
The semi-Lagrangian method on curvilinear grids

Adnane Hamiaz, Michel Mehrenberger, Hocine Sellama, Eric Sonnendrücker

October 8, 2015

Abstract

We study the semi-Lagrangian method on curvilinear grids. The clas-
sical backward semi-Lagrangian method [1] preserves constant states but
is not mass conservative. Natural reconstruction of the field permits nev-
ertheless to have at least first order in time conservation of mass, even if
the spatial error is large. Interpolation is performed with classical cubic
splines and also cubic Hermite interpolation with arbitrary reconstruction
order of the derivatives. High odd order reconstruction of the derivatives
is shown to be a good ersatz of cubic splines which do not behave very
well as time step tends to zero. A conservative semi-Lagrangian scheme
along the lines of [2] is then described; here conservation of mass is au-
tomatically satisfied and constant states are shown to be preserved up to
first order in time.1

1 Introduction

Plasmas, which are a collection of charged particles, can be described quite
accurately by kinetic models like the Vlasov-Maxwell equations, or in some
circumstances reduced models like the Vlasov-Poisson equation if low frequency
phenomena are of interest or the gyrokinetic model when a strong background
magnetic field is present. These models nonlinearly couple the Vlasov equation,
which is a transport equation in phase space, with the Maxwell equations, which
describe the evolution of the self-consistent electromagnetic field generated by
the charged particles. The coupling is performed by solving alternatively the
Vlasov and the Maxwell equations. In this paper, we are specifically interested
by the Vlasov part and will not discuss the coupling, or the field equations. All
these Vlasov or Vlasov type equations in standard cartesian coordinates in the
d-dimensional phase space Rd can be written equivalently in the two following
abstract forms

∂tf +∇x · (af) = 0, (1.1)

1This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014-2018 under
grant agreement No 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

1

or
∂tf + a · ∇xf = 0, (1.2)

where a : Ω ⊂ Rd → R is a divergence free vector field, which means that it
satisfies ∇x · a = 0, and the solution f = f(t, x), t ∈ R+, x ∈ Rd. Equation
(1.1) is called the conservative form and is equivalent, as the vector field a is
divergence free, to (1.2), which is called the advective form.

Because of the high dimension of phase space, up to six for the full physical
problem, the Monte Carlo type particle in cell method (PIC) is one of the most
used numerical method for its solution, see the book [3] or the review article [4]
for more information on this method. Another method, which has been very
successful for plasma simulations is the semi-Lagrangian method, which couples
particle tracking with a projection on a phase space grid at each time step. The
idea in the simple setting of the Vlasov-Poisson equations dates back to Cheng
and Knorr [5] and to [1] in the general setting we are interested in here, based
on the semi-Lagrangian method, which was already quite successful for climate
applications [6]. The big advantage of the semi-Lagrangian method, with respect
to other grid based methods is that there is no strong CFL condition on the
time step, which for many problems in plasma physics introduces a time step
restriction, which is too severe due to the large velocity grid points compared
to what is needed for physical accuracy. Since then, many variants of the semi-
Lagrangian method have been introduced for plasma physics applications. A
convergence proof of this method appears in [7] for linear interpolation and in [8]
for high order interpolation. The estimates have been improved recently in [9].
A semi-Lagrangian method on unstructured meshes has been proposed in [10].
These methods, which solve the advective form (1.2) of the Vlasov equation,
go in the standard class of semi-Lagrangian methods where characteristics are
advected backward in time. We call this classical semi-Lagrangian method BSL
for backward semi-Lagrangian method. This is opposed in particular to CSL,
conservative semi-Lagrangian methods, which solve the conservative form (1.1)
of the Vlasov equation still with backward characteristics as in [11, 12, 13],
and FSL, forward semi-Lagrangian methods introduced in [14] for the Vlasov
equation, which solves the characteristics forward in time. There have also been
works on positivity preserving conservative Discontinuous Galerkin methods
[15, 16] and also on semi-Lagrangian methods on adaptive grids based on wavelet
interpolation [17, 18], see also [19] for a convergence proof. Note also a hybrid
method using only a semi-Lagrangian method in the velocity space [20], and
a conservative semi-Lagrangian method based on WENO reconstruction [21,
2]. Now somewhat outdated comparisons of different types of methods for the
Vlasov equation can be found in [22, 23].

The present paper is dedicated to a difficulty appearing in applications of
the semi-Lagrangian method to the gyrokinetic model used in turbulence simu-
lations of magnetic fusion plasmas [24, 25, 26]. Due to the geometry of magnetic
fusion devices and the strong magnetic field which creates a strong anisotropy
on the solution and therefore imposes, if a reasonable cost is to be kept, that the
mesh be aligned on magnetic flux surfaces, it is standard to use specific curvilin-

2

ear grids, aligned on magnetic field lines or flux surfaces, for these simulations.
It is well known that such grids introduce additional numerical difficulties, in
particular the free stream preservation issue for conservative methods [27, 28].
The free stream preservation enforces that constant states are exactly preserved
by the numerical method. This is enforced trivially by the classical BSL method
independently of the accuracy of the advection as constants are preserved by
interpolation. For this reason it appears that they are more robust in curvilinear
coordinates. On the other hand, a first attempt of using a split conservative
semi-Lagrangian method has been reported in [29], pinpointing some specific
difficulties.

An important property of the advection field for the method to be stable
in curvilinear coordinates is that it is divergence free at the discrete level in
some sense. This is most easily realised, when using a potential formulation
of the advection field. This is also most easily understood in two-dimensions,
but can be generalised to arbitrary dimensions as shown in [27]. So in order to
make our point it is enough to study the problem in a two-dimensional space.
We suppose that we can write the advection field a = (∂x2

Φ,−∂x1
Φ)> = ∇⊥Φ,

where > stands for the transposition, and ∇⊥ = (∂x2 ,−(∂x1))>. In applications
a may depend on t and f(t, ·), but we will omit this point for the moment.

The classical BSL methods automatically preserve constant states, but are
not conservative. On the other hand the conservative CSL method is conser-
vative, but does not preserve constant states. We will show in this paper that
the BSL method can be made conservative up to at least first order in time and
on the other some CSL methods can be made to preserve constant states up
to at least first order in time. Moreover different interpolating methods will be
compared for BSL to show its robustness. Some numerical investigations of the
splitting issue raised in [30] will also be performed.

The outline of the paper is the following: First we are going to express
the two abstract forms of the Vlasov equations in curvilinear coordinates. In
the second part we recall the principles of the classical and conservative semi-
Lagrangian methods. Then we are going to propose different versions of the
BSL scheme and a new CSL scheme and prove their approximate conservation
properties. Finally detailed numerical investigations will be performed to assess
the strengths and weaknesses of the different schemes.

2 Obtention of the curvilinear equations

We consider here the curvilinear framework, that is we have a transformation
(the mapping) F : Ω̂ → Ω;η 7→ x(η) from a logical domain Ω̂ to the physical
domain Ω ⊂ R2. Polar coordinates are a simple example of such a transfor-
mation, but more general, numerically defined transformations, are needed to
align the grid with the magnetic flux surfaces in actual tokamak simulations.
We want to define the equation for f̃(η) = f(x(η)). In the sequel we will omit
the tilde on f and other quantities, as on each identity it should be clear form
the context if we deal with functions of x (that is, from the physical domain)

3

or functions of η (from the logical domain). We define the jacobian matrix [J]
and the jacobian J by

[J] =

(
∂η1x1 ∂η2x1

∂η1x2 ∂η2x2

)
, J = det([J]).

Using the chain rule we can relate the differential operators with respect to x
to the differential operators with respect to η. Denoting by [J]−> = ([J]−1)>,
we get

∇xf = [J]−>∇ηf, ∇x · (af) =
1

J
∇η · ([J]−1aJf), (2.1)

so that the advective form reads

∂tf + ([J]−1a) · ∇ηf = 0,

and the conservative form becomes

∂t(Jf) +∇η · ([J]−1a Jf) = 0

and the divergence free condition is

∇η · ([J]−1a J) = 0.

Again from the chain rule, we find that

∇⊥η Φ = J [J]−1∇⊥x Φ.

