕ direction for these cases at
ρ? = 1/40. From the previous analysis, we also expect that, as ρ∗ is further reduced to approach the ITER
values of the order of 10−3 [31], it would not be necessary to increase the number of grid points in the ϕ
direction in order to achieve comparable precision. Thus, our method could allow a saving of the order of 100
in grid points when employed in the context of realistic simulations of reactor scale devices.

5.4 Execution times comparison

As a matter of comparison between the standard and aligned methods, Table 2 gives typical execution
times of Gysela for four short runs that employ the same configuration and grid size already described
in Section 5.3 (Nr = 256, Nθ = 256, Nv‖ = 48). For the aligned scheme we take Nϕ = 32, while for the
standard scheme we consider three different simulations with Nϕ ∈ {32, 64, 128}. The time breakdown of
specific regions of the code are shown in addition to the total run time.
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Figure 9: Cross-section of the electric potential at
r = 0.5 and t = 1984. Standard simulation with
Nϕ = 32 (top), Aligned simulation with Nϕ = 32

(middle), Standard simulation with Nϕ = 128
(bottom).

Figure 10: Poloidal cross-section of the electric
potential at ϕ = 0 and t = 1984. Standard simulation

with Nϕ = 32 (top), Aligned simulation with
Nϕ = 32 (middle), Standard simulation with

Nϕ = 128 (bottom).

Execution Time Aligned Nϕ=32 Standard Nϕ=32 Standard Nϕ=64 Standard Nϕ=128

transposes 40.0 9.3 28.0 68.6
advections 64.9 48.9 75.7 139.0

others 29.0 26.1 38.6 65.7
total run time 133.9 84.2 142.3 273.3

Table 2: Time (in s.) of a short Gysela run in the same configuration described in section 5.3.

Let us compare the timings for the aligned and standard methods at Nϕ = 32. Firstly we observe that
the execution times for the transposes is much higher with the aligned scheme, mainly because there are
four transpose steps required (Algorithm 4) instead of two (Algorithm 3). The advection steps are also
slightly more expensive with the aligned scheme, because the 1D advection along ϕ is replaced by the 2D
advection aligned in (θ, ϕ). In fact, the 2D field-aligned interpolation of Algorithm 1 requires additional
computations compared to simple 1D interpolations. The improvements and optimizations addressed at the
end of Section 5.2 can contribute to decrease these overheads in the future.

Nevertheless, one can see that the aligned strategy with Nϕ = 32 is already competitive against the
standard approach with Nϕ = 64 in terms of total run time, with the big benefit of requiring two times
less memory to store the distribution function. Since Section 5.3 has shown that the aligned approach with
Nϕ = 32 is more accurate than the standard approach with Nϕ = 64 (at least in the linear phase), we can
conclude that there is a clear gain in using field-aligned interpolation in Gysela.
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6 Conclusions

We have described a semi-Lagrangian method based on field-aligned interpolation, for the solution of the
gyrokinetic Vlasov equation. The application of interest is the numerical simulation of magnetically confined
plasmas in fusion devices. Thanks to the smooth variation of the solution in the direction of the magnetic
field, field-alignment enhances the accuracy of the interpolation: for a given level of accuracy, this allows us
to reduce the number of discretization points along the toroidal direction.

In the simplified setting of 2D constant advection, we have given a rigorous proof of convergence, as well as
extensive error estimates which underline the advantages of field-aligned interpolation. We have implemented
the scheme into two semi-Lagrangian codes, Selalib and Gysela, for the solution of the 4D gyrokinetic Vlasov
equation in the zero-Larmor-radius limit. We have used the ion temperature gradient (ITG) instability as
a standard verification test-case in cylindrical (screw-pinch) and toroidal (circular Tokamak) geometries. In
our benchmarks against the standard (not aligned) interpolation scheme, we have observed large reductions
in memory footprint (up to a factor of 4), as well as moderate (but improvable) simulation speed-ups. Our
estimates suggest that these gains will be even larger in reactor-scale simulations.

Field-aligned interpolation does not pose constraints on the 2D poloidal grids, and the use of magnetic
flux coordinates is not necessary. Accordingly, the magnetic axis, as well as the X-point in a divertor
configuration, do not pose theoretical problems. Therefore our semi-Lagrangian algorithms can be extended
to more complex magnetic geometries, enabling the global simulation of diverted Tokamaks and Stellarators.

7 Appendix

Appendix A: Derivation of the model of Section 4

We consider the gyrokinetic equation (1.1) in the electrostatic case, and we set m = q = 1. The modified
magnetic field then reads

B∗ = B + v‖∇× b, B∗‖ = B∗ · b = B + v‖∇× b · b.

