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Abstract. In this work, we are concerned with numerical approximation of the gyroav-
erage operators arising in plasma physics to take into account the effects of the finite
Larmor radius corrections. Several methods are proposed in the space configuration
and compared to the reference spectral method. We then investigate the influence of
the different approximations considering the coupling with some guiding-center mod-
els available in the literature.
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1 Introduction

In strongly magnetized plasma, when collision effects are negligible, one has to deal with
kinetic models since fluid models, which assume that the distribution function is close
to an equilibrium, are not appropriated. However, the numerical solution of Vlasov type
models is challenging since this model involves six dimensions of the phase space. More-
over, multi-scaled phenomena make the problem very difficult since numerical param-
eters have to solve the smallest scales. Gyrokinetic theory enables to get rid of one of
these constraints since the explicit dependence on the phase angle of the Vlasov equa-
tion is removed through gyrophase averaging while gyroradius effects are retained. The
so-obtained five dimensional function is coupled with the Poisson equation (or its asymp-
totic counterpart, the quasi-neutrality equation) which is defined on the particle coordi-
nates. Thus solving the gyrokinetic Vlasov-Poisson system requires an operator which
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carries out from the gyrocenter to the particles coordinates. This operator is the so-called
gyroaverage operator. We refer to an abundant literature around this subject (see [1,10,16]
and references therein).

The present work is devoted to a numerical study of the gyroaverage operator. We
intend to develop and compare different methods to deal with the numerical approxima-
tion of the gyroaverage operator.

Roughly speaking, the gyroaverage process consists in computing an average on a
circle (the Larmor circle). The use of Fourier transform reduces the gyroaveraging oper-
ation by a multiplication in the Fourier space by the Bessel function. In simple geometry,
this can be performed easily. However, since the Larmor radius depends also on a per-
pendicular velocity variable µ, the use of Fourier transform is not applicable in general
geometry such as those employed in realistic tokamak equilibrium. And even in simpli-
fied circular cross-section, the Fourier approach has difficulties to deal with non-periodic
boundary conditions. Several approaches have thus been developed to address these
problems. Approximations of the Bessel function have been proposed such as the Padé
expansion (see [7]); this approximation recovers a correct behaviour of the Bessel func-
tion for small Larmor radius and also asymptotically. Moreover, it enables to come back
to the spatial configuration to take into account non-periodic boundary conditions. Other
works deal with quadrature formula to evaluate the integration with respect to the gy-
rophase angle (see [16, 17]). The so-called 4-points method is quite simple since it can be
expressed into a matricial formulation. However, when the Larmor radius becomes large,
the method is not very accurate since the number of quadrature points is not sufficient.
Moreover, when quadrature points are different from the grid points, the authors carry
out a linear interpolation from the nearby grid points of the function, which can suffer
from a lack of accuracy in some cases. The method has then been extended to achieve
accuracy for large Larmor radius [4, 12, 13]. The main improvements rely on an adaptive
number of quadrature points (the number gyropoints is given by an increasing function
of the gyroradius [12]), but also on a finite element formalism which enables higher order
accuracy keeping the matricial formulation.

In this paper, we develop and compare methods based on the direct integration of the
gyroaverage operator. First, for a fixed number of quadrature points, we compare the in-
fluence of the interpolation operator (which is of great importance when the quadrature
points do not coincide with the grid points). The function is reconstructed using cubic
splines polynomials to reach a good accuracy (as in [18]). However, when the number
of quadrature points is fixed, it is always possible to find a Larmor radius sufficiently
large so that the error becomes significant. Hence, we develop a new approach, in the
same spirit as [4, 12, 13]; the basic point is the expansion of the function on a basis (such
as polynomial basis). Computing the gyroaverage of a function then reduces to compute
the gyroaverage of its basis, which are known analytically. Hence, in the same way as
finite element formulation, the method can be formulated into a matricial form. The ap-
proach presents other several advantages. On the one side, the number of quadrature
points is automatically determined as the intersection between the mesh and the Lar-
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mor circle, which provides the necessary adaptivity to reach a good accuracy even for
large Larmor circles. Contrary to previous works, the basis function are not evaluated
at the quadrature points but integrated on a circle arc, which turns out to be more ac-
curate. On the other side, the approach is quite general so that the choice of the basis
is not imposed (the 4-points or N-points method can be recovered) and benefits from
fast algorithms property. Indeed, when periodic boundary conditions are considered, it
can be proved that the obtained matrix is circulant, which means that the matrix-vector
product can be performed in a O(N logN) complexity and stored in a linear cost. The
present work restricts to a periodic domain in order to make comparison with spectral
based method possible. It is a first step of validation which intends to carefully compare
various methods of the literature and to present a general framework which includes the
Bessel method and the quadrature based methods. We can extend the present periodic
context to Dirichlet boundary conditions; the matrix becomes Toeplitz instead of circu-
lant, and computations can be done with a moderate additional work. A general domain
(e.g. an annulus) can then be handled by casting it in a bounding box and using an
appropriate projection. For realistic geometries involving an inhomogeneous magnetic
field, the situation becomes more complex, since the problem is inherently 3D, even if
some approximations may lead to local 2D problems. We mention here some possible
extensions which may be the purpose of further studies. On the one hand, a direct ap-
proach would be to store the full matrix which takes into account the inhomogeneous
Larmor radius. The matrix should be sparse enough, since realistic Larmor radius are
supposed to be small enough. On the other hand, for 2D problems, the present approach
could also be used to compute a range of gyroaverages (with constant Larmor radius)
and then to interpolate for evaluating the local gyroaverage.