So that if a = ∇⊥x Φ, we get J [J]−1a = ∇⊥η Φ. The advective form then rewrites

∂tf +
1

J
∇⊥η Φ · ∇ηf = 0, (2.2)

or expanding the coordinates

∂tf +
1

J

∂Φ

∂η2

∂f

∂η1
− 1

J

∂Φ

∂η1

∂f

∂η2
= 0,

and the conservative form rewrites

∂t(Jf) +∇η · ((∇⊥η Φ) f) = 0, (2.3)

which becomes, expanding the coordinates

∂t(Jf) +
∂

∂η1
(

1

J

∂Φ

∂η2
Jf)− ∂

∂η2
(

1

J

∂Φ

∂η1
Jf) = 0,

and the divergence free condition is automatically satisfied, as

1

J
∇η · ([J]−1a J) =

1

J
∇η · ∇⊥η Φ =

1

J

∂

∂η1
(
∂Φ

∂η2
)− 1

J

∂

∂η2
(
∂Φ

∂η1
) = 0.

4

3 The characteristics

The semi-Lagrangian method is based on conservation properties along the char-
acteristics. Let us recall our Vlasov type equations in curvilinear coordinates
that we are interested in, denoting by b = ∇⊥η φ the divergence free advection
field and J the jacobian of our curvilinear grid. The advective form (2.2) then
writes

∂tf +
1

J
b · ∇ηf = 0, (3.1)

and introducing f̄ = Jf the conserved variable, the conservative form (2.3)
becomes

∂tf̄ +∇η · (
1

J
b f̄) = 0. (3.2)

To both of these equations we associate the same characteristics, which are the
integral curves of the differential equation

dH

dt
=

1

J
b, H(s) = η. (3.3)

We shall denote classically by H(t;η, s), the solution at time t of the character-
istic curve taking the value η at time s.

The solutions f of the advective form (3.1) and f̄ = fJ of the conservative
form (3.2) obey the following conservation properties along the characteristics:

Lemma 3.1 For given smooth vector field b and function J , the solution f of
(3.1) is conserved along the characteristics. More precisely

d

dt
f(t,H(t;η, s)) = 0. (3.4)

And the solution f̄ = fJ of (3.2) satisfies

d

dt

[
f̄(t,H(t;η, s)) det(∇ηH(t;η, s))

]
= 0. (3.5)

where ∇ηH(t;η, s) denotes the Jacobian matrix of the transformation η 7→
H(t;η, s).

Proof. Using the chain rule we have

d

dt
f(t,H(t;η, s)) = (∂tf +

dH

dt
· ∇ηf)(t,H(t;η, s)) = 0,

using the definition of the characteristics and the fact that f is a solution of
(3.1).
For the second conservation property, let us first observe that

d

dt
det(∇ηH(t;η, s)) = (∇η ·

b

J
)(t,H(t;η, s)) det(∇ηH(t;η, s)).

5

This follows from the definition of the characteristics and the fact that the
determinant is an n-linear alternating form. Then, a direct computation in
(3.5) yields(

∂f̄

∂t
(t,H(t;η, s)) +

dH

dt
(t;η, s) · ∇η f̄(t,H(t;η, s))

)
det(∇ηH(t;η, s))

+ f̄(t,H(t;η, s))
d

dt
det(∇ηH(t;η, s)) =(

∂f̄

∂t
(t,H(t;η, s)) +

b(t,H(t;η, s))

J(t,H(t;η, s))
· ∇η f̄(t,H(t;η, s))

)
det(∇ηH(t;η, s))

+ f̄(t,H(t;η, s))(∇η ·
b

J
)(t,H(t;η, s)) det(∇ηH(t;η, s))

=

(
∂f̄

∂t
(t,H(t;η, s)) +

[
∇η · (

b

J
f̄)

]
(t,H(t;η, s))

)
det(∇ηH(t;η, s)) = 0,

as f̄ is a solution of the conservation law at any point.

4 The Backward Semi-Lagrangian scheme (BSL2D)

The backward semi-Lagrangian scheme computes the time evolution of our equa-
tion in advective form (3.1) using the characteristics (3.3).

4.1 Formulation of the scheme

We consider a uniform cartesian grid of the logical space (η1, η2) ∈ [0, 1]2 defined
by N1, N2 ∈ N∗ and η1

i = (i− 1)∆η1, η
2
i = (i− 1)∆η2, i ∈ R, using a Fortran

like indexing, with ∆ηk = 1/Nk, k = 1, 2. We also define tn = n∆t, n ∈ R,
with ∆t ∈ R+∗.

The unknowns at time tn are

fni,j ' f(tn, η
1
i , η

2
j), i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, n ∈ N.

The classical backward semi-Lagrangian scheme uses the conservation property
(3.4) at each grid point to update the solution from one time step to the next.
This can be expressed as

fn+1
i,j = f(tn,η

∗
i,j , tn+1)),

where ηi,j = (η1
i , η

2
j) is a grid point and η∗i,j = H(tn;ηi,j , tn+1) the origin of

the characteristic ending at that grid point. In order to get a numerical scheme
from this equality, we need two steps:

1. Compute H(tn;ηi,j , tn+1)) by numerically solving the characteristics equa-
tions (3.3) backward in time on one time step. If the advection field b/J
is analytically known, any standard ODE solver can be used. When the

6

problem is non linear and the advection field depends on f , a simple so-
lution is to use the backward Euler method. Note however that iterations
are needed as the advection field is not known at time tn+1. Two are
generally sufficient. The scheme reads

η∗i,j = ηi,j −∆t(b/J)(tn+1,ηi,j),

i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

2. Interpolate fn the solution at tn at the origin of the characteristics. From
grid values fh = (fi,j)i=1,...,N1+1, j=1,...,N2+1, we need to define a recon-
struction

Π[fh] : R2 → R.

This reconstruction (the interpolator) should satisfy

Π[fh](η1
i , η

2
j) = fi,j , i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

The algorithm then becomes:

1. Initialisation:

f0
i,j = f(t0, η

1
i , η

2
j), i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1,

2. From tn to tn+1. Predict advection field b at time tn+1 for non linear
problems and loop until convergence

(a) Compute origin of characteristics

η∗i,j = ηi,j −∆t(b/J)(tn+1,ηi,j),

i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

(b) Interpolate

fn+1
i,j = Π[fnh]

(
η1
i −∆ta1

i,j , η
2
j −∆ta2

i,j

)
,

i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1

with fnh = (fni,j)i=1,...,N1+1, j=1,...,N2+1.

4.2 Preservation of constant states

As soon as the reconstruction Π reproduces the constants, we have preservation
of constant states, which can be written in this form, as the operator is linear:(

fni,j = 1, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1
)

⇒
(
fn+1
i,j = 1, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1

)
.

7

4.3 First order conservation of mass in BSL2D

A priori, conservation of mass is not satisfied for the BSL2D scheme. Using the
jacobian at the grid points Ji,j = J(η1

i , η
2
j) , this would read∑

i,j

Ji,jf
n+1
i,j =

∑
i,j

Ji,jf
n
i,j .

However, assuming our reconstruction is smooth enough, we can write a Taylor
expansion of first order in ∆t, from our scheme:

fn+1
i,j = Π[fnh]

(
η1
i −∆tb1i,j/Ji,j , η

2
j −∆tb2i,j/Ji,j

)
= Π[fnh](η1

i , η
2
j)

− ∆t

Ji,j

(
b1i,j

∂Π[fh]

∂η1
(η1
i , η

2
j) + b2i,j

∂Π[fh]

∂η2
(η1
i , η

2
j)

)
+O(∆t2).

So that

∑
i,j

Ji,jf
n+1
i,j =

∑
i,j

Ji,jf
n
i,j −∆t

(
b1i,j

∂Π[fh]

∂η1
(η1
i , η

2
j) + b2i,j

∂Π[fh]

∂η2
(η1
i , η

2
j)

)
+O(∆t2).

