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Abstract

We study the decay of the energy for a degenerate network of strings[1], and obtain optimal decay rates when the
lengths are all equal. We also define a classical space semi-discretization and compare the results with the exact
method introduced in [3,4]. To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Taux de décroissance optimaux pour la stabilisation d’un réseau de cordes On étudie la décroissance
de l’énergie pour un réseau de cordes dégénéré [1], et on obtient des taux de décroissance optimaux lorsque les
longueurs sont égales. On définit aussi un semi-discrétisation classique et comparons les résultats avec la méthode
exacte introduite dans [3,4]. Pour citer cet article : A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340
(2005).

1. Introduction

We recall that the dissipation condition ∂xu(t, 0) = α∂tu(t, 0) at the origin of a vibrating elastic string
fixed at its end point, stabilizes this string. More precisely, if E(t) denotes the energy of the solution
of the wave equation ∂2

t u(t, x) − ∂2
xu(t, x) = 0 on (0, `) subject to the initial condition u(0, .) = a and

∂tu(0, .) = b, then E(t) ≤ Ce−γαt where γα = 1
` log

∣∣∣ 1+α
1−α

∣∣∣. Moreover, we remark that if α = 1, then

E(t) = 0, ∀t ≥ 2`. Thus, the value 1 is the best choice of α that makes the system is an equilibrium state.
The situation is completely different in the case when we consider a network of strings.
The problem of stabilization of nondegenerate network of strings was studied by K. Ammari, M. Jellouli
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and M. Khenissi in [1], [2] and [3]. When the strings are coupled at a common end in a star-shaped
configuration, it is proven in [2] that the solutions are not exponential stable in the energy space, in the
nondegenerate case. In the particular case of two strings, which is equivalent to the pointwise stabilisation
of one string, such a problem has been studied in [5]; exponential stabilization is obtained if and only if
the lengths satisfy `1

`1+`2
= p

q , with p and q odd numbers, and the best decay rate, when fixing the total

length `1 + `2 is obtained when the lengths are equal (`1 = `2 = `), with best decay rate γ = ln(3)
` . Such

problem has been also considered in [7], with different boundary conditions; in the degenerate case, the
energy limit was identified and it was proven that the solution decays exponentially to that limit.
We consider here the case of a degenerate network of vibrating elastic strings when the pointwise feedback
acts in the root of the tree (tree shaped network). Note that in the nondegenerate case, it is proven in
[1] that the solutions are not exponential stable in the energy space. We calculate the limit energy
E∞ := limt→+∞E(t) and we show that the decrease from E(t) to E∞ is exponential, giving the best
decay rate, when the lengths are equal. Finally we give numerical results in Section 3, which confirm the
theoretical results.

2. E∞ and best decay rate

Let N ≥ 3. We consider the initial data ((aj)1≤j≤N , (bj)1≤j≤N ) ∈ H :=

N∏
j=1

H2(0, `j) ×
N∏
j=1

H1(0, `j),

satisfying the compatibility conditions

a′1(0) = αb1(0), a′1(`1) =

N∑
j=2

a′j(0) and aj(`j) = 0, a1(`1) = aj(0), j = 2, . . . , N, (1)

and the system of partial differential equations

(S) :



∂2
t uj(t, x)− ∂2

xuj(t, x) = 0, t > 0, x ∈ (0, `j), j = 1, . . . , N,

uj(t, 0) = u1(t, `1) and uj(t, `j) = 0, t ≥ 0, j = 2, . . . , N,

∂xu1(t, 0) = α∂tu1(t, 0), t ≥ 0 (α > 0),

∂xu1(t, `1) =

N∑
j=2

∂xuj(t, 0), t ≥ 0,

uj(0, x) = aj(x), ∂tuj(0, x) = bj(x), x ∈ [0, `j ], j = 1, . . . , N.

We define the energy of the solution of (S) by

E(t) =
1

2

N∑
j=1

‖∂tuj(t)‖2L2(0,`j)
+

1

2

N∑
j=1

‖∂xuj(t)‖2L2(0,`j)
(2)

and we prove the following theorems in the case where `j = `, j = 1, . . . , N (we denote by ‖ ‖ the norm
of L2(0, `)):
Theorem 2.1 If ((aj)1≤j≤N , (bj)1≤j≤N ) ∈ H verify (1), then the energy limit is given by

E∞ =
1

2(N − 1)

N∑
j=2

N∑
k=j+1

(∥∥(a′k − a′j)
∥∥2

+
∥∥(bk − bj)

∥∥2
)
. (3)
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Now, we denote by α0 = 2
√
N−1
N , ∆ = 4(α2N2−4N+4)

(α+1)2 and λ = −
2(N−2)
α+1 +

√
∆

2N . 1

Theorem 2.2 There is a constant C = CN (α) > 0 such that for any initial data ((aj)1≤j≤N , (bj)1≤j≤N ) ∈
H satisfying (1) the following inequality holds