In a second part of the paper, we are concerned with the coupling of the gyroaverage
operator with the guiding-center model. This model has been introduced in [15] to take
into account finite Larmor radius effect in guiding-center approximation. Many difficul-
ties arise in this model. On the one side, the velocity drift E×B is not simple to deal
with since it depends on the advected variables, and the model is not conservative when
a time splitting is considered (see [2, 5]). On the other side, the gyroaverage operator
also includes an integration with respect to the Larmor radius which belongs to [0,+∞].
Hence a good accuracy when large Larmor radius are considered is required. But, it turns
out that it is not sufficient since the numerical integration with respect to the Lamor ra-
dius is also important in order to reach a good accuracy for the gyroaverage operator.
For example, traditional quadrature rules (such as trapezoidal or Laguerre ones) are not
sufficiently efficient. In this context, we develop a new approach which appears to be
very efficient for arbitrary wavenumbers. The coupling with the guiding-center model
leads to very good results compared to the analytical results in the linear regime and to
the spectral method for the gyroaverage operator.

The paper is organized as follows. First, we recall the expression of the gyroaverage
operator and present the different numerical approximations that we developed. They
are compared each other to an analytical solution (at least to the spectral precision). Then,
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we briefly introduce the guiding-center model which takes into account of the finite Lar-
mor radius effects before presenting the numerical results.

2 Gyroaverage operators

In this section, we introduce the notations which will be used in the rest of the paper. If
we denote by ~ρ=ρ(cosα,sinα) with ρ the Larmor radius, the gyroaverage of a function f
is

J ( f )(~x)=
1

2π

∫ 2π

0
f (~x+~ρ)dα. (2.1)

A simple way to write the operator involves the Fourier variables. Indeed, since the
gyroaverage operator is a translation, it becomes a multiplication in the Fourier space

J ( f )(~x)=
1

2π

∫ 2π

0
f (~x+~ρ)dα

=
1

2π

∫ 2π

0

[

∑
k

f̂kei~k·~xei~k·~ρ
]

dα

=∑
k

f̂kei~k·~x
[

1

2π

∫ 2π

0
ei~k·~ρdα

]
.

The integral into brackets can be expressed by the Bessel function of the first kind J0.
Indeed we have

J0(ρk)=
1

2π

∫ 2π

0
ei~k·~ρdα=

1

2π

∫ 2π

0
eikρcos(α−θ)dα=

1

2π

∫ 2π

0
eikρcosαdα,

where ρ= |~ρ| and k= |~k|= |k(cosθ,sinθ)|. Hence, we conclude that

Ĵ ( f )(~k)=J0(ρk) f̂
(
~k
)
. (2.2)

We are also interested in the operator including an integration with respect to the
adiabatic invariant µ which, in slab geometry, quantifies the radius of the Larmor circles
using

√
2µ=ρ. This operator writes

I( f )(~x)=
∫ +∞

0
J ( f )exp(−µ)dµ=

∫ +∞

0
J ( f )exp(−ρ2/2)ρdρ. (2.3)

This operator can be found in [15, 21] in the framework of the coupling with guiding-
center type equations. One of the main difficulty we have to face with consists in an
accurate approximation of the gyroaverage operator for arbitrarily large Larmor radius.
A discrete integration approximation has also to be constructed to deal with the integra-
tion with respect to µ. As in the case of the gyroaverage operator J , the operator I has a
simplified form in Fourier variables. Indeed, we have

Î( f )(~k)=
∫ +∞

0
J0(k

√
2µ)exp(−µ)dµ f̂ (~k)=exp(−k2) f̂ (~k), (2.4)
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where the last equality has been obtained using the analytical result (see [6, 16]):

∫ +∞

0
J0(k

√
2µ)exp(−µ)dµ=exp(−k2). (2.5)

3 Numerical approximations of the gyroaverage operators

In this section, we propose several methods for the approximation of (2.1). As a reference,
we will compare the different methods to the spectral one given by (2.2). The methods can
be distinguished into two classes of methods. The first one is based on approximations
of the Bessel function whereas the second one intends to approximate the integral on a
circle of radius ρ using different interpolation operators.

3.1 Approximation of J
3.1.1 Fourier based approximations

In massively parallel gyrokinetic codes, even if spectral approaches remains difficult to
manage due to the use of FFT on a large number of processors, these kinds of methods
remain easy to implement. Most of the time, an approximation of the Bessel function
is performed. We propose to compare two kinds approximations: the Padé (of first or
second order) and Taylor expansions. Let us detail each of them in the sequel.

Padé expansion The first order Padé approximation of the Bessel function is

J0(kρ)∼ 1

1+(kρ)2/4
. (3.1)

whereas the second order is

J0(kρ)∼ 1

1+(kρ)2/4−(kρ)4/64
. (3.2)

The Padé approximation enables to recover the good asymptotic behaviour of the Bessel
function as ρ→+∞, and it is a good approximation for small ρ. However, for intermediate
Larmor radius, the Padé approximation truncates the oscillations of the Bessel function
(see Fig. 1). One of the main interest of the Padé approximations is that it makes possible
the computation of the gyroaverage in the real space; indeed, (3.1) is equivalent to

(
1+

(kρ)2

4

)
Ĵ ( f )(~k)= f̂

(
~k
)
,

which, using the equivalence i~k←→∇, leads to the following system

(
1− ρ2

4
∆
)
J ( f )(~x)= f (~x). (3.3)
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Figure 1: Different approximations in the Fourier space of the Bessel function.

The second order leads to the following equation

(
1− ρ2

4
∆+

ρ4

64
∆2
)
J ( f )(~x)= f (~x). (3.4)

The gyroaverage operator appears to be a diffusion type operator. The gyroaverage
function is then solution to a linear system (tridiagonal for (3.3) or pentadiagonal for (3.4)
for classical spatial discretizations) in the spatial configuration.

Taylor expansion A Taylor expansion of the Bessel function is also possible. The first
terms of the Taylor expansion are

J0(kρ)∼1− (kρ)2

4
+

(kρ)4

64
. (3.5)

Taylor expansions recover better the Bessel function up to ρ < 2, but when ρ goes to
infinity, the Taylor expansions go to −∞. Hence a truncation has to be performed to
recover the good asymptotic behaviour (see Fig. 1) which seems difficult to express in the
spatial configuration.