So a first order condition is the following

A =

N1∑
i=1

N2∑
j=1

b1i,j
∂Π[fh]

∂η1
(η1
i , η

2
j) + b2i,j

∂Π[fh]

∂η2
(η1
i , η

2
j) = 0,

which should be valid for all periodic sequences fh. Now, considering that

b1i,j =
∂Φh
∂η2

(η1
i , η

2
j), b2i,j = −∂Φh

∂η1
(η1
i , η

2
j),

with a reconstruction Φh ' Φ, the first order condition rewrites

A =

N1∑
i=1

N2∑
j=1

(
∂Φh
∂η2

∂Π[fh]

∂η1
− ∂Φh
∂η1

∂Π[fh]

∂η2

)
(η1
i , η

2
j) = 0. (4.1)

Using a reconstruction of the derivatives of the form

∂F

∂η1
(η1
i , η

2
j) =

s1∑
`=r1

α1
`F (η1

i+`, η
2
j),

∂F

∂η2
(η1
i , η

2
j) =

s2∑
`=r2

α2
`F (η1

i , η
2
j+`), (4.2)

8

for both F = Π[fh] and F = Φh leads to

A =

N1∑
i=1

N2∑
j=1

s1∑
k=r1

s2∑
`=r2

α1
kα

2
` (Π[fh](η1

i+k, η
2
j)Φh(η1

i , η
2
j+`)

−Φh(η1
i+k, η

2
j)Π[fh](η1

i , η
2
j+`))

=

N1∑
i=1

N2∑
j=1

Π[fh](η1
i , η

2
j)

s1∑
k=r1

s2∑
`=r2

α1
kα

2
` (Φh(η1

i−k, η
2
j+`)− Φh(η1

i+k, η
2
j−`))

=

N1∑
i=1

N2∑
j=1

Π[fh](η1
i , η

2
j)
∑
k

∑
`

(α1
i−kα

2
`−j − α1

k−iα
2
j−`)Φh(η1

k, η
2
`),

prolongating α1
i = 0, i 6∈ {r1, . . . , s1} and α2

j = 0, j 6∈ {r2, . . . , s2}. The

condition A = 0 is thus true as soon as αk−i = −αki , i ∈ Z, k = 1, 2, which is a
reasonable assumption for the derivative formula (4.2).
We emphasize that such condition holds when the reconstructions Π[fh] and Φh
use the same formula for the derivative.
We also remark that the condition (4.1) is the same for cartesian and curvilinear
case, as the jacobian is simplified and does no more appear.
For splines, the derivative is generally not expressed like in (4.2): derivatives
are obtained, by inverting a linear system. However, in the periodic setting,
the matrix for computing the derivatives is circulant and its inverse also, which
leads to a formula of type (4.2).

4.4 Examples of reconstructions: the 1D advective case

In this section, we review some choices for Πh. We focus here on the 1D inter-
polation in the advective form, as the 2D case can be obtained through tensor
product.

Spline interpolation: SPL(d) (see e.g. [1] (for d = 3), [8], [31] (for d = 3
and non-uniform grid))
We can consider here a non uniform mesh. Let ηmin < ηmax ∈ R. We consider
a discretization

η1 = ηmin ≤ η2 ≤ · · · ≤ ηN+1 = ηmax

of the interval [ηmin, ηmax]. Let d ∈ N∗, an odd number. We define a knot
sequence τi, i = 1, . . . , N + 2d+ 1. The knot sequence satisfies

τj+d = ηj , j = 1, . . . , N + 1.

In the case of open boundary conditions, we take

τj = τd+1, j = 1, . . . , d,

τN+j = τN+d+1, j = d+ 2, . . . , 2d+ 1,

9

and for periodic boundary conditions, we take

τj = τj+N − L, j = 1, . . . , d,

τN+j = τj + L, j = d+ 2, . . . , 2d+ 1,

where L = ηmax − ηmin. We can consider other possibilities for the 2d knots
τ1, . . . , τd and τN+d+2, . . . , τN+2d+1; we consider that

τ1 ≤ · · · ≤ τd ≤ τd+1, τN+d+1 ≤ τN+d+2 ≤ · · · ≤ τN+2d+1.

We then can define, for j = 1, . . . , N + d, the B-spline Bd+1
j , of degree d and

order d+ 1, whose support is [τj , τj+d+1].
For all m ∈ N∗ such that τm < τm+1 and m ≥ d + 1 and m ≤ N + d, the
B-splines that are non-zero in the interval [τm, τm+1[are

Bd+1
` , ` = m− d, . . . ,m,

with the exception that Bd+1
m (τm) = 0. For x ∈ [τm, τm+1[, we can compute

bj = bj(x), j = 1, . . . , d + 1, where bj(x) = Bd+1
m−d−1+j(x), by the following

algorithm:

b1 ← 1
for ` = 1, . . . , d do

α← x−τm+1−`
τm+1−τm+1−`

b1
b1 ← b1 − α
for k = 2, . . . , ` do

β = x−τm+k−`
τm+k−τm+k−`

bk
bk ← bk + α− β
α← β

end for
b`+1 ← α

end for

Now, we look for a function fh of the form

fh(η) =

N+d∑
j=1

cjB
d+1
j (η), ηmin ≤ η < ηmax.

For i = 1, . . . , N , we have

fi = fh(ηi) =

d∑
k=1

bk(τi+d)ci−1+k.

This is enough for periodic boundary conditions. For open boundary conditions,
we can add the d conditions

f
(`)
1 = f

(`)
h (η1) =

d∑
k=1

b
(`)
k (τd+1)ck, ` = 1, . . . , (d− 1)/2,

f
(`)
N+1 = f

(`)
h (ηN+1) =

d+1∑
k=2

b
(`)
k (τ−N+d+1)cN−1+k, ` = 0, . . . , (d− 1)/2.

10

Typically, when periodic boundary conditions are not used, we take 0 for the
derivatives and extend the solution outside [ηmin, ηmax[to be

fh(η) = f1, η ≤ ηmin, fh(η) = fN+1, η ≥ ηmin.

Note that, from [32], we can then obtain explicitly the d+1 coefficients ck, cN−1+k, k =
1, . . . , (d + 1)/2, and the N − 1 remaining coefficients are then solution of a d-
diagonal system, with matrix

M =

b(d+1)/2(τ2+d) . . . bd(τ2+d) 0 0

0 . . . 0 b1(τi+d) . . . b(d+1)/2(τi+d) . . . bd(τi+d) 0 . . . 0

0 0 b1(τN+d) . . . b(d+1)/2(τN+d)

 .

Once the coefficients are computed, we obtain for i = 1, . . . , N, 0 ≤ α < 1

fh(η) =

d+1∑
k=1

ci−1+kbk(τi+d + α(τi+d+1 − τi+d)), η = ηi + α(ηi+1 − ηi).

Lagrange interpolation: LAG(2d+1) (see e.g. [23, 9, 33])
We consider here a uniform mesh. Lagrange interpolation of degree 2d+1 reads

fh(η) =

d+1∑
k=−d

wdk(α)fi+k, η = ηi + α(ηi+1 − ηi), i = 1, . . . , N, 0 ≤ α < 1,

with wdk(α) =
∏d+1
j=−d, j 6=k(α−j)∏d+1
j=−d, j 6=k(k−j)

. As boundary conditions, apart from periodic,

we often use

fj = fN+1, j ∈ N, j ≥ N + 1; fj = f1, j ∈ Z, j ≤ 1. (4.3)

Cubic Hermite interpolation: H(p) (see e.g. [23] (for p = 4), [34]) Let
p ∈ N. We consider here again a uniform mesh, and write

fh(η) = w0,0(α)fi + w0,1(α)f ′i+ + w1,0(α)fi+1 + w1,1(α)f ′(i+1)− ,

η = ηi + α(ηi+1 − ηi), i = 1, . . . , N, 0 ≤ α < 1,

with w1,0(α) = α2(3−2α), w0,0(α) = 1−w1,0(α), w0,1(α) = α(1−α)2, w1,1(α) =
α2(α− 1).

The derivatives are reconstructed in the following way

f ′i± =

s±∑
`=r±

b±` fi+`.

For p ∈ N∗, we take r+ = −bp2c, s
+ = bp+1

2 c, r
− = −s+, s− = −r+,

11

−b−−` = b+` =

∏s+

j=r+, j 6∈{0,`}(−j)∏s+

j=r+, j 6=`(`− j)
, ` = r+, . . . , s+, ` 6= 0,

−b−0 = b+0 = −
s+∑

j=r+, j 6=0

b+j .

As examples, we have (negative indices are before ; in the brackets)

p = 1 b+ = (−1, 1),
p = 2 b+ = (−1/2; 0, 1/2),
p = 3 b+ = (−1/3;−1/2, 1,−1/6),
p = 4 b+ = (1/12,−2/3; 0, 2/3,−1/12),
p = 5 b+ = (1/20,−1/2;−1/3, 1,−1/4, 1/30),
p = 6 b+ = (−1/60, 3/20,−3/4; 0, 3/4,−3/20, 1/60).