0 ≤ E(t)− E∞ ≤ C
(
‖a′1‖2 + ‖b1‖2 +

∥∥∥ N∑
j=2

a′j

∥∥∥2

+
∥∥∥ N∑
j=2

bj

∥∥∥2
)
e−γt

|∆|
, if α 6= α0, (4)

0 ≤ E(t)− E∞ ≤ C
(
‖a′1‖2 + ‖b1‖2 +

∥∥∥ N∑
j=2

a′j

∥∥∥2

+
∥∥∥ N∑
j=2

bj

∥∥∥2
)
t2e−γ0t, if α = α0, (5)

where γ = 1
` log 1

|λ| > 0 and γ0 = 1
` log N+2

√
N−1

N−2 . The best decay rate is achieved in the sense that for all

α > 0, there exists an initial data such that (4) and (5) become an equivalence:

E(t)− E∞ ≥ Ce−γt, or, for α = α0, E(t)− E∞ ≥ Ct2e−γ0t, with C > 0,

and ∀α 6= α0, we have γ < γ0.
Remark 1 The case N = 2 (with `1, `2 not necessarily of same size) can be recasted into the case N = 1
(with ` = `1 + `2).

The proofs of these theorems are based on the operator of type τ developed in [3] and [4] and will be
detailed in [6]. In fact we recall that

E(t) = E(0)− α
t∫

0

|∂tu1(s, 0)|2 ds (6)

and that for all t ≥ 0, ∂tu1(t, 0) =
(
P ◦ P̃−1

)
F (t) + 1

α+1

(
L+
β,`,1a

′
1 + L−β,`,1b1

)
, β = α−1

α+1 .

In a first step, we evaluate the caracteristic elements of P̃−1 and we prove that P̃−1 ≡ (n, δ), where
n : n(j) = 2(j − 1)` , j ≥ 1 and in the case α 6= α0

δ : δ(j) = a(β)λj−2 + b(β)µj−2, j ≥ 2

with µ = −
2(N−2)
α+1 −

√
∆

2N , a(β) = 1
N

(1−λ)(β−λ)
λ−µ and b(β) = − 1

N
(1−µ)(β−µ)

λ−µ . In the case α = α0,

δ(j) =

[
δ(2) +

(
1

λ0
δ(3)− δ(2)

)
(j − 2)

]
λj−2

0 , ∀j ≥ 2.

In the second stage we calculate
∫ 2n`

0
|∂tu1(s, 0)|2 ds, what will allow to find E∞:

E∞ =
1

2

N∑
j=2

(
‖a′j‖2 + ‖bj‖2

)
− 1

4(N − 1)

∥∥∥ N∑
j=2

(a′j − bj)
∥∥∥2

+
∥∥∥ N∑
j=2

(a′j + bj)
∥∥∥2


=

1

2(N − 1)

N∑
j=2

N∑
k=j+1

(∥∥(a′k − a′j)
∥∥2

+ ‖(bk − bj)‖2
)
.

In the end, we estimate the difference E(t = 2n`)− E∞ and we show the inequality (4) and (5).

1.
√

∆ = i
√
−∆ if ∆ < 0. Note that, ∆ < 0 (resp. ∆ = 0) if and only if α ∈]0, α0[ (resp. α = α0)
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3. Semi-discretization and numerical results

Let Nj , j = 1, . . . , d be positive integers. We define h = (h1, . . . , hd), with hj =
`j
Nj
, j = 1, . . . , d. We

suppose that α > 0 and consider the following classical finite difference space semi-discretization of (S):

u′′j,k(t)− uj,k−1(t)− 2uj,k(t) + uj,k+1(t)

h2
j

= 0, k = 1, . . . , Nj − 1, j = 1, . . . , d,

u1,1(t)− u1,0(t)

h1
= αu′1,0(t),

u1,N1(t)− u1,N1−1(t)

h1
=

d∑
j=2

uj,1(t)− uj,0(t)

hj
,

u1,N1
(t) = uj,0(t) and uj,Nj (t) = 0, j = 2, . . . , d,

uj,k(0) = u0
j,k, u

′
j,k(0) = u1

j,k, j = 1, . . . , d, k = 0, . . . , Nj , t ∈ (0,∞),

(7)

where the initial conditions satisfy for s = 0, 1, the compatibility conditions

us1,N1
= usk,0 =

∑d
j=2

usj,1
hj

+
us1,N1−1

h1∑d
j=1

1
hj

and usk,Nk = 0, k = 2, . . . , d.