On Fig. 1, we compare the different approximations of the Bessel function. Comput-
ing the gyroaverage function using one of the two methods can be performed with the
following algorithm:

• compute f̂ (~k) using FFT of f ;

• compute for each mode~k: J0(kρ) f̂ (~k);

• compute J ( f )(~x) using FFT inverse of f̂ (~k).



490 N. Crouseilles, M. Mehrenberger and H. Sellama / Commun. Comput. Phys., 8 (2010), pp. 484-510

3.1.2 Integration based method (IM)

The first step of our approach consists in expanding the function f in a basis

f (x1,x2)=∑
i,j

ηi,jBi(x1)Bj(x2),

where Bi is a basis function and ηi,j the associated coefficients. Hence, computing the
gyroaverage of f reduces to compute the gyroaverage of the product BiBj for all i, j:

J ( f )(x1,x2)=∑
i,j

ηi,jJ (BiBj)(x1,x2). (3.6)

This formulation corresponds to a finite element method and then can be reformulated
into a matricial form J ( f )≈A f where A is a matrix of size N=Nx1

Nx2 . Then, we have to
compute the gyroaverage of the basis functions. Many ways can be performed to do that
since we have to deal with an integration over a circle. In [17], a quadrature is performed
using a 4-points method which consists in choosing 4 points equally distributed on the
circle. Obviously, more points can be considered (see [4, 12]) but other strategies can also
be adopted. In [17], the basis function are chosen linear, but other basis of higher degree
can be used in the present formulation (quadratic splines in [4], B-splines in [12]). Note
that the choice of a Fourier basis leads to the Bessel method (2.2) and thus this approach
may be viewed as a general framework which makes the link between the Bessel method
and quadrature based methods.

For the quadrature, several strategy can be used. Instead of a uniform quadrature,
it is possible to consider each arc of the circle to compute each contribution of the inte-
gral. Since the basis is local, to compute the corresponding component of the matrix, we
evaluate in each cell of the spatial mesh the quantity Jl(BiBj):

Jl(BiBj)(x1,x2)=
1

2π

∫ αl+1

αl

Bi(x1+ρcosα)Bj(x2+ρsinα)dα. (3.7)

We define the sequences of angles (αl)l which is the intersection of the Larmor circle
of radius ρ with the mesh. This intersection is composed of points in the domain, the
polar coordinates of which are (ρ,αl). The size of the so-obtained sequence increases as ρ
increases (the number of intersection point is an increasing function of the Larmor radius,
as in [12]). This enables to reach the required adaptivity to be accurate enough for large
Larmor radius. Hence, the problem can be re-written as

J (BiBj)(x1,x2)=∑
l

Jl(BiBj)(x1,x2).

For a given basis function, this computation of Jl(BiBj) can be performed using different
techniques. A simple way would be to use a quadrature formula which reduces the
computation of (3.7) to an evaluation of the basis function ; for example a trapezoidal,
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midpoint, Simpson or Gauss formula have been tested and the best strategy appeared to
be the 3-points Gauss quadrature which leads to

Jl(BiBj)(x1,x2)≈
1

2π ∑
k

Bi(x1+ρcosαk)Bj(x2+ρsinαk)ωk,

where (αk,ωk) are the points and weights of the quadrature rule. Hence, according to the
support of the basis function, the nearest grid points will be affected by the computation
of (3.7), thanks to (3.6).

We can observe that the built matrix A has specific properties: it is possible to prove
that A is block circulant. Indeed, if we denote by Si,j the stencil of f which contributes to
the computation of J ( f )i,j, then the stencil Si+1,j can easily be expressed as the shift in
the i direction of Si,j. This property is sent back to the matrix which inherits the circulant
property. This class of matrices has important characteristics since it is diagonalizable in
the Fourier basis so that we can write [8]

A= PDP⋆,

where D is a diagonal matrix and P a unitary matrix. In addition, the spectrum of A is
given by the Fourier coefficients of the first line of A. Hence the diagonal matrix D can
be stored into a vector, the component of which are the Fourier coefficients of the first
line of A. The matrix-vector product can then be decomposed into three matrix-vector
product: p=P⋆ f , q=Dp and r=Pq. TheO(Nx1

Nx2 logNx1
Nx2) complexity can be reached

following the algorithm:

• compute p= P⋆ f using FFT of f ;

• compute q= Dp using qk = Dk pk;

• compute r= Pq using FFT inverse of q.

Remark 3.1. As an example, if linear function together with a midpoint formula to ap-
proximate (3.7) are considered, we obtain

Jl(BiBj)(x1,x2)≈
1

2π
Bi(x1+ρcosαl+1/2)Bj(x2+ρsinαl+1/2).

If we denote by m,n the index such that (x1+ρcosαl+1/2,x2+ρsinαl+1/2) ∈ [x1,m,x2,n,
x1,m+1,x2,n+1], the contributed values ofJl( f )(x1,x2) are fm,n, fm+1,n, fm,n+1, fm+1,n+1. More
complex formulae can be derived for the cubic splines basis functions since the support
is equal to 16 cells in two dimensions. Following the example of linear basis functions,
we get for the matrix A

A=





A0 A1 . . . . . . AN−1

AN−1 A0 A1 . . . AN−2

AN−2 AN−1 A0 . . . AN−3
...

. . .
. . .

. . .
...

A1 A2 . . . AN−1 A0




, (3.8)
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where each Ak matrix is a circulant matrix of the form

Ak =





ak,0 ak,1 . . . . . . ak,N−1

ak,N−1 ak,0 ak,1 . . . ak,N−2

ak,N−2 ak,N−1 ak,0 . . . ak,N−3
...

. . .
. . .

. . .
...

ak,1 ak,2 . . . ak,N−1 ak,0




.

We detail the algorithm of this approach in the simplest case of a linear basis and a mid-
point quadrature formula.

Algorithm 3.1:

Step 1. Computation of the sequence (αl)l defined as the intersection between the Larmor circle and

the mesh.

Step 2. Initialization am,n =0.

