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CONVERGENCE OF CLASSES
OF HIGH-ORDER SEMI-LAGRANGIAN SCHEMES

FOR THE VLASOV–POISSON SYSTEM

NICOLAS BESSE AND MICHEL MEHRENBERGER

Abstract. In this paper we present some classes of high-order semi-Lagran-
gian schemes for solving the periodic one-dimensional Vlasov-Poisson system
in phase-space on uniform grids. We prove that the distribution function
f(t, x, v) and the electric field E(t, x) converge in the L2 norm with a rate of

O
(

∆t2 + hm+1 +
hm+1

∆t

)
,

where m is the degree of the polynomial reconstruction, and ∆t and h are
respectively the time and the phase-space discretization parameters.

1. Introduction

While satisfactory numerical results have been presented in many papers on fluid
mechanics and plasma physics (cf. [2, 8, 13, 25]) using semi-Lagrangian methods,
only a few rigorous convergence analyses of these methods can be found. In spite
of interesting a priori estimates pointed out in [3, 4, 14] for some particular cases,
more general situations still remain to be rigorously worked out for convergence.
The most difficult step in this convergence analysis is the determination of a sta-
bility result for the interpolation operators. While the stability results in L∞ norm
seems inaccessible for high-order interpolation operators because of the Runge phe-
nomenon (the artificial oscillations, whose amplitudes increase with the degree of
the polynomials in the case of Lagrange interpolation, appear at the edges of the
finite elements), a more appropriate mathematical framework is the L2 stability. In
this paper we continue the numerical analysis of semi-Lagrangian methods started
in [6, 7]. The high-order error estimates announced in the paper [6] are rigorously
proved in the present one. In the reference [8] we introduced new semi-Lagrangian
schemes for unstructured meshes of phase space in order to deal with complex ge-
ometry and to use the local mesh refinement. These schemes use finite elements
type reconstructions such as the Lagrange and the Hermite type interpolations,
for which the gradients should be also transported (see [8]). The Hermite type
interpolation leads to high-order, stable and slightly diffusive schemes, whereas the
Lagrange interpolation leads to convergent but too diffusive schemes for orders
smaller than two and unstable schemes in any Lp norm for orders greater than
two. Nevertheless, on uniform grids, if we use symmetric Lagrange interpolation
we can then recover the stability in the L2 discrete norm and keep the high-order
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and weak diffusion features of our approximation. In the present paper we give
the convergence proof of such schemes. The case of uniform grids is interesting
not only because the analysis is more simple but also because it gives satisfactory
results in many physical applications [2, 24]. In the paper [6] a convergence proof
of a scheme defined on a triangulation using first-order Lagrange interpolation was
given in the L∞ framework. The convergence proof and the error estimates for
a semi-Lagrangian scheme with propagation of gradients on uniform grids (which
use Hermite type interpolation) were given in [7]. If the main ideas of the present
proof are contained in [6], the L2 discrete framework implies different estimates and
obliges us to manipulate carefully the interpolation operators in a tricky way which
is very different from the one that has been carried out in [6]. Moreover the key of
the proof also resides in the precise and fine study of the stability of the interpola-
tion operator. This study is generally obvious for lower-order interpolation, but it
becomes evidently difficult for high-order interpolation. In [12] the convergence for
an adaptive semi-Lagrangian scheme using first-order Lagrange interpolation has
been proved. But we cannot expect to obtain high-order estimates with this latter
algorithm because we are restricted by the stability region phenomenon. Never-
theless, using the interpolatory wavelets of Deslaurier and Dubuc (wavelet built on
Lagrange interpolation of any order) we could succeed in showing the convergence
of the high-order adaptive schemes (see [9]).

This paper is organized as follows. In the first part we present the continuous
problem. Then the second part deals with the discrete problem and the numerical
scheme to solve it. We study the convergence of our numerical scheme in a third
part. In the Appendix, we give new proofs of some interpolation properties and
recall some other proofs which are crucial for the L2 stability.