(4.4)

Boundary conditions are treated like for the Lagrange case.

4.5 Extension to 2D for BSL2D

This is achieved using a tensor product formulation. For the splines, for each
j = 1, . . . , N2 + 1, we compute first coefficients c1ij , i = 1, . . . , N1 + d1, from the
values fij , i = 1, . . . , N1 + 1. Then, for each i = 1, . . . , N1 + d1, we compute
coefficients cij , j = 1, . . . , N2 + d2, from the values c1ij , i = 1, . . . , N1 + d1, j =
1, . . . , N1 + 1. The formula for interpolation is then

fh(η1, η2) =

d1+1∑
k=1

d2+1∑
`=1

ci−1+k,j−1+`bk(τi+d1
+ α(τi+d1+1 − τi+d1

))

b`(τj+d + β(τj+d2+1 − τj+d2)),

for

η1
i = η1

i + α(η1
i+1 − η1

i), i = 1, . . . , N1, 0 ≤ α < 1, η2
j = η2

j + β(η2
j+1 − η2

j),

j = 1, . . . , N2, 0 ≤ β < 1.

Note that for open boundary conditions (in both directions), in addition to
fij , i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, we have to specify

f
(`,0)
ij =

∂`fh
∂η1

(η1
i , η

2
j), j = 1, . . . , N2 + 1, i ∈ {1, N1 + 1}, ` = 1, . . . (d− 1)/2,

and also

f
(0,`)
ij =

∂`fh
∂η2

(η1
i , η

2
j), i = 1, . . . , N1 + 1, j ∈ {1, N2 + 1}, ` = 1, . . . (d− 1)/2,

12

together with

f
(`1,`2)
ij =

∂`1∂`2fh
∂η1∂η2

(η1, η2), ηk ∈ {ηk1 , ηkNk+1}, `k = 1, . . . (dk − 1)/2, k = 1, 2.

From f
(`,0)
ij and fij , we compute c1ij , i = 1, . . . , N1 +d, j = 1, . . . , N2 + 1. From

f
(`1,`2)
ij and f

(0,`)
ij , we compute missing coefficients called c

1,(`)
ij , i = 1, . . . , N1 +

d, j ∈ {1, N2 + 1}, ` = 1, . . . , (d2 − 1)/2, in order to compute finally, together
with c1ij the coefficients cij .
For Lagrange interpolation, the formula is

fh(η1, η2) =

d1+1∑
k=1

d2+1∑
`=1

wd1

k (α)wd2

` (β)fi+k,j+`,

and for Hermite, we can write

fh(η1, η2) =

1∑
k1,k2,`1,`2=0

wk1,k2
(α)w`1,`2(β)f

(k1,`1)
i(k2),j(`2),

defining i(0) = i+, i(1) = (i + 1)− and similarly, j(0) = j+, j(1) = (j + 1)−.

We take here f
(0,·)
i±,· = f

(0,·)
i,· and f

(·,0)
·,j± = f

(·,0)
·,j . We have to compute the values

f
(1,0)
i±,j , i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1,

f
(0,1)
i,j± , i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1,

f
(1,1)
i±,j±, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1.

The values f
(1,0)
i±,j are obtained from fi,j using the operator described in the 1D

case in the first direction. The values f
(0,1)
i,j± are obtained from fi,j using the

same operator in the second direction. Finally, the values f
(1,1)
i±,j± are obtained

from f
(1,0)
i,j± using the operator in the second direction (or equivalently from f

(0,1)
i±,j

using the operator in the first direction).

5 A split conservative semi-Lagrangian method

On curvilinear grids the free stream preservation property is essential for conser-
vative finite difference, finite volume or finite element solvers. This means that
for our problem a constant function must be preserved by a constant coefficient
advection.

Although the natural form of the conservative semi-Lagrangian method, as
proposed in [12], is based on a finite volume formulation where the unknown
is a cell average, we find it simpler to use a point based conservative method
with a point based unknown as in a Finite Difference scheme. This facilitates

13

a symmetric reconstruction between the stream function Φ of the advection
field and the unknown, which for the conservative form of the equation (3.2) is
f̄ = fJ as we saw before. And, even more importantly this enables to define
the Jacobian J only at the grid points, as well for the distribution function
as for the computation of the characteristics. This avoids interpolation of the
Jacobian, which is known to be bad for free stream preservation. In the classical
Finite Volume type method of [12], the advected points are the cell edges and
the Jacobian needs to be interpolated or defined in another manner there, which
prevents a direct cancellation as we have for the point based method used in BSL
and proposed here for the conservative scheme. A conservative semi-Lagrangian
method of this type was introduced by Qiu and Shu [2]. We will consider here a
specific example, that permits to have the first order free stream preservation; a
further study may be pursued for designing a class of high order stable schemes,
sharing this property, in the same spirit of the BSL method; one difficulty is to
get the stability of the scheme, as already mentioned in [2]. A general discussion
on the respective advantages and drawbacks of Finite Difference, Finite Volume
and Discontinuous Galerkin discretisations for conservation laws is given in [35].

5.1 Formulation of the 1D split conservative semi-Lagrangian
method (CSL)

Let us start from the model equation in conservative form (3.2) written in logical
coordinates, with f̄ = Jf , which we recall

∂f̄

∂t
+∇η · (

1

J
(∇⊥η φ)f̄) = 0 (5.1)

with (∇⊥η φ) = (∂η2
φ,−∂η1

φ)>.
Using an operator splitting method, which can be of arbitrary order by alter-

nating the 1D solves with adequate coefficients, we need to solve the following
two 1D advections:

∂f̄

∂t
+

∂

∂η1

(
1

J

∂φ

∂η2
f̄

)
= 0,

∂f̄

∂t
− ∂

∂η2

(
1

J

∂φ

∂η1
f̄

)
= 0. (5.2)

This leads us to introducing the conservative algorithm for a 1D conservative
problem of the form

∂f̄

∂t
+

∂

∂η

(a
J
f̄
)

= 0. (5.3)

A key ingredient in our algorithm is the sliding average reconstruction, which
is classical in conservative Finite Difference methods for conservations laws. This
reconstruction aims at defining for a function G defined at grid points a high
order approximation of its derivative ∂ηG at the same grid points. For this, we
introduce a function G related to G by the formula

G(η) =
1

∆η

∫ η+ ∆η
2

η−∆η
2

G(η̃) dη̃,

14

so that
∂G

∂η
(ηi) =

G(ηi + ∆η
2)− G(ηi − ∆η

2)

∆η
. (5.4)

When the averages of G on each cell, which are also the grid values G(ηi), are
known, the reconstruction by primitive, standard in Finite Volume methods
can be used to approximate G at the cell extremities. Formulas for third and
fifth order reconstructions are given in [2], we shall use here a fourth order
reconstruction, for which it is straightforward to compute

G(ηi +
∆η

2
) ' 7

12
(G(ηi) +G(ηi+1)− 1

12
(G(ηi−1) +G(ηi+2)). (5.5)

Now, a conservative semi-Lagrangian algorithm is based on the conservation
property (3.5), which becomes for the 1D case

d

dt

(
f̄(t,H(t; η, s))

∂H

∂η
(t; η, s)

)
= 0.

Introducing F a primitive in η of f̄ ,

F (t, η) :=

∫ η

η1

f̄(t, η̃) dη̃,

where η1 is chosen arbitrarily for fixing the constant, this can be written equiv-
alently

∂

∂t

∂F ∗

∂η
(t, η, s) = 0, with F ∗(t, η, s) := F (t,H(t; η, s)). (5.6)

Let us introduce a uniform grid of our logical domain [0, 1] characterised by
the number of cells N . The grid points are then defined by ηi = (i − 1)∆η,
1 ≤ i ≤ N + 1, with ∆η = 1/N . The unknowns are defined at the grid points
f̄ni ' f̄(tn, ηi) and we denote by f̄nh = (f̄ni)1≤i≤N+1 the collection of the grid
values.
Integrating first in t between tn and tn+1 in (5.6) and evaluating at s = tn+1,
it yields

f̄(tn+1, η) =
∂F ∗

∂η
(tn, η, tn+1),

as H(tn+1; η, tn+1) = η and ∂H
∂η (tn+1; η, tn+1) = 1. We suppose for the moment

that η∗i = H(tn; ηi, tn+1), the origin of the characteristic ending at ηi satisfies

ηi ≤ η∗i < ηi+1. (5.7)

Defining G(η) = F ∗(tn, η, tn+1)− F (tn, η), we get

f̄(tn+1, ηi) = f̄(tn, ηi) +
∂G

∂η
(ηi).