Step 3. For each l, search for (m,n) such that (x1+ρcosαl+1/2,x2+ρsinαl+1/2)∈ [x1,m,x2,n,x1,m+1,
x2,n+1], with αl+1/2 =(αl +αl+1)/2.

Let us denote by β1 =(x1+ρcosαl+1/2−x1,m) and β2 =(x2+ρsinαl+1/2−x2,n). Then, with ∆αl =
(αl+1−αl)/2π, we update

am,n ← am,n +(∆x1−β1)(∆x2−β2)∆αl ,
am+1,n ← am+1,n +β1(∆x2−β2)∆αl ,
am+1,n+1 ← am+1,n+1 +β1 β2∆αl ,
am,n+1 ← am,n+1 +(∆x1−β1)β2∆αl ,

where ∆x1,2 is the size of the mesh in the x1,2-directions.

This last step has to be performed for each quadrature points when other quadratures are employed.

Note that in the cubic splines case, the coefficients η are linked to the pointwise values of f by a

matricial relation Cη = f . Hence, thanks to the previously derived formula Aη =J ( f ), we have the

matricial system AC−1 f =J ( f ). Since the product of two circulant matrices is also circulant, the

previous algorithm is always available.

3.2 Comparison of the different numerical approximations

This section is devoted to a numerical comparison of the different methods presented
above. On the one side, we look at the Fourier based methods (PADE1 (3.1), PADE2
(3.2), TAYLOR1 and TAYLOR2 (3.5)) and on the other side, we are interested in integra-
tion based methods. At first, standard quadrature based methods are investigated using
cubic splines (SPL) or linear splines (LIN) for different numbers of uniform quadrature
points (4,8 and 16). The number of quadrature points is mentioned as a suffix of the cor-
responding method. Then we consider the adaptive integration method (IM) either for
linear (IM-LIN) or cubic splines (IM-SPL).
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Figure 2: Gyroaverage function as a function of x, evaluated at y=π/2. Comparison of the different methods.
ρ=0.5.

The following analytical function is considered

f (x1,x2)=
M

∑
k1=1

M

∑
k2=1

βk1,k2
cos(k1x1)cos(k2x2), (x1,x2)∈ [0,2π]2, (3.9)

where βk1 ,k2
is a random value between−1 and 1.

Since the Bessel function is tabulated, we will consider as the reference solution the
solution given by (2.2). Hence, we consider the error made by the different methods with
respect to the reference solution. The number of points used to sample the analytical
function is N =256 in each direction. On Fig. 2, we plot the function f (x,y=π/2) (given
by (3.9) and the corresponding gyroaverage function J ( f )(x,y= π/2) for all x∈ [0,2π],
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with a Larmor radius ρ=0.5. We can observe the influence of the gyroaverage operator:
each small scale is damped. We also observe the different approximations: the Padé
approximation over-damps small scales whereas the N-points methods (with N=4,8,16)
with cubic B-splines interpolation operator do not damp enough small structures even if
the choice of N =16 points leads to quite good results. The IM approach is very close to
the reference solution.

On Figs. 3 and 4, we plot the L1 error between the reference solution (given by the
Bessel approach) and the different methods as a function of ρ (normalized to ∆x/4, with
∆x the size of the mesh) for the different methods.The results of the IM (i.e. IM-LIN and
IM-SPL) approach are shown on Fig. 4 (right).

First, we observe that only the IM method is able to keep accuracy for large Larmor
radius since the method with a fixed number of quadrature points fails when ρ becomes
sufficiently large. Moreover, we can see a gap between linear and cubic splines based
methods; as expected, cubic splines produce a very low error. This small error can be
reached by the linear approach with four points when ρ is proportional to the mesh size.
In this case, LIN4 and SPL4 are equivalent since there is no interpolation error. The same
remark is available for IM. For Fourier based methods, even if the Taylor expansion gives
very good results for ρ≤2, the other methods (Padé) lead to an important error compared
to SPL16 which is plotted as a reference on Fig. 3.

Another diagnostic can be plotted for this example. Indeed, thanks to the equality

(2.2), for a given mode~k such that f̂ (~k) 6=0, we can consider the Fourier transform of the
gyroaverage function divided by the Fourier transform of the function. This quantity can
be viewed as an approximation of the Bessel function J0

Ĵ ( f )(~k)

f̂ (~k)
≈J0(ρk).

Considering different values of ρ leads to Figs. 5 and 6. The same conclusions as before
arise since the integration based methods become less accurate as ρ increases. Even if a
good accuracy can be reached by adding quadrature points, it is always possible to find
kρ (which can be arbitrarily large), such that the method fails. On the contrary, IM with a
non-uniform quadrature (see Fig. 6), provides a very good accuracy for both basis func-
tion (linear and cubic splines) even for very large Larmor radius. Nevertheless, as ob-
served in the previous figures, the two basis functions give rise to different results. Fig. 6
on the right presents the difference between the Bessel function and the IM methods. We
clearly observe one order of difference between the use of linear and cubic B-splines. The
same is true for Fig. 7, in which we made a zoom for small radius to distinguish linear
and cubic spline approximations. We can observe a lack of accuracy of the linear based
method compared to the cubic splines approach. The difference is about 1% whereas the
cubic splines approach is about two orders more accurate and motivate the use of cubic
spline basis functions. Obviously, the storage of the matrix requires more computations
when cubic B-splines are used instead of a linear basis. But one has to point out that the
matrix has to be calculated just once at the beginning of a dynamical simulation.
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Finally, on Fig. 8, we investigate the effect of the gyroaverage operator on high
wavenumbers (see [19]). Considering a bath of modes (like (3.9), with M =100 and with
the βk1 ,k2

coefficients which are proportional to 1/k2), we investigate the influence of the
different approximations of the gyroaverage operator on the high wavenumbers (since
all the methods are more or less accurate for low wavenumbers). The Bessel function
J0(k) is equivalent to 1/

√
k when k→∞ so that the coefficients will be equivalent to

1/k3/2 for large values of k. The Padé approximant is in 1/k2 so that the high wavenum-
bers are strongly damped since they behave in 1/k4 for large k. The N-points methods
(for N =4,8,16) are not very accurate for large wavenumbers (as already observed previ-
ously) since the asymptotic behaviour is nearly superimposed with this of the function.
On the contrary, the IM method presents a very good asymptotic behaviour, very close
to the Bessel method one.