2. The continuous problem

2.1. The Vlasov–Poisson model. Denoting by f(t, x, v) ≥ 0 the distribution
function of electrons in phase-space (with the mass and the charge normalized
to one), and by E(t, x) the self-consistent electric field, the adimensional Vlasov–
Poisson system reads

∂f

∂t
+ v

∂f

∂x
+ E(t, x)

∂f

∂v
= 0,(1)

dE

dx
(t, x) = ρ(t, x) =

∫ +∞

−∞
f(t, x, v)dv − 1,(2)

where x and v are independent variables. We consider a plasma of period L. Hence,
in (1) and (2) we have x ∈ [0, L], v ∈ R, t ≥ 0, and the functions f and E satisfy
the periodic boundary conditions

(3) f(t, 0, v) = f(t, L, v), v ∈ R, t ≥ 0,

and

(4) E(t, 0) = E(t, L) ⇐⇒ 1
L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx = 1, t ≥ 0,

which means that the plasma is globally neutral. In order to have a well-posed
problem, we add to equations (1)–(4) a zero-mean electrostatic condition:

(5)
∫ L

0

E(t, x)dx = 0, t ≥ 0,
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and a initial condition

(6) f(0, x, v) = f0(x, v), x ∈ [0, L], v ∈ R.

Assuming a smooth-enough electric field E we can solve the equations (1), (3) and
(6) in the classical sense as follows. We refer the reader to [10] for the existence, the
uniqueness, and the regularity of the solutions of the following differential system.

We now consider the first-order differential system

dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = E(t, X(t; s, x, v)).

(7)

We denote it by the characteristic curves t → (X(t; s, x, v), V (t; s, x, v)) which are
the solutions of (7) subjected to the initial condition

(8) X(s; s, x, v) = x, V (s; s, x, v) = v.

The solution of problems (1) and (6) is then given by

(9) f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)), x, v ∈ R, t ≥ 0.

We note that the periodicity in x of f0(x, v) and E(t, x) implies the periodicity in
x of f(t, x, v). Moreover, as ∣∣∣∣∂(X, V )

∂(x, v)

∣∣∣∣ = 1,

we get
1
L

∫ L

0

∫ +∞

−∞
f(t, x, v)dvdx =

1
L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1.

Therefore, according to the previous considerations, the Vlasov–Poisson periodic
problem consists in finding a couple (f, E), smooth enough, periodic with respect
to x, with period L, which solves the equations (2), (7), (8), and (9). Introducing
the electrostatic potential φ = φ(t, x) such that E(t, x) = −∂xφ(t, x), and denoting
by G = G(x, y) the fundamental solution of the Laplacian operator in one dimension
(i.e. −∂2

xG(x, y) = δ(x − y)) with periodic boundary condition, we obtain

E(t, x) =
∫ L

0

K(x, y)
(∫ +∞

−∞
f(t, y, v)dv − 1

)
dy,

where

K(x, y) = −∂xG(x, y) =

{
( y

L − 1) 0 ≤ x < y,
y
L y < x ≤ L.

2.2. Existence, uniqueness, and regularity of the solution of the contin-
uous problem. In this section we recall the theorem of the existence of classical
solutions for the Vlasov–Poisson system. The following theorem gives the exis-
tence, the uniqueness, and the regularity of the time-global classical solution of the
Vlasov–Poisson periodic system in one dimension. Let W 1,∞ be the Sobolev space
consisting of all functions φ which, together with all partial derivatives Dαφ taken
in the sense of distributions of order |α| ≤ 1, belong to L∞ space. We then define
W 1,∞

c,perx
(Rx × Rv) as the subspace of W 1,∞(Rx × Rv) consisting of those functions

φ for which 0 ≤ |α| ≤ 1 and Dαφ is periodic in x and has compact support in v.
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Theorem 1. Assume that f0 ∈ W 1,∞
c,perx

(Rx × Rv) is positive, periodic in x with
period L, and Q(0) ≤ R with R > 0, and that Q(t) is defined as follows:

Q(t) = 1 + sup {|v| : ∃x ∈ [0, L], τ ∈ [0, t] | f(τ, x, v) �= 0} ,

and
1
L

∫ L

0

∫ +∞

−∞
f0(x, v)dvdx = 1.

Then the periodic Vlasov–Poisson system has a unique classical solution (f, E) that
is periodic in x, with period L, for all time t in [0, T ], such that

f ∈ W 1,∞ (
0, T ; W 1,∞

c,perx
(Rx × Rv)

)
,

E ∈ W 1,∞ (
0, T ; W 1,∞

perx
(R)

)
,

and there exists a constant C = C (R, f0) dependent of R and f0 such that

Q(T ) ≤ CT.