15

In order to get the scheme, we approximate ∂G
∂η (ηi) from values

G(ηi) =

∫ η∗i

ηi

f̄(t, η̃) dη̃ (5.8)

as explained before, that is using (5.4) together with (5.5).
To complete our algorithm we need to approximate G(ηi). For this, we use
Lagrange interpolation of order 3 on the interval [ηi, ηi+1[, using the values
fni+`, ` = −1, . . . , 2, in order to approximate f̄(t, η̃), η ∈ [ηi, ηi+1[, in (5.8). Note
that other choices may be possible, but we warn the reader that, as noted in
[2], for stability reasons, such interpolation has to be combined carefully with
the quadrature formula which is here (5.5).

To summarize, our conservative semi-Lagrangian algorithm, generalized to
arbitrary displacement, as in [2], is based on the following steps:

1. The backward solution of the characteristics ending at the grid points ηi
solution of

dH

dt
=
a

J
, H(tn+1) = ηi,

denoted by η∗i = H(tn; ηi, tn+1). These are the same characteristics as for
the split 1D BSL method and the algorithm to compute them is the same.
We shall consider here the backward Euler method.

2. The computation of the flux Fi+1/2. We denote by η∗i = ηi∗ + αi∆η, 0 ≤
αi < 1. Let Pi be the polynomial of degree ≤ 3 satisfying Pi(ηi∗+k) =
f̄ni∗+k, k = −1, 0, 1, 2. We compute

fi,k =
1

∆η

∫ η∗i+k

ηi∗+k

Pi(η)dη, k = −1, 0, 1, 2,

by using Simpson rule for example. We then define

Fi+1/2 =
7

12
(fi,0+fi,1)− 1

12
(fi,−1+fi,2)+

∑
i+1≤k≤i∗

f̄nk −
∑

i∗+1≤k≤i

f̄nk . (5.9)

3. The update of the solution. The new value of f̄ at the grid points is then
given by

f̄n+1
i = f̄ni + Fi+1/2 − Fi−1/2. (5.10)

Note that in the derivation of the scheme, the assumption (5.7) corresponds to
the special case i∗ = i. Formula (5.9) is chosen by considering that the local
displacement is the decomposition of an exact displacement of a given number
of cells plus a positive displacement less than one cell. We can check, as in [2]
that the formula is continuous when αi approachs 1. We clearly see from the
flux form (5.10), that the scheme is mass conservative.
Note that in [2] explicit formulae are given for third and fifth order in the context
of WENO. We consider here the example of fourth order and do not apply a
WENO procedure. For constant displacement (with Jacobian equal to one),
this scheme corresponds to use the BSL scheme with Lagrange interpolation of
degree 4, where the stencil is chosen according to the sign of the displacement.

16

5.2 Free stream preservation

As for the BSL method, where the mass is only preserved up to first order in
∆t, we shall prove here that f̄i,j is preserved by the update formula up to first
order in ∆t if f = 1 or equivalently f̄i,j = Ji,j , which is our version of free
stream preservation. For this, taking f̄ni = Ji, we consider for simplifying the
exposition of the proof that (5.7) occurs, but we could adapt the proof, removing
the hypothesis. We use again the formulation of the update formula from the
last section:

f̄n+1
i = f̄ni + (F ∗ − F)′(ηi) = Ji + (F ∗ − F)′(ηi)

and compute an approximation of (F ∗ − F)′(ηi) in the limit of small ∆t.
As we saw in the previous subsection F ∗ − F is obtained by reconstruction

of the grid function with sliding average∫ η∗i

ηi

fh(η) dη = −∆t
a(ηi)

J(ηi)
fh(ηi) +O(∆t2) = −∆t a(ηi) +O(∆t2)

as we assume that fh(ηi) = J(ηi) = Ji. Then denoting by S[ah] the sliding
average reconstruction of ah = (a(ηi))1≤η≤N+1, the update formula becomes
for f̄ni = Ji

f̄n+1
i = Ji −∆tS[ah](ηi) +O(∆t2).

Let us now apply this formula to the two split steps of our method assuming
a first order Lie splitting, but the same argument holds for higher order split-
tings. For the advection in the first direction we have for a given j, a = ∂η2

Φ.
Numerically Φ is approximated by its grid values Φh = (Φi,j)1≤i≤N1,1≤j≤N2 ,
we denote also by Φh,j = (Φi,j)1≤i≤N1 and Φh,i = (Φi,j)1≤j≤N2 one grid line
at constant j and i respectively. The derivative in the η2 direction is approxi-
mated by the sliding average reconstruction in the η2 direction S2[Φh,i]. Then
ah,j = (S2[Φh,i](ηj))1≤i≤N1

. So that our first update reads

f̄∗i,j = Ji,j −∆tS1[S2[Φh,i](ηj)](ηi) +O(∆t2).

For the second split step, we first note that, as the reconstruction is linear the
two terms above can be treated separately (and the higher order terms also).
Then as there is a ∆t in factor of the second term, this will be a O(∆t2) after
reconstruction. So, as now a = −∂η1

Φ, the formula is the symmetric of the
other split step, which yields

f̄n+1
i,j = Ji,j −∆t

(
S1[S2[Φh,i](ηj)](ηi)− S2[S1[Φh,j](ηi)](ηj)

)
+O(∆t2)

= Ji,j +O(∆t2)

because of the linearity and the symmetry of the sliding reconstruction in the
two directions. This proves that the constant states are preserved up to first
order, which is needed for a consistent conservative approximation on curvilinear
grids.

17

6 Numerical results

6.1 Rotation

The domain is Ω = [−π, π]2. We take

Φ(x1, x2) = −((x1)2 + (x2)2)/2

and solve (2.2). The mapping, referred to as deformed mesh (see e.g. [27]) is
given by

x1(η1, η2) = η1 + α sin(η12π/Lx1) sin(η22π/Lx2),
x2(η1, η2) = η2 + α sin(η12π/Lx1) sin(η22π/Lx2)

(6.1)

for (η1, η2) ∈ Ω̂ = Ω and for 0 ≤ α < 1. Here, Lx1 = Lx2 = 2π.
We use the cos-bell initial function defined by

f0(x1, x2) =

{
cos(r)6, for r < π/2,
0, else,

with r =
√

(x1 − x1
c)

2 + (x2 − x2
c)

2 and x1
c = 1, x2

c = −0.2.
We use a Verlet scheme for computing the characteristics backward in BSL2D,
which leads to a second order in time scheme; for the evaluation of the fields,
we use cubic splines in the fixed point algorithm (tolerance is put to 10−12 an a
maximum of 1000 iterations is allowed; when the convergence is not reached, a
warning message is given). Periodic boundary conditions are used for this test,
which can lead to small errors as the solution is not periodic but vanishes in the
vicinity of the boundary. For the choice of the interpolation, we consider here
only piecewise cubic polynomial reconstructions: SPL(3) and H(p). Note that
LAG3 corresponds to H(3).

When not specified, we use the natural derivative for the potential, that is:
the same derivative, as the derivative of the interpolation scheme. For H(p),
when p is odd, the derivative is discontinuous; we choose the derivative of order
p+ 1 as natural derivative for the potential (we do not consider a discontinuous
electric field here); this corresponds to taking the mean between the right and
left derivative of order p.