3.3 Approximation of I
This subsection is devoted to the study of the gyroaverage operator integrated with re-
spect to µ=ρ2/2. This operator intervenes in the model (4.1)-(4.2) and justifies the search
of accurate methods to approximate the gyroaverage operator for large Larmor radius.
The only thing to do consists in looking for a precise numerical integration with respect
to µ. However, we will see that it is not so easy to derive a numerical integration which
is accurate for arbitrarily large wavenumbers. We first extend IM in a simple way before
presenting a new approach. The numerical results will be compared to analytical results
given by the following equality (see [6])

∫
J0(ρk)exp(−µ)dµ=exp(−k2), with ρ=

√
2µ. (3.10)

3.3.1 Extension of IM

This subsection intends to extend in a classical way the IM approach to approximate the
I operator. To do that, we apply the Laguerre quadrature to the previous IM approach.
The main advantage of the IM approach is that the integration with respect to µ can be
stored once for all into the matrix A since

∫
J ( f )exp(−µ)dµ≈

N−1

∑
l=0

Al f ωl =

(
N−1

∑
l=0

Alωl

)

f = A f .

Thanks to the circulant property of each matrix Al, we can deduce that the linear combi-
nation of circulant matrix is also circulant so that fast algorithm can always be used.

3.3.2 Integration based method IMµ

As an extension of the IM method developed above for the operator J , this subsection
is devoted to the presentation of a new approach in the spirit of the method presented in
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Subsection 3.1.2. Indeed, the first step also consists in the expansion of the f in a basis.
Then, the operator I has to be applied to the basis functions:

I( f )(x1,x2)=∑
i,j

ηi,jI(BiBj)(x1,x2). (3.11)

As remarked previously, the value of I( f ) at one grid point can be deduced from the
value of J ( f )(0,0) thanks to a shifting procedure, so that we can write

I( f )(0,0)=
1

2π

∫ +∞

0

∫ 2π

0
f (ρcosα,ρsinα)exp(−ρ2/2)ρdρdα

=
1

2π ∑
i,j

ηi,j

∫ +∞

0

∫ 2π

0
Bi(ρcosα)Bj(ρsinα)exp(−ρ2/2)ρdρdα

=
1

2π ∑
i,j

ηi,j

∫ ∫

IR2
Bi(x1)Bj(x2)exp(−(x2

1+x2
2)/2)dx1dx2

=
1

2π ∑
i,j

ηi,j

∫

IR
Bi(x1)exp(−x2

1/2)dx1

∫

IR
Bj(x2)exp(−x2

2/2)dx2.

Due to the finite size of the support of the chosen basis function (cubic B-splines in our
case), the integrations arising in the last formula can be performed using formal compu-
tations. Indeed, in our periodic configuration, the integral we have to deal with writes

∫

IR
Bi(x1)exp(−x2

1/2)dx1 =
∫

IR
B

(
x1−xi

∆x

)
exp(−x2

1/2)dx1

=
∫

IR
B(x1)exp(−(∆xx1+xi)

2/2)dx1

=
∫

IR
B(x1)exp(−∆x(x1+i))2/2)dx1 with xi = i∆x

=
∫ 1

−2
B(x1)

+∞

∑
k=−∞

exp(−∆x(x1+i)+2πk)2/2)dx1,

where the B-spline is given by

6B(x1)=






(2−|x1|)3 if 1≤|x1|≤2,
4−6x2

1 +3|x1|3 if 0≤|x1|≤1,
0 otherwise.

Hence we have to pre-compute the quantity

Ai =
∫ 1

−2
B(x1)

+∞

∑
k=−∞

exp(−∆x(x1+i)+2πk)2/2)dx1.
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Obviously the infinite sum can be truncated since for sufficiently large value of k, the
term exp(−∆x(x1+i)+2πk)2/2) becomes negligible. Hence, it leads to the following
expression of the approximation of the operator I

I( f )(0,0)=∑
i,j

ηi,j Ai Aj. (3.12)

To recover the value of I( f ) at another grid point, a shift has to be performed. This
property can be summarized by

I( f )(x1,x2)≈A f ,

where A is a block-circulant matrix of type (3.8) which can be stored in a O(N1N2) cost
whereas the matrix-vector product can be performed with O(N1N2)log(N1N2) complex-
ity.

Remark 3.2. The sum of the Ai coefficient can be analytically computed

N1−1

∑
i=0

Ai =
N1−1

∑
i=0

∫ 1

−2
B(x1)

+∞

∑
k=−∞

exp(−∆x(x1+i)+2πk)2/2)dx1

=1/
√

2π.

3.3.3 Numerical results

In this part, we intend to compare the two methods introduced above for the approxima-
tion of the operator I defined by (2.5).

The following numerical results present the comparison between the analytical solu-
tion (given by (3.10)) and the approximated ones, given by the IM and IMµ approaches.
We consider on Fig. 9 the error in the Fourier space. For different values of k, we plot
the error between the two methods and the analytical value exp(−k2/2). We can observe
that the Laguerre quadrature gives random type results in which it is difficult to be confi-
dent. On the contrary IMµ is accurate independently of k. This is confirmed by Fig. 10 in
which we plot I( f )(x,y=π/2), for all x∈ [0,2π]. We can observe that fast oscillations are
not damped by the Laguerre quadrature whereas IMµ leads to smooth results which is
in a good accordance with the fact that high modes are strongly damped by a coefficient
equal to exp(−k2/2).