Moreover, if we assume that f0 ∈ Wm,∞
c,perx

(Rx × Rv), then

(f, E) ∈ Wm,∞ (
0, T ; Wm,∞

c,perx
(Rx × Rv)

)
× Wm,∞ (

0, T ; Wm,∞
perx

(R)
)
,

for all finite time T.

Proof. We refer the reader to the review papers [18] or [10] for the proof. �

3. The discrete problem

3.1. Definitions and notation. Let Ω = [0, L] × [−R, R], with R > Q(T ), and
let Mh be a cartesian mesh of the phase-space Ω. The mesh Mh is then given
by two increasing sequences (xi)i∈{0,...,Nx} and (vi)i∈{0,...,Nv}, respectively, of the
intervals [0, L] and [−R, R]. Let ∆xi = xi+1 − xi be the physical space set and
∆vi = vi+1−vi the velocity space set. In order to simplify the convergence analysis
we suppose that ∆xi = ∆x = L/(Nx + 1) and ∆vi = ∆v = 2R/(Nv + 1), where
Nx, Nv ∈ N. We can then define h = max {∆x, ∆v}.

For each function g defined on all the points (xi, vj) ∈ Mh, we shall write
gi,j := g(xi, vj) and complete the sequence on Z × Z by periodicity, by setting
gi,j := gi mod Nx+1,j mod Nv+1. The sequence (xi, vj) will also be defined on the
whole set Z × Z by xi := i∆x and vj := −R + j∆v. We denote by P(Ω) the
set of all Ω-periodic functions (L–periodic in x and 2R–periodic in v). We have
gi,j = g(xi, vj) for g ∈ P(Ω) and for all indices (i, j) ∈ Z × Z. In fact, we will
see that all functions which we consider on Rx × Rv belong to P(Ω). Now let
f = {fi,j}(i,j)∈Z×Z be a periodic grid-function with, respectively, the period Nx +1
and Nv + 1. If f is a function defined on the points of Mh, we can associate to
it a grid-function f̃ defined by f̃i,j := f(xi, vj) for all (i, j) = 0, . . . ,N setting
N = (Nx, Nv) and 0 = (0, 0). We will replace f̃ by f in order to simplify the
notation. Let L2

h(Ω) be the set of grid-functions whose norm ‖.‖L2
h(Ω) is bounded

with

‖f‖L2
h(Ω) =

⎛⎝∆x∆v
N∑

(i,j)=0

|fi,j |2
⎞⎠1/2

.
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As in the continuous case, we can define a discrete scalar product 〈., .〉L2
h(Ω) as

follows. Let f and g be two complex-valued grid-functions of L2
h(Ω). The scalar

product 〈f, g〉L2
h(Ω) is then defined as

〈f, g〉L2
h(Ω) = ∆x∆v

N∑
(i,j)=0

fi,jgi,j .

Let ω = (ωx, ωv) be a two-components vector of Z
2. Let z and k be abbreviations,

respectively, for (x, v) and (kx, kv). Therefore, kx (resp. kv) takes the values
2πωx/L (resp. 2πωv/(2R)), where ωx (resp. ωv) is an integer and the indices
(i, j) ∈ Z2 correspond to the point zi,j := (xi, vj) in the phase space. If we now
define

φω(x, v) = φω(z) =
ei〈k(ω),z〉

|Ω|1/2

with 〈k(ω), z〉 = 2πωx

L x+ 2πωv

2R v, the functions {φω}Nω=0 therefore form an orthonor-
mal system on the grid Mh for the scalar product 〈., .〉L2

h(Ω). We then have

〈φω, φν〉L2
h(Ω) = δω,ν .

If the function φ =
∑N

ω=0 f̂(ω)φω interpolates f at the Mh-grid points, then we
have f = φ on Mh and

〈φ, φω〉L2
h(Ω) = 〈f, φω〉L2

h(Ω) =
N∑

ν=0

f̂(ν)〈φν , φω〉L2
h(Ω) = f̂(ω),

where

(10) f̂(ω) =
1

|Ω|1/2

N∑
(i,j)=0

fi,je
−i〈k(ω),zi,j〉, ω = (0, 0), (1, 0), (0, 1), . . . ,N.