We will refer to FD4 (resp. FD6) for computing the derivative using (4.4),
with p = 4 (resp p = 6).
We consider different discretizations in space: N = N1 = N2 ∈ {32, 64, 128, 256}
and time: ∆t = 2−i, i ∈ {0, 1, . . . , 10}. The schemes under consideration are
here H2, H3, H4, H5, H6, H9, H10, H17 and SPL3.
Numerical results are given on Figure 1 (solution and error at time T = 20),
Figure 2 (error vs time step) and Figure 3 (evolution of mass).
On Figure 1, we see the solution and error of H17, using ∆t = 2−6, N = 32
(top) and N = 64 (bottom) at time T = 20 that is after 10/π turns. We see
that the error is reduced, taking a finer mesh and that the error is not located
on the boundary, that is periodic boundary conditions do not lead to problems,
in this test. The mesh is superposed to the solution, and we see that it is quite

18

deformed. Note that the Jacobian becomes singular for α = 1. The higher α is,
the more difficult it is to get accurate solution (see [36]). Here we always take
α = 0.9 to see the robustness of the different methods.
On Figure 2, we give the error in function of i, with ∆t = 2−i using the different
reconstructions and N = 32 (top left), N = 64 (top right), N = 128 (bottom
left) and N = 256 (bottom right). The error is computed in L∞ norm taking the
best constant that approaches in least square sense the error between T = 10
and T = 20 (we use the fit command of gnuplot). The error is multiplied by
(N/32)3 as we expect third order convergence in space for the different schemes
(except H2).
So, we observe how the error behaves with respect to time for different dis-
cretizations in space. One can expect to have an error of the form

C1∆t2 +
C2

N3
(6.2)

(see [9] for example). We distinguish basically three zones. A first zone (i =
0, 1, 2, 3) when ∆t is too big to observe convergence. Typically the time step
is too big for solving properly the characteristics which are quite stiff to solve,
as the mesh is very distorted. Then we observe a second zone, where the error
decreases like ∆t2. This zone becomes bigger as N increases. Finally, there is a
third zone, where the error saturates. Multiplying by (N/32)3 permits to have
the error for N = 32 and to see how the ”constant” in the space error behaves
(which is C2 if the error is of the form (6.2)). For N = 32 (top left), we observe
that increasing the value of p in H(p) increases the accuracy and SPL3 is little
better that H6. Moreover, when ∆t becomes smaller, we see bad effect for the
schemes that use a centered reconstruction for the derivatives: SPL3 and H10
(looking at the solution, we see that the error comes from the boundary; using
other boundary conditions may lead to improvements); for H6, which is a little
more diffusive, it is not observed here. When i <= 3 the error is big and does
not depend on the reconstruction. H2 gets worser increasing N , as it is not
a third order scheme; we also observe that taking smaller time steps leads to
bigger error, when time error is not predominant. For H3, the error saturates
or little increase with ∆t. We remark that is of order 3, comparing N = 128
and N = 256. For the other schemes, increasing N , the difference between the
schemes is diminished, as the reconstruction for the derivatives is higher than
third order (for cubic splines it is fifth order, and the constant seems to be
smaller than for H5).
On Figure 3, we represent the evolution of mass, for the different reconstructions,
with N = 32 (left), N = 64 (right), and ∆t = 2−5 (top), ∆t = 2−6 (middle)
and ∆t = 2−7 (bottom).

-We observe an increase of error of mass, when the bell crosses the region
where the mesh is the most distorted.

-Increasing N improves the mass for the lower accuracy methods (essentially
H2, H3, H4 and H5); it improves also the mass for all the methods, when the
bell is not touching the most distorted region.

19

-For fixed value of N , by diminishing the time step, mass conservation is
generally improved.

-For N = 64, we only see 3 types of curves: H2, H3 and the others which
are almost the same. In order to see more differences on the different methods,
we have to take a smaller value of N , like N = 32.

-We also can check that the centered reconstruction H2 (resp. H4) is worse
for mass conservation than H3 (resp H5) when ∆t is big, but they become better,
when ∆t is smaller, as expected from the analysis.

-We can also observe worse mass conservation using non natural reconstruc-
tions for the derivatives (not shown here), when N = 32, but the differences are
slight, and we will see more difference in the guiding center case.

Kelvin-Helmholtz instability in a periodic box

We refer for example to [12] for this test case. This is a non linear test case, where
the stream function Φ depends on f via the solution of the Poisson equation
−∆Φ = f . The initial distribution f0 is given by the formula :

f0(x1, x2) = sin(x2) + β cos(σx1)

where β = 0.015 and σ = 0.5. Periodic conditions are considered both in x1

and x2 direction. The domain is [0, Lx1] × [0, Lx2], with Lx1 = 2π
σ , Lx2 = 2π.

We use the same deformed mesh as in (6.1), with α = 0.9. We use mudpack
[37] for the curvilinear Poisson solver.
For BSL2D, we use a predictor-corrector scheme for the time loop as in [36],
together with Verlet for the characteristics (as in the case of the rotation).
For BSL1D, we replace the 2D advection, by 1D advection, using Strang split-
ting, as in [12]; a trapezoidal rule is used for the 1D characteristics, and again
cubic splines for the evaluation of the fields, in the fixed point algorithm.
For CSL, we compute the characteristics as for BSL1D and use the same Strang
splitting.
The schemes under consideration are here SPL3, SPL3-FD6 (SPL3 with FD6 in-
stead of cubic splines for the derivatives of the potential), SPL3-1d (BSL1d with
SPL3), H6, H6-SPL3 (H6 with cubic splines instead of FD6 for the derivatives
of the potential), H17, H17-1d (BSL1d with H17) and CSL.

Numerical results for BSL are given on Figure 4 (solution at time T = 50) and
Figure 5 (evolution of mass). Numerical results for CSL are given on Figure 6
(solution at time T = 50) and Figure 7 (evolution of free streaming error). On
Figure 7, L2 norm et energy evolution are also shown for CSL and BSL.

On Figure 4, we represent f at time T = 50 using H17 (left) and SPL3 (right),
with N = 256, ∆t = 2−10 (top), N = 128,∆t = 2−10 (middle) and N =
128, ∆t = 2−5 (bottom). Using N = 128, we have less details than with
N = 256 for H17. This scheme leads to similar results, using different small
enough time steps for a given N . Note that if we would take bigger time steps

20

(like ∆t = 2−3 which can be taken in the case of uniform mesh with α = 0),
the error in time would increase and we would get different (wrong) results. We
see that this scheme is particularly robust with respect to ∆t. For example,
for the fixed value of N = 128 (the exercise could be repeated for N = 256),
using ∆t = 2−5 or ∆t = 2−10 leads to similar result. On the other hand, SPL3,
works very badly when the time step is small; but, using a bigger time step as
∆t = 2−5, for N = 128, gives an acceptable result almost as accurate as H17
for the same value of N . Indeed, we see some more details in H17, which are
also present on the ”reference solution” (H17, N = 256 top left).
On Figure 5, we represent the evolution of mass for N = 256, ∆t = 2−5 (top
left), ∆t = 2−6 (top right), ∆t = 2−7 (middle left), ∆t = 2−8 (middle right),
∆t = 2−9 (bottom left) and ∆t = 2−10 (bottom right).

-We remark that BSL1d (here SPL3-1d and H17-1d) leads to huge mass
error, when the time step is big (see Figure top left); this confirms previous
analysis on uniform grid (see [12] for example); on the other hand, diminishing
the time step (i = 5 to i = 9) BSL1d and BSL2d become similar: SPL3-1d
converges to SPL3, and similarly H17-1d to H17.

-Diminishing the time step (i = 5 to i = 9), we get better conservation of
mass, except for the schemes that do not use the natural reconstruction of the
derivatives (SPL3-FD6 and H6-SPL3). This confirms the theoretical analysis of
Section 4.3, which was more difficult to point out in the rotation case.

-For i = 10, we have first better conservation of mass for SPL3 than for H17
(which was the best for i ≤ 9) this is coherent with the theoretical analysis of
Section 4.3. On the other hand, the solution develops a lot of oscillations (as
shown on Figure 4 top right) and a numerical instability appears. Note that
instability appears before for SPL3-1d than for SPL3. For H6, we also get an
instability (which was not in the rotation case).

On Figure 6, we represent f at time T = 50 using CSL, with N = 128 (left)
and N = 256 (right), for ∆t = 2−5 (top), ∆t = 2−6 (middle) and ∆t = 2−7

(bottom). The solution seems to converge to the ”reference solution” (H17,
N = 256 top left). Sporadic out of bounds value of f appear and become
bigger by taking a smaller time step and these values are attenuated by refining
the space grid. We remark some slight grid effect, taking the biggest ∆t (that
is ∆t = 2−5); this may be due to the fact that the characteristics are not
computed accurately enough. Some numerical oscillations are present and in
the mean time some details are diffused; this may be explained from the order
of the scheme and the behaviour as ∆t tends to 0 (here fourth order).