Even if we conclude on the very good behaviour of IM for large Larmor radius in
the previous section, it is not sufficient for the operator I . This is due to the fact that
we have to integrate an oscillating function, in which the oscillations depends on the ex-
cited modes: the more k is important, the more the function oscillates (see Fig. 11). The
integration of oscillating function is not trivial and classical quadratures like Laguerre
quadrature is not able to accurately capture the oscillations of the integrand. Moreover,
one other difficulty comes from time dependent problems in which it is difficult to con-
trol the excited modes. It is important to develop a method that is precise independently



500 N. Crouseilles, M. Mehrenberger and H. Sellama / Commun. Comput. Phys., 8 (2010), pp. 484-510

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  5  10  15  20  25  30  35  40  45

128
64
32
16

IMµ

|k|ρ

Figure 9: Error between
∫ +∞

0 J0(k
√

2µ)exp(−µ)dµ
as a function of kρ for the extension of IM with a
different number of Laguerre points and for IMµ.

-3
-2.5

-2
-1.5

-1

-0.5
 0

 0.5
 1

 1.5

 0  1  2  3  4  5  6  7

IMµ
Laguerre

Figure 10: I( f )(x,π/2) as a function of x∈ [0,2π].
Comparison of the extension of IM (128 Laguerre
points are used) with IMµ. f is a bath of modes,
with higher modes equal to (100,100).

-0.2
-0.15
-0.1

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0  20  40  60  80  100

EXACT
IMµ

|k|ρ

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  20  40  60  80  100

EXACT
IMµ

|k|ρ

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  20  40  60  80  100

EXACT
IMµ

|k|ρ

Figure 11: J0(kρ)exp(−µ) as a function of kρ for three different modes (1,2), (10,10) and (20,10). IMµ is
also plotted.

of the oscillating character of the integrated function, in other words, for arbitrarily val-
ues of k. In the present context, IMµ is very efficient and extensions of the approach to

the computation of the density n(~x)=
∫ +∞

0 J ( f )(~x,µ)dµ in gyrokinetic code is currently
investigated.

4 Guiding-center simulation with finite Larmor radius effects

This section is devoted to the coupling of the gyroaverage operator with the guiding-
center model. This model has been introduced in [15] and simulations have been per-
formed in [9,11,14,22]. This model considers the evolution of the guiding-center density
f = f (t,x1,x2) in the poloidal plan of the tokamak (see Appendix A for more details on its
derivation)

∂t f +∇·(v̄D f )=0, v̄D = ez×∇I(Φ), (4.1)
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coupled with the Poisson equation for the electric potential Φ

−∆Φ=I( f ), (4.2)

supplemented with an initial condition: f (0,~x)= f0(~x). The expression of the operator I
is given by (2.3).

Several studies can be found concerning the model (4.1)-(4.2) but gyroradius effects
are often left untreated [2, 21, 24]. In this simplified context, the instability growth rate
which quantifies the departure of the unknown from an equilibrium can be computed in
a certain range of wavenumber (see [21]). The computations of [21] can be generalized
for every wavenumber by looking for imaginary part of eigenvalues. These computations
are detailed in Appendix B. Nevertheless, the extension of this strategy to the gyroradius
case (4.1)-(4.2) seems to be difficult and only few numerical results are available in the
literature (see however [11, 14, 22]).

4.1 Numerical results

We perform simulations of the model (4.1)-(4.2) coupled with the gyroaverage operator
I . One of our main goal is to observe the influence of the gyroaverage operator I on
the dynamics of f . To that purpose, periodic conditions are considered in both spatial
directions x1 and x2, and the initial condition is (see [21] and Appendix B)

f (t=0,x1,x2)=sin(x1)+εcos(kx2), (x1,x2)∈ [0,2π]×[0,2π/k].

As mentioned above, when the gyroaverage operator is neglected, it is possible to com-
pute the instability growth rate for a given k (see Appendix B). However, it seems difficult
to extend these computations to the finite Larmor radius case. We can however deduce a
qualitative behaviour to anticipate the numerical results: indeed, since the gyroaverage
operator can be approximated at the first order by a diffusion operator, we expect that the
obtained instability growth rates will be lower to the zero-Larmor radius case. We can
also compare the developed method to the one expressed in Fourier variables through
(2.4). It provides us a reference solution for I that will be compared to the IMµ approach.

The numerical solution of the guiding-center model is performed using a conserva-
tive semi-Lagrangian method (see [2] for more details). The time step is equal to ∆t=0.1,
and the number of points is equal to 128 in each direction. The IMµ approach is used to
deal with the operator I . The reference solution (called EXACT in the numerical results)
will be given by formula (2.4) for the gyroaverage step.

We are interested in the following diagnostics. Since the enstrophy ‖ f (t)‖L2

E f (t)=
∫
| f (t,x1,x2)|2dx1dx2, (4.3)

is preserved with time, this quantity is a good information to test the quality of our results
for long time simulations. We are also interested in the time evolution of the Fourier
modes of Φ for which we expect a exponential growth rate.
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On Fig. 12, we first plot the result obtained by the PSM method (Parabolic Splines
Method, see [2, 25]) for the guiding-center model without gyroaverage operator (zero
Larmor radius case). The PSM method enables to solve 1D conservative transport prob-
lems, which provides a useful tool for multi-dimensional problems when we deal with
splitting procedure. As an example of the precision of this approach, we can notice the
good agreement concerning the growth rate instability between the a priori computed
ones (see Appendix B) and the growth rate given by the code. Good conservation prop-
erties are also observed for non linear long time simulations (see [2]). Then, in the sequel,
we compare and analyse the guiding-center model with gyroaverage operator (4.1)-(4.2).
On Fig. 13, we plot the first and second Fourier modes of the electric potential |Φ̂1,k(t)|
and |Φ̂2,k(t)| as a function of time. We observe the influence of the operator I on the
modes of the electric potential. Indeed, the growth rate is clearly lower than in the zero
Larmor radius case. We also observe the very good agreement between the EXACT curve
and the results given by the IMµ method, even after the linear phase (which occurs up
to t≈25 ω−1

p . These observations are summarized on Fig. 14, in which we plot the insta-
bility growth rate normalized to the wavenumber as a function to (1−k) (like in [2, 21]).
Different simulations have been performed by making k varying from 0.1 to 0.7; we then
compute the linear growth rate and compare to the zero Larmor radius case. We can



504 N. Crouseilles, M. Mehrenberger and H. Sellama / Commun. Comput. Phys., 8 (2010), pp. 484-510

Table 1: Comparison of the CPU time of the different method for the coupling with the guiding-center model.
500 iterations.