Obviously if φ =
∑N

ω=0 f̂(ω)φω interpolates f at the Mh-grid points, then

(11) fi,j =
1

|Ω|1/2

N∑
ω=0

f̂(ω)ei〈k(ω),zi,j〉, i = 0, . . . , Nx, j = 0, . . . , Nv.

Moreover, we also have a discrete version of the Parseval equality

‖f‖2
L2

h(Ω) = ∆x∆v

N∑
(i,j)=0

|fi,j |2 =
N∑

ω=0

∣∣∣f̂(ω)
∣∣∣2 .

The formulaes (10) and (11) are the direct and inverse discrete Fourier transforms.
We set ηx = Nx/2 and θx = 0 if Nx is even, and ηx = (Nx − 1)/2 and θx = 1 if Nx

is odd. Similarly, we set ηv = Nv/2 and θv = 0 if Nv is even, and ηv = (Nv − 1)/2
and θv = 1 if Nv is odd. Instead of varying ωx (resp. ωv) from 0 to Nx (resp. Nv),
ωx (resp. ωv) is varied from −ηx (resp. −ηv) to ηx +θx (resp. ηv +θv). To simplify
the notation, without loss of generality, Nx and Nv are taken even. We use the
notation ∑

|ω|≤N/2

=
∑

|ωx|≤Nx/2

∑
|ωv|≤Nv/2

=
Nx/2∑

ωx=−Nx/2

Nv/2∑
ωv=−Nv/2

.
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Let α and β be, respectively, the real vectors (α0, . . . , αj , . . . , αNv
) and (β0, . . . , βi,

. . . , βNx
) with 0 ≤ αj , βi ≤ 1, ∀(i, j) ∈ [0, Nx] × [0, Nv]. We can therefore define

the norm ‖ · ‖L2
h,∆α,β

h
by

‖f‖L2
h,∆α,β

h
=

⎛⎝∆x∆v
∑

(i,j)∈Mh

|fi+αj ,j+βi
|2
⎞⎠1/2

,

where

fi+αj ,j+βi
:= f(xi + αj∆x, vj + βi∆v), (i, j) ∈ [0, Nx] × [0, Nv].

In the sequel, we fix an ending time T and consider a uniform time discretization
{tn}n≤NT

of the interval [0, T ] with a time step ∆t = tn+1 − tn. We shall find an
approximation fh(tn, xi, vj) for the exact distribution function f(tn, xi, vj) at each
point (xi, vj) ∈ Mh and at time tn = n∆t. The approximation function fh(tn) is
then evaluated at each point of Rx×Rv using the interpolation operator Rh defined
on a uniform grid:

Rh : L2(Ω) ∩ P(Ω) −→ L2(Ω) ∩ P(Ω),
f −→ Rhf =

∑
(i,j)∈Z×Z

fi,jψi,j ,

where {ψi,j}(i,j)∈Z×Z are some basis functions. In order to deduce a convergent
scheme, the interpolation operator Rh must satisfy some stability and high-order
approximation properties which are detailed afterwards. We give some examples
for Rh in section 5.

3.2. The numerical scheme. Here we define the electric field operator for the
real-valued function g ∈ L1([0, L] × R), such that

E(g, x) =
∫ L

0

K(x, y)
(∫

R

g(y, v)dv − 1
)

,

and the transport operators in the x-direction T1 and T̃1 by

T1f(t, x, v) = f(t, x − v∆t/2, v), f ∈ Cb (0, T ; Cc,perx
(Rx × Rv))

and
T̃1f(t, x, v) = Rh ◦ T1f(t, x, v) = Rhf(t, x − v∆t/2, v).

Let g̃ be a given function in L1([0, L] × R), allowing us to define the transport
operator in the v-direction T2(·, ·) that acts upon a function g through

T2(g, g̃) = g (x, v − E(g̃, x)∆t) .

For the convergence analysis we introduce three more operators T2, T̃2, and T̃ �
2 :

T2g = T2(g, g), T̃2g = Rh ◦ T2 (g, T1f) , T̃ �
2 g = Rh ◦ T2

(
g, T̃1fh

)
.

The time discretization is based on a Strang splitting of the global transport op-
erator into two transport operators in the configuration space and in the velocity
space. These spaces have the associated ODEs which can be integrated analytically.
Supposing that we know fh(tn) at time tn, the numerical scheme is decomposed
into the following steps:
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S1: We compute a first half-backward advection in the x-direction of an incre-
ment (v∆t/2): at each coordinate point (x, v) ∈ Mh, fh(tn, x − v∆t/2, v)
is evaluated. The new approximation after this first fractional time step is
then given by

f†
h(tn) = T̃1fh(tn).