We further assume that we are in the zero-Larmor-radius limit and we choose µ = 0 for simplicity. The
gyro-center Hamiltonian then reads

H(t,x, v‖) =
v2
‖

2
+ φ(t,x)

and the characteristic equations reduce to

B∗‖
dX

dt
= v‖B

∗ + b×∇φ,

B∗‖
dV‖

dt
= −B∗ · ∇φ.

In the screw-pinch model of Section 4 we use the cylindrically symmetric magnetic equilibrium (1.6), where

B = Bb, b = bz ẑ + bθθ̂,

with

B = B0

√
1 + ζ2, bθ =

ζ√
1 + ζ2

, bz =
1√

1 + ζ2
, ζ =

ιr

R0
.

Here the rotational transform iota only depend on the radius, that is ι = ι(r).

We now proceed with projecting the characteristic equations onto the non-orthogonal basis (r̂, θ̂,b); in this
process we make the dependence of each component on ζ explicit. We recall that the curl of a vector
A = Aθ(r)θ̂ +Az(r)ẑ reads ∇×A = −A′z(r)θ̂ + 1

r (rAθ(r))
′ẑ, therefore

∇× b =
ζζ ′

(1 + ζ2)3/2
θ̂ +

1

r

(
(ζr)′

(1 + ζ2)1/2
− ζ2rζ ′

(1 + ζ2)3/2

)
ẑ,

which leads to

∇× b · b =
ζ2ζ ′

(1 + ζ2)2
+

1

r

(ζr)′

(1 + ζ2)
− ζ2ζ ′

(1 + ζ2)2
=

1

r

(ζr)′

(1 + ζ2)
=
ζ ′ + ζ/r

1 + ζ2
.
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From this it follows that

B∗‖ = B0

√
1 + ζ2 +

ζ ′ + ζ/r

1 + ζ2
v‖.

We then write

∇× b = (∇× b)θθ̂ + (∇× b)z ẑ =

(
(∇× b)θ −

bθ
bz

(∇× b)z

)
θ̂ +

(∇× b)z
bz

b

=

(
ζζ ′

(1 + ζ2)1/2
− ζ

r

(ζr)′

(1 + ζ2)1/2

)
θ̂ +

1

r

(
(ζr)′ − ζ2rζ ′

1 + ζ2

)
b

=
−ζ2

r(1 + ζ2)1/2
θ̂ +

(
ζ ′

1− ζ2

1 + ζ2
+
ζ

r

)
b =

−ζ2

r(1 + ζ2)1/2
θ̂ +

(
ζ ′ + ζ/r

1 + ζ2
+

ζ2

1 + ζ2
(ζ/r − ζ ′)

)
b,

so that

B∗ = B∗‖b−
ζ2v‖

r(1 + ζ2)1/2
θ̂ +

ζ2v‖

1 + ζ2
(ζ/r − ζ ′)b.

We have

∇φ · b =
1

r
∂θφbθ + ∂zφbz,

so that

∂zφ =
1

bz
∇φ · b− 1

r
∂θφ

bθ
bz
.

Now, we have

b×∇φ = (bθ∂zφ− bz
∂θφ

r
)r̂ + bz∂rφθ̂ − bθ∂rφẑ

= (
bθ
bz
∇φ · b− ∂θφ

bzr
)r̂ +

∂rφ

bz
θ̂ − bθ

bz
∂rφb

and

B∗ · ∇φ =

(
B∗‖ +

ζ2v‖

1 + ζ2
(ζ/r − ζ ′)

)
∇φ · b−

ζ2v‖

r2(1 + ζ2)1/2
∂θφ.

Finally we can write the characteristic equations in the (r̂, θ̂,b) basis, as

B∗‖
dX

dt
=

(
−(1 + ζ2)1/2 ∂θφ

r
+ ζb · ∇φ

)
r̂ +

(
(1 + ζ2)1/2∂rφ−

ζ2v2
‖

r(1 + ζ2)1/2

)
θ̂

+

(
B∗‖v‖ +

ζ2v2
‖

1 + ζ2
(ζ/r − ζ ′)− ζ∂rφ

)
b,

B∗‖
dV‖

dt
= −

(
B∗‖ +

ζ2v‖

1 + ζ2
(ζ/r − ζ ′)