CG EXACT IMµ

64×64 2min. 10s. 2min. 40s. 2min. 40s.
128×128 10min.30s. 13min. 13min.

observe the influence of the operator I on the instability growth rate. As expected, the
growth rates are lower when finite Larmor radius effects are considered. We can also
remark the good behavior of the IMµ method since the results of the analytical computa-
tion of the gyroaverage operator are very well recovered. We are also interested on Fig. 15
in the time evolution of the L2 norm (4.3). We remark that this quantity is very well con-
served, in a best way as when gyroradius effects are neglected. This can be explained by
the regularization effect of the gyroaverage operator. Hence, fine structures which de-
velop are removed by the gyroaverage operator before becoming lower to the mesh size.
However, for large time, the asymptotic behaviour seems very similar. Finally, we men-
tion on Table 1 a small comparison of the computational cost of the different approaches.
When the matrix involved in the IMµ approach is stored once for all, the computational
cost is very similar to that of the analytical method; indeed, the additional cost compared
to the zero Larmor radius case is essentially due to the use of FFT in both cases.

5 Conclusion

In this work we developed different methods for the approximation of gyroaverage op-
erators arising in gyrokinetic models. We compare the methods existing in the literature
and observe that a fixed number of quadrature points cannot be accurate for large Lar-
mor radius. Moreover, the developed method IM is shown to be very accurate, can be run
using fast algorithms and is low storage. The extended IMµ approach has been proven
to be very accurate when the integration with respect to the adiabatic invariant is consid-
ered, assuming an exponential profile of the distribution function in the µ direction. The
coupling with the guiding-center model confirms these observations.

We are currently thinking about several extensions applied to the quasi-neutrality
equation. The present approach enables a matrix formulation of the quasi-neutrality
equation in the spirit of [17]. Indeed, the quasi-neutrality equation involves the gyroav-
erage operator Jµ which is applied twice to the electric potential (see [16, 17]) and once
to the distribution function. This will make the object of a future work.

Appendix A

We consider the drift-diffusion model in slab for the ions satisfied by the distribution
function f (t,x1,x2,z,vz,µ)
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∂t f +vD ·∇x f +vz∂z f−J (Ez)∂vz f =0, (A.1)

where vD =J (E)×ez and with the Poisson equation

∇·E=
∫
J ( f )dvzdµ−ne.

If we assume f is periodic in the z direction, the integration of (A.1) with respect to z and
v‖ leads to

∂tg+vD ·∇xg=0, with g= g(t,x,µ). (A.2)

If we now assume that the µ profile of g is Maxwellian so that

g(t,x,µ)=n(t,x)exp(−µ),

we obtain, after integration of (A.2) with respect of µ

∂tn+ ṽD ·∇xn=0, with ṽD =
∫ +∞

0
J (E)exp(−µ)dµ×ez. (A.3)

The Poisson equation then writes

∇·E=
∫ +∞

0
J (n)exp(−µ)dµ−ne.

The electron can be modelized through the equation as (A.3) since the E×ez drift is in-
dependent of the mass of the particles. Considering the total charge as unknown leads
to

∂tn+(I(E)×ez)·∇xn=0, with ∇·E=I(n).

Appendix B

In this subsection, we detail the computations to derive a dispersion relation. The first
part try to re-write the computations of [22] whereas in a second time a discrete disper-
sion relation is derived.

B.1 Analytical computation

Following [22], we linearize the guiding-center model (without gyroaverage operator)
around an equilibrium state (n0(x),Φ0(x)) to obtain

∂tn1−∂yΦ1∂xn0+∂xΦ0∂yn1 =0, −∆Φ1 =n1.

where n0(x) and Φ0(x) are coupled by

∂2
xΦ0(x)=−n0(x).
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Considering Laplace transform in t and Fourier transform in the y variable leads to

−iωn1−ikyΦ1∂xn0+ikyn1∂xΦ0 =0, (B.1)

where n1 and Φ1 denote now the Laplace and Fourier transforms of respectively n1 and
Φ1. The same operations applied to the Poisson equation give

(−∂2
x +k2

y)Φ1 =n1. (B.2)

Hence, by replacing n1 in (B.1) by its expression given by (B.2), we can derive after few
algebra an differential equation satisfied by Φ1 (the Rayleigh equation):

(v0−c)(∂2
xΦ1−k2

yΦ1)−Φ1∂2
xv0 =0, (B.3)

or

∂2
xΦ1−

∂2
xv0

(v0−c)
Φ1−k2

yΦ1 =0, (B.4)

with c = ω/ky and v0 = ∂xΦ0 is the drift vorticity. Following the computations of [21],
we assume inflexion points at x = xs. To find unstable solution for (B.4), we first have
to find stable neutral solution from which unstable solution can then be constructed as
c→ vs = v0(xs) or (Im(c)→ 0). Now, the neutral stable solution Φs can be obtained by
replacing in (B.3) c=v0(xs)=vs and ky = kys to obtain

(v0−vs)(∂2
xψs−k2

y,sψs)−∂2
xv0ψs =0, (B.5)

or, in the form of (B.4)

∂2
xψs−

∂2
xv0

(v0−vs)
ψs−k2

ysψs =0. (B.6)

We know consider the difference between (B.4) multiplied by ψs and (B.6) multiplied by
ψ to obtain

∂x

(
ψs∂xΦ1−Φ1∂xψs

)
−(k2

y−k2
ys)Φ1ψs−∂2

xv0

(
1

v0−c
− 1

v0−vs

)
Φ1ψs =0.