S2: The new approximation for the electric field from the previous solution at
each coordinate point (x, v) ∈ Mh is

Eh(tn+1/2, x) = E
(
f†

h(tn), x
)

.

S3: We compute a backward advection in the v-direction of an increment
(∆tE(f†

h(tn), x): at each point (x, v) ∈ Mh f†
h

(
tn, x, v − E

(
f†

h(tn), x
)

∆t
)

is evaluated. The new approximation after this second fractional step is
then given by

f‡
h(tn) = T̃ �

2 f†
h(tn).

S4: We repeat step (S1), and the new approximation at time tn+1 is given by

fh(tn+1) = T̃1f
‡
h(tn).

The numerical schemes can be summarized as

fh(tn+1, x, v) = T̃1 ◦ T̃ �
2 ◦ T̃1fh(tn, x, v),

with f0
h = Rhf0 the discretization of the initial data f0. The boundary conditions

are fn
h (x+L, v) = fn

h (x, v), ∀|v| ≤ R, ∀x ∈ [0, L] in the x-direction and fn
h (x, v) = 0,

∀|v| > R, ∀x ∈ [0, L] in the v-direction.

4. Convergence analysis

Here we state the main theorem which yields convergence and error estimates
for our scheme.

Theorem 2. Assume that f0 ∈ Wm+1,∞
c,perx

(Rx × Rv) is positive, periodic in x with
period L, and is compactly supported in velocity. In addition, we assume that the
interpolation operator Rh satisfies the following properties:

i) Consistency and high-order accuracy: Let m, p, and k be some integers
such that m ≥ 0, 1 ≤ p ≤ ∞, and 0 ≤ k ≤ 1. The following interpolation
error estimate then holds:

(12) ||f − Rhf ||W k,p(Ω) ≤ Chm+1−k|f |W m+1,p(Ω), ∀f ∈ Wm+1,p(Ω) ∩ P(Ω).

ii) Stability: Let f belong to C (Ω) ∩ P(Ω). We then have
(13)

c‖f‖L2
h(Ω) ≤ ‖Rhf‖L2(Ω) ≤ C‖f‖L2

h(Ω), where c and C are independent of h,

and

(14) ‖Rhf‖L2
h,∆0,β

h
≤ ‖f‖L2

h(Ω), ‖Rhf‖L2
h,∆α,0

h
≤ ‖f‖L2

h(Ω).

Therefore the numerical solution of the Vlasov–Poisson system (fh, Eh) computed
by the numerical scheme presented in section 3.2 converges towards the solution
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(f, E) of the periodic Vlasov–Poisson system, and there exists a constant C =
C

(
||f ||W 2,∞(0,T ;W m+1,∞(Ω))

)
independent of ∆t and h such that

||f − fh||l∞(0,T ;L2(Ω)) + ||E − Eh||l∞(0,T ;L∞([0,L])) ≤ C

(
∆t2 + hm+1 +

hm+1

∆t

)
.

Remark 1. As we have obtained error estimates in the L2 norm, we would have
preferred that the constant in the error estimates depend on the data, solely in
the Hm norm. Unfortunately, it seems that it is not possible to get rid of the
Wm,∞ norm because we have to estimate the product of the kind of electric field
time distribution function when we estimate the coupling error (cf. Lemma 3).
Nevertheless, in the adaptive case we expect that the dependence on the data is
only in the Hm norm because the threshold which determines the adaptive mesh
could be estimated according to this latter norm. Therefore a weaker smoothness
in Hm could lead to a lower complexity in the case of an adaptive algorithm than
in the uniform one (with Wm,∞-norm data dependence).