The solution of (7) can be written in the form V (t) = exp(tA)φ, where V = (U,U ′)t,

U = (u1,0, u1,1, . . . , u1,N1−1, u2,1, . . . , u2,N2−1, . . . , ud,1, . . . , ud,Nd−1) ∈ RM

and φ ∈ R2M . The semi-discrete energy is defined by

Eh,φ(t) =
1

2

d∑
j=1

hj

Nj−1∑
k=1

∣∣u′j,k(t)
∣∣2 +

Nj−1∑
k=0

∣∣∣∣uj,k+1(t)− uj,k(t)

hj

∣∣∣∣2
 , (8)

and is decreasing as it satisfies E′h,φ(t) = −α
∣∣u′1,0(t)

∣∣2 . The following proposition identifies the limit of
the discrete energy, which may not be zero, as in the continuous case.
Proposition 3.1 For φ ∈ R2M , we can write φ = φ1+φ2 where φ1 belongs to the space Λ1 of eigenvectors
relative to the eigenvalues λ of A, with <(λ) = 0 and φ2 belongs to the space Λ2 of generalized eigenvectors
relative to the eigenvalues λ of A, with <(λ) < 0. We then have

Eh,φ,∞ := lim
t→∞

Eh,φ(t) = Eh,φ1
(0), (9)

and this value does not depend on α > 0.
Sketch of the proof We first proof that for φ1 ∈ Λ1 ⊂ C2M , we have φ1,M+1 = 0, that no eigenvalue
of A can have positive real part and that generalized eigenvectors with eigenvalue of zero real part are
necessarily eigenvectors, using the fact that the energy is decreasing and nonnegative. We then use the
decomposition and estimates

|Eh,φ(t)− Eh,φ1
(t)− Eh,φ2

(t)| =

∣∣∣∣∣∣
d∑
j=1

Nj−1∑
k=1

hj(w
1
j,k)′(w2

j,k)′ +

d∑
j=1

Nj−1∑
k=0

1

hj
(w1

j,k+1 − w1
j,k)(w2

j,k+1 − w1
j,k)

∣∣∣∣∣∣
≤

d∑
j=1

hj

√√√√Nj−1∑
k=1

∣∣∣(w1
j,k)′

∣∣∣2
√√√√Nj−1∑

k=1

∣∣∣(w2
j,k)′

∣∣∣2 +
1

hj

√√√√Nj−1∑
k=0

∣∣∣w1
j,k+1 − w1

j,k

∣∣∣2
√√√√Nj−1∑

k=0

∣∣∣w2
j,k+1 − w2

j,k

∣∣∣2
4



Figure 1. E(t)−E∞ vs time (exact and semi-discrete case) for α ∈ {0.9, 1, αopt} (left) and different initial conditions (right).

≤ 2d
√
Eh,φ1(t)

√
Eh,φ2(t),

where w1
j,k (resp. w2

j,k) is the solution corresponding to the initial condition φ1 (resp. φ2). We know that
Eh,φ1

(t) = Eh,φ1
(0), thus we get (9) since Eh,φ2

(t), being a finite sum and product of terms tending to
zero, as t → +∞, also tends to zero. This limit does not depend on α, since the only equation where α
is present is

αλφλ,M+1 = 0 =
1

h1
(φλ,M+2 − φλ,M+1) , for each λ;<(λ) = 0.

Numerical results. Finally we give some exact and semi-discrete results for the energy. We take d = 3,
initial condition

u0
j (x) = 0, j = 1, 3, u0

2(x) = sin2(
πx

`2
) and u1

j (x) = 0, j = 1, 2, 3.

`j = 1 and Nj = N, j = 1, 2, 3. We see on Figure 1 (left) the time evolution of E(t) − E∞ for α = 1
(exact, N = 100, 400) and for α = αopt, 0.9 (exact). On Figure 1 (right), we plot the time evolution
of E(t) − E∞ (exact, N = 100, 400) taking as before u0

2(x) = sin2(πx) (sin) but also u0
2(x) = sin2(8πx)

(sin8), in the case α = αopt. The results are conform with Theorem 2.2: taking α = αopt leads to the best
growth rate with asymptotic behaviour of the form Ct2 exp(−γt). We also note that the semi-discrete
scheme is able to reproduce the behaviour of the exact scheme until the discretization error dominates,
which is higher by taking a higher mode (Figure 1, right). The semi discrete energy seems to converge to
a discretization dependent limit, which is coherent with Proposition 3.1.
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the Belgian Mathematical Society-Simon Stevin, 4 (2010), 717-735.

[5] K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behaviour of the solutions and optimal location of the actuator
for the pointwise stabilization of a string, Asymptotic Analysis., 28 (2001), 215-240.

5



[6] M. Jellouli and M. Mehrenberger, Optimal decay rates for the stabilization of a string network, in preparation.

[7] S. Nicaise and J. Valein, A remark on the stabilization of the 1-d wave equation, C. R. Math. Acad. Sci. Paris, 348(1-2),

47-51, 2010.

6