Integrating between x1 and x2 we get (with periodic boundary conditions)

∫ x2

x1

Φ1ψsdx=
c−vs

k2
y−k2

ys

∫ x2

x1

∂2
xv0 Φ1ψs

(v0−c)(v0−vs)
dx. (B.7)
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In order to find unstable solutions (such that Im(c)>0) close to the neutral solution, we
study the limit in (B.7) as c→vs (ci→0, ky→ kys, Φ1→ψs), to get

∫ x2

x1

ψ2
s dx=

( dc

dk2
y

)

k2
y=k2

ys

lim
c→vs

∫ x2

x1

∂2
xv0 Φ1ψs

(v0−c)(v0−vs)
dx

=
( dc

dk2
y

)

k2
y=k2

ys

[
lim
c→vs

∫ x2

x1

(v0−Re(c))

(v0−Re(c))2+ Im(c)2

∂2
xv0 Φ1ψs

(v0−vs)
dx

+i lim
c→vs

∫ x2

x1

Im(c)

(v0−Re(c))2+ Im(c)2
· ∂

2
xv0 ·ψψs

(v0−vs)
dx

]

.

We then recover the formula of [21]

∫ x2

x1

ψ2
s dx=

( dc

dk2
y

)

k2
y=k2

ys

[

P
∫ x2

x1

∂2
xv0 ψ2

s

(v0−vs)2
dx

+i lim
c→vs

∫ x2

x1

Im(c)

(v0−Re(c))2+ Im(c)2

∂2
xv0 Φ1ψs

(v0−vs)
dx

]

, (B.8)

where

P
∫ x2

x1

∂2
xv0 ψ2

s

(v0−vs)2
dx= lim

δ→0

[∫ xs−δ

x1

∂2
xv0 ψ2

s

(v0−vs)2
dx+

∫ x2

xs+δ

∂2
xv0 ψ2

s

(v0−vs)2
dx

]

denotes the principal part of Cauchy. We are interested in the last integral in (B.8) which
we denote by I

I = lim
c→vs

∫ x2

x1

ci

(v0−cr)2+c2
i

∂2
xv0 Φ1ψs

(v0−vs)
dx.

We have for δ>0 small enough

I∼ lim
c→vs

∫ xs+δ

xs−δ

Im(c)

(v0−Re(c))2+ Im(c)2

∂2
xv0 Φ1ψs

(v0−vs)
dx

∼ lim
c→vs

∫ xs+δ

xs−δ

Im(c)

(v0−Re(c))2+ Im(c)2

∂2
xv0−0

x−xs
Φ1ψs

v0−vs

x−xs

dx

∼ M

L
lim
c→vs

∫ xs+δ

xs−δ

Im(c)

(v0−Re(c))2+ Im(c)2
dx (B.9)

with L=∂xv0

∣∣
x=xs

and M=∂3
xv0ψ2

s

∣∣
x=xs

. Expanding v0(x) around x= xs, leads to

v0 =vs +L(x−xs)+O(x−xs)
4
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and I becomes

I∼sign(L)
M

L
lim
c→vs

[
arctan

(
Lδ−Re(c)+vs

Im(c)

)

+
1

L
arctan

(
Lδ+Re(c)−vs

Im(c)

)]
.

Since L 6=0 and δ>0, it comes I∼πsign(L)M/L2 and (B.8) becomes

dc

dk2
y

∣∣∣
ky=kys

=−
∫ x2

x1

ψ2
s dx

/[

P
∫ x2

x1

∂2
xv0 ·ψ2

s

(v0−vs)2
dx+πsign(L)

M

L2

]
. (B.10)

It is now possible to compute Im(c) near the neutral stable solution using the following
Taylor expansion

c≡ ω

ky
= c|ky=kys

+(ky−kys)
( dc

dky

)

ky=kys

+O(ky−kys)
2. (B.11)

As an example, we consider the following conditions

ρ0(x)=sinx,v0(x)=cos(k0x), x1 =0, x2 =2π, k0 =1,

so that (B.3) becomes

(cosx−c)(∂2
x−k2

y)Φ1+Φ1cosx=0, 0≤ x≤2π. (B.12)

The inflexion points for v0 are xs =π/2 and xs =3π/2. To find the neutral stable solution,
we consider (B.5) with vs =v0(xs)=cosxs =0 to get

cosx(∂2
xΦs+(1−k2

ys)Φs)=0, 0≤ x≤2π,

or

∂2
xΦs +(1−k2

ys)ψs =0, 0≤ x≤2π, (B.13)

with periodic boundary conditions. In this case, there exists an antisymmetric solution
ψs=sinnx and a symmetric solution ψs=cosnx whereas kys=

√
1−n2 for n<(x2−x1)/2π.

In the present case, since x2−x1 = 2π, the neutral stable solution exists only for n = 0.
Hence,

ψs =1, kys =1. (B.14)

It can be proven that the instability (Im(c) > 0) exists (see [3]) for ky < kys = 1 and the
stability (Im(c)=0) exists for ky≥0. We can now compute the real and imaginary part of
ω = kyc using (B.10), (B.11)

cr =ℜ(ω)/ky =0, ci =ℑ(ω)/ky =2(kys−ky). (B.15)

In [21], the initial condition for (4.1)-(4.2) is

n(x,y,t=0)=n0(x)+εn1(x)cos(kyy), (B.16)

where n1 satisfies the linearized Poisson equation: n1(x)=−∂2
yψs+k2

yψs = k2
y = cste.
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B.2 Discrete computation

Starting from Eq. (B.3) with v0(x)=cosx, it is possible to apply finite difference operators
for the approximation of the x-derivatives of Φ1. This leads to a matricial system of the
form

AΦ1 = cBΦ1,

where A and B are two matrices of size Nx. Then, eigenvalues of B−1A can be found.
Looking for the eigenvalue which has the larger imaginary part gives the instability
growth rate. One of the advantage of this approach compared to the previous one is
it can be used for arbitrarily value of k whereas the analytical computations are based on
Taylor expansions which are valid locally.
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