On Figure 7, we represent the free stream error. To compute it, we consider a
function initialized to 1 and let it evolve as f with the same advection field and
the same scheme. As the field is divergence free, the function should remain 1,
as it is the case for BSL. The free stream error is then the L∞ error between
the solution and 1. It is represented versus time. On top left, we multiply the
error by (2−5/∆t)2 and otherwise not. It is represented on top for CSL with the
natural reconstruction of the field, that is, FD4. On Figure 7 middle, we change

21

the reconstruction to FD6 (left) and SPL3 (right). On Figure 7, bottom, we
represent the evolution of L2-norm (left) and energy (right) for CSL, and BSL
(H3,H6,H17 and SPL3), using ∆t = 2−5, or ∆t = 2−6 and N = 256. As seen on
Figure 7 top left, we check the order 2 accuracy of the free stream preservation.
We can notice, that is holds both in the linear phase, when everything is smooth
and remains in the non linear phase, where we are far from convergence. On the
other hand, the other reconstructions of the fields do not lead to this property.
Taking ∆t = 2−7, N = 128, we even observe that the scheme can become
unstable (Figure 7 middle left). So the natural reconstruction of the field seems
here to prevent from the appearance of instability; the sporadic out of bounds
values can become higher and higher; so that at a certain level, this destroys
the solution. Other ingredients may be needed for garantying the stability of
the scheme and to permit to go to higher order schemes. On Figure 7, bottom,
it is confirmed that diffusion is not as strong as H3, but more than other usual
BSL schemes (H6, SPL3, H17). We also see that energy is quite well preserved
for CSL, certainly because the scheme is mass conservative; on the other hand,
diminishing the time step also improves energy conservation for the BSL method
(except for H3); this is coherent with the analysis about mass conservation.

On Figure 8, we represent the free streaming error, the mass, the L2 norm and
the energy, in the cartesian case (i.e. α = 0). We observe that free streaming
error is less important for the conservative method (Figure 8, top left). We
remark that it is more important for N = 256 than N = 128, when ∆t = 2−5.
This may be due to the fact that the solution is more complex when N = 256.
On the other hand, diminishing the time step, we observe that the free streaming
error diminishes, as expected, because we use FD4 for the reconstruction of the
derivatives. Mass conservation is really improved, using α = 0 (Figure 8 top
right) for the BSL methods. The effect of diminishing the time step leads to
small improvement of the mass conservation, in constrast to the curvilinear
case (α = 0.9), but the conservation is already a lot better. We remark no real
difference for the L2 norm (Figure 8, bottom left) and the energy is strangely
not conserved as well; the curve is however less oscillating.
On Figure 9, we represent the mass evolution, for bigger time steps: ∆t = 2−3 or
∆t = 2−4, which corresponds to more standard time steps that are used for this
test case in cartesian geometry (see [12] e.g.) and for α ∈ {0, 0.1, 0.25, 0.5}. We
remark that the mass is really better conserved on the cartesian mesh (α = 0),
and as α increases, mass conservation is degraded (for non conservative methods,
of course). This can be seen even for α = 0.1 which is almost uniform. As
already shown, diminishing the time step has a beneficial effect, which is not so
clear for α = 0 or α = 0.1 but which becomes clearer increasing the value of α.
L2 norm and energy evolutions are plotted on Figure 10 for α ∈ {0, 0.5, 0.9}.
On these quantities which are less accurately conserved in the cartesian case,
we do not see differences between the cartesian case α = 0 and the case α = 0.5.
This is good news, as it tells us that the time step restriction is not so severe;
diminishing the time step mainly helps in the conservation of the mass. In the
case of α = 0.9, for which reasonable simulation are shown for ∆t ≤ 2−5, exhibit

22

very bad mass conservation (here, there is no picture; the result is similar to
α = 0.5, but with values around 1 for ∆t = 2−4 and between 6 and 7 for
∆t = 2−4 at final time T = 100). We see on Figure 10 that for α = 0.9, the
quantities are changed, especially for ∆t = 2−3, and also for the CSL method.
Note that for ∆t = 2−3, the simulation stops in the CSL method, as we have
added a test that prevents from having intersection of characteristics. We see
that the energy is less accurately conserved for ∆t = 2−4, for the CSL method,
whereas it was not changing much from α = 0 to α = 0.5. For the BSL method,
the energy conservation is really worse for ∆t = 2−3. On the other hand, we
remark that H17 performs the best for ∆t = 2−4 in comparison to the other
methods.
A picture of the meshes for α = 0.25 and α = 0.5 is depicted on Figure 11, using
N = 32 instead of N = 256 in order to better see the mesh.

7 Conclusion

We have studied the semi-Lagrangian method on curvilinear grids and looked
at mass and constant states preservation issues. A (mass) conservative method
that preserves constant states up to first order in time has been exhibited and
compared with the classical advective backward semi-lagrangian method, which
in turn always preserves constant states and for which we have shown that it
conserves mass up to first order in time. When the mesh becomes distorted, the
time step has to be small enough; otherwise important errors appear, as in par-
ticular characteristics are badly solved. In this setting, Hermite interpolation
with high order odd reconstruction of the derivatives exhibits more favorable be-
havior than cubic splines, but the Hermite method can be also more expensive;
so we may stick to cubic splines when the mesh is not too distorted. The next
step is to adapt such methods to gyrokinetic simulations. The classical BSL
method may be preferred, as we can make it work for several reconstructions
and it is more robust, even though there is a loss of mass conservation. The
CSL method could also be tried, but we fear for stability and robustness issues,
as the design of such a scheme was already not easy in this simplified context.
We have tested the methods for a quite severely deformed mesh; we have seen
that, when the mesh is less deformed, the time constraint is relaxed. The grid
in a gyrokinetic simulation is imposed by the background magnetic field, which
does not vary in time. Hence the methodology described in this paper can be
directly applied as we can define a transformation, based on a B-spline represen-
tation, which maps a logical domain onto the desired physical domain. Typical
gyrokinetic simulations have magnetic configurations not far from equilibrium,
thus including the fluctuations of the magnetic field in the grid information is
not necessary for most applications. Among the new difficulties that we can
encounter in 5D gyrokinetic simulations, one is due to the dimension, which
leads to heavy computations; the model can also lead to numerical instabilities,
but collisions can be added to prevent from this fact; the whole system can also
become quite complex with all the physical terms; boundary conditions and

23

change of geometry have also to be treated correctly. A possible further study
is also to add slope limiters or other tools in order to prevent from sporadic out
of bounds values which can destroy the solution when they become too high.

Figure 1: Rotation case. Solution at time T = 20, on deformed mesh: H17
α = 0.9,∆t = 1/26 (left: solution, right: error), with N = 32 (top) and N = 64
(bottom).

24

Figure 2: Rotation case. Average of the error in maximum norm between t = 10
and t = 20 divided by t versus i, where ∆t = 1/2i.

25

Figure 3: Rotation case. Evolution of mass.

26

Figure 4: Guiding center case. Solution at time T = 50, on deformed mesh, with
α = 0.9 (left: H17, right: SPL3), N = 256, ∆t = 2−10 (top), N = 128, ∆t =
2−10 (middle) and N = 128, ∆t = 2−5 (bottom). Mesh for N = 256 (top right)
and N = 128 (middle right) are also shown.

27

Figure 5: Guiding center case. Evolution of mass.

28

Figure 6: Guiding center case. Solution at time T = 50, on deformed mesh for
CSL, with α = 0.9 (left: N = 128, right: N = 256), ∆t = 2−5 (top), ∆t = 2−6

(middle) and ∆t = 2−7 (bottom).

29

Figure 7: Guiding center case. Evolution of free stream error: FD4 for field
(top), FD6 (middle left) SPL3 (middle right). Evolution of L2 norm (bottom
left) and energy (bottom right).

30

Figure 8: Guiding center case in the cartesian case (α = 0). Evolution of free
stream error with FD4 for field (top left). Evolution of mass (top right), L2

norm (bottom left) and energy (bottom right).

Figure 9: Guiding center case. Evolution of mass for α = 0, 0.1, 0.25, 0.5;
N = 256 (from left to right, top to bottom).