)
∇φ · b +

ζ2v‖

r2(1 + ζ2)1/2
∂θφ,

where B∗‖ = B0

√
1 + ζ2 + v‖(ζ

′ + ζ/r)/(1 + ζ2). If we now let ζ → 0 and ζ ′ → 0 while keeping our basis
unchanged, the equations above reduce to

dX

dt
= − ∂θφ

rB0
r̂ +

∂rφ

B0
θ̂ + v‖b,

dV‖

dt
= −b · ∇φ,

which correspond to (4.1). We notice that under this approximation we have let B∗‖ → B0. Thanks to

the fact that the magnetic field (1.6) has the property ∇ · b = 0, the resulting phase-space flow is still
divergence-free, as

∇ · u =
1

r

∂

∂r

(
−∂θφ
B0

)
+

1

r

∂

∂θ

(
∂rφ

B0

)
+ v‖∇ · b = 0,

∂a‖

∂v‖
=

∂

∂v‖
(−b · ∇φ) = 0.

Therefore the reduced model (4.1) conserves mass, defined as the phase-space integral of B0f .
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Appendix B: Dispersion equation

We make the following expansions:

f = f0 + εf1 +O(ε2), φ = φ0 + εφ1 +O(ε2)

with

f0(r, v) = feq(r, v) =
n0(r) exp

(
− v2

2Ti(r)

)
(2πTi(r))1/2

, φ0 = 0.

We obtain

∂tf1 −
∂θφ1

rB0
∂rf0 + vbz∂zf1 + v

bθ
r
∂θf1 −

(
bθ
∂θφ1

r
+ bz∂zφ1

)
∂vf0 = O(ε).

and

−
(
∂2
rφ1 +

(
1

r
+
∂rn0

n0

)
∂rφ1 +

1

r2
∂2
θφ1

)
+

1

Te
φ1 =

1

n0

∫
f1dv +O(ε).

We assume that the solutions have the form :

f1 = fm,n,ω(r, v)ei(mθ+kz−ωt), φ1 = φm,n,ω(r)ei(mθ+kz−ωt)

with k = n
R . Then, we obtain

(−ω + kvbz + v
mbθ
r

)fm,n,ω =

(
m

rB0
∂rf0 +

(
bθ
m

r
+ bzk

)
∂vf0

)
φm,n,ω

and

−
(
∂2
rφm,n,ω +

(
1

r
+
∂rn0

n0

)
∂rφm,n,ω −

m2

r2
φm,n,ω

)
+

1

Te
φm,n,ω =

1

n0

∫
fm,n,ωdv,

We get, as k‖ =
(
bθ
m
r + bzk

)
−
(
∂2
rφm,n,ω +

(
1

r
+
∂rn0

n0

)
∂rφm,n,ω −

m2

r2
φm,n,ω

)
+

1

Te
φm,n,ω

=
1

n0
φm,n,ω

∫ m
rB0

∂rf0 + k‖∂vf0

vk‖ − ω
dv

By using the expression of f0, we have

I =

∫ − v
Ti

+ m
k‖rB0

(∂rn0

n0
− ∂rTi

2Ti
+ v2∂rTi

2T 2
i

)

v − ω
k‖

f0dv.

We introduce for ` ∈ N :

I`(u) =
1

n0

∫
v`

f0

v − u
f0dv,

so that
I

n0
= − 1

Ti
I1

(
ω

k‖

)
+

m

k‖rB0

[(
∂rn0

n0
− ∂rTi

2Ti

)
I0

(
ω

k‖

)
+
∂rTi
2T 2

i

I2

(
ω

k‖

)]
.

We use the relations :

I0 =
1

(2Ti)1/2
Z

(
u

(2Ti)1/2

)
, I1 = 1 + uI0, I2 = u (1 + uI0) ,

36



with

Z(u) =
1√
π

∫
exp(−x2)

x− u
dx = i

√
π exp(−u2)(1− erf(−iu)),

erf(x) =
2√
π

∫ x

0

exp(−t2)dt.

The dispersion relation is, putting φ = φm,n,ω for convenience,

A = −∂2
rφ−

(
1

r
+
∂rn0

n0

)
∂rφ+

m2

r2
φ+

1

Te
φ

=

[
− 1

Ti
(1 + zZ(z)) +

m

k∗rB0

(
Z(z)

(
∂rn0

n0
− ∂rTi

2Ti

)
+ z(1 + zZ(z))

∂rTi
Ti

)]
φ,

with k∗ = (2Ti)
1/2k‖, and z = ω

k∗ , and recalling that k‖ =
(
bθ
m
r + bzk

)
. Note that the dispersion relation

depends on m and k‖ and not directly on n. This means that taking different values of ι and n but with
same m and k‖ will lead to the same dispersion relation.
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