31

Figure 10: Guiding center case. Evolution of energy (left) and L2 norm (right)
for α = 0, 0.5, 0.9 (from top to bottom).

Figure 11: Guiding center case. Representation of mesh, on 32 × 32 grid, for
α = 0.25 and α = 0.5.

32

References

[1] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo, The semi-
lagrangian method for the numerical resolution of the vlasov equation,
Journal of computational physics, vol. 149, no. 2, pp. 201–220, 1999.

[2] J.-M. Qiu and C.-W. Shu, Conservative high order semi-lagrangian finite
difference weno methods for advection in incompressible flow, Journal of
Computational Physics, vol. 230, no. 4, pp. 863–889, 2011.

[3] C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation.
CRC Press, 2004.

[4] J. P. Verboncoeur, Particle simulation of plasmas: review and advances,
Plasma Physics and Controlled Fusion, vol. 47, no. 5A, p. A231, 2005.

[5] C.-Z. Cheng and G. Knorr, The integration of the vlasov equation in con-
figuration space, Journal of Computational Physics, vol. 22, no. 3, pp. 330–
351, 1976.

[6] A. Staniforth and J. Côté, Semi-lagrangian integration schemes for atmo-
spheric models-a review, Monthly weather review, vol. 119, no. 9, pp. 2206–
2223, 1991.

[7] N. Besse, Convergence of a semi-lagrangian scheme for the one-dimensional
vlasov–poisson system, SIAM Journal on Numerical Analysis, vol. 42, no. 1,
pp. 350–382, 2004.

[8] N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-
lagrangian schemes for the vlasov–poisson system, Mathematics of compu-
tation, vol. 77, no. 261, pp. 93–123, 2008.

[9] F. Charles, B. Després, and M. Mehrenberger, Enhanced convergence esti-
mates for semi-lagrangian schemes application to the vlasov–poisson equa-
tion, SIAM Journal on Numerical Analysis, vol. 51, no. 2, pp. 840–863,
2013.

[10] N. Besse and E. Sonnendrücker, Semi-lagrangian schemes for the vlasov
equation on an unstructured mesh of phase space, Journal of Computa-
tional Physics, vol. 191, no. 2, pp. 341–376, 2003.

[11] T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa, Exactly conservative
semi-lagrangian scheme for multi-dimensional hyperbolic equations with
directional splitting technique, Journal of Computational Physics, vol. 174,
no. 1, pp. 171–207, 2001.

[12] N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative
semi-lagrangian schemes for vlasov equations, Journal of Computational
Physics, vol. 229, no. 6, pp. 1927–1953, 2010.

33

[13] T. Umeda, Y. Nariyuki, and D. Kariya, A non-oscillatory and conservative
semi-lagrangian scheme with fourth-degree polynomial interpolation for
solving the vlasov equation, Computer Physics Communications, vol. 183,
no. 5, pp. 1094–1100, 2012.

[14] N. Crouseilles, T. Respaud, and E. Sonnendrücker, A forward semi-
lagrangian method for the numerical solution of the vlasov equation, Com-
puter Physics Communications, vol. 180, no. 10, pp. 1730–1745, 2009.

[15] J.-M. Qiu and C.-W. Shu, Positivity preserving semi-lagrangian discon-
tinuous galerkin formulation: theoretical analysis and application to the
vlasov–poisson system, Journal of Computational Physics, vol. 230, no. 23,
pp. 8386–8409, 2011.

[16] J. A. Rossmanith and D. C. Seal, A positivity-preserving high-order semi-
lagrangian discontinuous galerkin scheme for the vlasov–poisson equations,
Journal of Computational Physics, vol. 230, no. 16, pp. 6203–6232, 2011.

[17] M. Gutnic, M. Haefele, I. Paun, and E. Sonnendrücker, Vlasov simula-
tions on an adaptive phase-space grid, Computer Physics Communications,
vol. 164, no. 1, pp. 214–219, 2004.

[18] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, and P. Bertrand, A
wavelet-mra-based adaptive semi-lagrangian method for the relativistic
vlasov–maxwell system, Journal of Computational Physics, vol. 227, no. 16,
pp. 7889–7916, 2008.

[19] M. C. Pinto and M. Mehrenberger, Convergence of an adaptive semi-
lagrangian scheme for the vlasov-poisson system, Numerische Mathematik,
vol. 108, no. 3, pp. 407–444, 2008.

[20] W. Guo and J.-M. Qiu, Hybrid semi-lagrangian finite element-finite differ-
ence methods for the vlasov equation, Journal of Computational Physics,
vol. 234, pp. 108–132, 2013.

[21] J.-M. Qiu and C.-W. Shu, Conservative semi-lagrangian finite difference
weno formulations with applications to the vlasov equation, Communica-
tions in Computational Physics, vol. 10, no. 4, p. 979, 2011.

[22] T. Arber and R. Vann, A critical comparison of eulerian-grid-based vlasov
solvers, Journal of computational physics, vol. 180, no. 1, pp. 339–357, 2002.

[23] F. Filbet and E. Sonnendrücker, Comparison of eulerian vlasov solvers,
Computer Physics Communications, vol. 150, no. 3, pp. 247–266, 2003.

[24] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghen-
drih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, et al., A drift-
kinetic semi-lagrangian 4d code for ion turbulence simulation, Journal of
Computational Physics, vol. 217, no. 2, pp. 395–423, 2006.

34

[25] V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih,
N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, and P. Bertrand,
Computing itg turbulence with a full-f semi-lagrangian code, Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 13, no. 1,
pp. 81–87, 2008.

[26] G. Latu, N. Crouseilles, V. Grandgirard, and E. Sonnendrücker, Gyroki-
netic semi-lagrangian parallel simulation using a hybrid openmp/mpi pro-
gramming, in Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pp. 356–364, Springer, 2007.

[27] P. Colella, M. R. Dorr, J. A. Hittinger, and D. F. Martin, High-order,
finite-volume methods in mapped coordinates, Journal of Computational
Physics, vol. 230, no. 8, pp. 2952–2976, 2011.

[28] P.-O. Persson, J. Bonet, and J. Peraire, Discontinuous galerkin solution of
the navier–stokes equations on deformable domains, Computer Methods in
Applied Mechanics and Engineering, vol. 198, no. 17, pp. 1585–1595, 2009.

[29] J.-P. Braeunig, N. Crouseilles, V. Grandgirard, G. Latu, M. Mehrenberger,
and E. Sonnendrücker, Some numerical aspects of the conservative psm
scheme in a 4d drift-kinetic code, arXiv preprint arXiv:1303.2238, 2013.

[30] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, and O. Coulaud, Insta-
bility of the time splitting scheme for the one-dimensional and relativistic
vlasov–maxwell system, Journal of Computational Physics, vol. 185, no. 2,
pp. 512–531, 2003.

[31] B. Afeyan, F. Casas, N. Crouseilles, D. A., E. Faou, M. Mehrenberger,
and E. Sonnendrücker, Simulations of kinetic electrostatic electron nonlin-
ear (keen) waves with two-grid, variable velocity resolution and high-order
time-splitting, The European Physical Journal D, vol. 68:295, pp. 1–21,
2014.

[32] Y. S. Volkov, On complete interpolation spline finding via b-splines,
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Math-
ematical Reports], vol. 5, pp. 334–338, 2008.

[33] M. Mehrenberger, C. Steiner., L. Marradi, M. Mehrenberger, N. Crouseilles,
E. Sonnendrücker, and B. Afeyan, Vlasov on gpu (vog project), ESAIM:
PROCEEDINGS, vol. 43, pp. 37–58, 2013.

[34] C. Steiner., Numerical computation of the gyroaverage operator and cou-
pling with the Vlasov gyrokinetic equations. PhD thesis, IRMA, University
of Strasbourg, France, December 2014.

[35] C.-W. Shu, High-order finite difference and finite volume weno schemes and
discontinuous galerkin methods for cfd, International Journal of Computa-
tional Fluid Dynamics, vol. 17, no. 2, pp. 107–118, 2003.

35

[36] A. Hamiaz, M. Mehrenberger, and A. Back, “Guiding center simulations on
curvilinear grids.” https://hal.archives-ouvertes.fr/hal-00908500,
Dec. 2014.

[37] “Mudpack.” https://www2.cisl.ucar.edu/resources/legacy/

mudpack.

36