4.1. Idea of the proof. In order to apply a discrete Grönwall inequality we express
the global error at time tn+1 by

en+1 = ||f(tn+1, x, v) − fh(tn+1, x, v)||L2
h(Ω),

according to en. We therefore decompose f(tn+1, x, v) − fh(tn+1, x, v) into

f(tn+1, x, v) − fh(tn+1, x, v)

=
(
f(tn+1, x, v) − T1 ◦ T2 ◦ T1f(tn, x, v)

)
+

(
T1 ◦ T2 ◦ T1f(tn, x, v) − T̃1 ◦ T̃2 ◦ T̃1f(tn, x, v)

)
+

(
T̃1 ◦ T̃2 ◦ T̃1 − T̃1 ◦ T̃ �

2 ◦ T̃1

)
f(tn, x, v)

+
(
T̃1 ◦ T̃ �

2 ◦ T̃1(f(tn, x, v) − fh(tn, x, v))
)

.

In order to evaluate en+1, we will first estimate the four terms on the right-hand
side of this equation. These estimations are described in the following section.

4.2. A priori estimates. We begin with a lemma which states the error estimate
for time discretization.

Lemma 1. Assume that f ∈ W 2,∞ (
0, T ; W 2,∞

c,perx
(Rx × Rv)

)
; then there exists C

such that ∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)
∥∥

L2
h(Ω)

≤ C∆t3.

Proof. We have∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)
∥∥

L2
h(Ω)

≤ C
∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)

∥∥
L∞

h (Ω)

≤ C
∥∥f(tn+1) − T1 ◦ T2 ◦ T1f(tn)

∥∥
L∞(Ω)

≤ C∆t3.

This last inequality relies on the proof of the Lemma 5.3 in [6]. �

The next lemma gives estimates for the phase-space discretization error (15).
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Lemma 2. Assume that f ∈ L∞ (
0, T ; Wm+1,∞

c,perx
(Rx × Rv)

)
and let Rh be an in-

terpolation operator satisfying (12)–(14). Then there exists a constant C such that∥∥∥T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)
∥∥∥

L2
h(Ω)

≤ Chm+1.(15)

Proof. First we note the following decomposition

(16) T1 ◦ T2 ◦ T1f(tn) − T̃1 ◦ T̃2 ◦ T̃1f(tn)

= (T1 − T̃1) ◦ T2 ◦ T1f(tn) + T̃1 ◦ (T2 − T̃2) ◦ T1f(tn) + T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn).

Using the estimates (12)–(14), we obtain for the first term of the decomposition
(16)

||(T1 − T̃1) ◦ T2 ◦ T1f(tn)||L2
h(Ω) ≤ C||Rh ◦ (T1 − T̃1) ◦ T2 ◦ T1f(tn)||L2(Ω)

≤ C||(I − Rh) ◦ T1 ◦ T2 ◦ T1f(tn)||L2(Ω)

+ C||(Rh − I) ◦ T1 ◦ T2 ◦ T1f(tn)||L2(Ω)

≤ C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

)
hm+1,

and for the second term of (16)

||T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)||L2
h(Ω)

≤ ||T̃1 ◦ Rh ◦ (T2 − T̃2) ◦ T1f(tn)||L2
h(Ω) + ||T̃1 ◦ (I − Rh) ◦ T2 ◦ T1f(tn)||L2

h(Ω)

≤ ||(T2 − T̃2) ◦ T1f(tn)||L2
h(Ω) + C||Rh ◦ T1 ◦ (I − Rh) ◦ T2 ◦ T1f(tn)||L2(Ω).

The first term on the right-hand side of this inequality can be treated as earlier.
We therefore obtain

||T̃1 ◦ (T2 − T̃2) ◦ T1f(tn)||L2
h(Ω)

≤ Chm+1 + C||(Rh − I) ◦ T1 ◦ (I − Rh) ◦ T2 ◦ T1f(tn)||L2(Ω)

+ C||T1 ◦ (I − Rh) ◦ T2 ◦ T1f(tn)||L2(Ω)

≤ Chm+1 + Ch|(I − Rh) ◦ T2 ◦ T1f(tn)|W 1,2(Ω)

+ C||(I − Rh)T2 ◦ T1f(tn)||L2(Ω)

≤ C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

)
hm+1.

Similarly, we get for the third term of (16) the following estimate:

||T̃1 ◦ T̃2 ◦ (T1 − T̃1)f(tn)||L2
h(Ω) ≤ ||T̃2 ◦ (T1 − T̃1)f(tn)||L2

h(Ω)

≤ C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

)
hm+1,

which completes the proof. �

The next lemma gives estimates for the coupling error (17) between the Vlasov
and Poisson equations.

Lemma 3. Assume that f ∈ L∞ (
0, T ; Wm+1,∞

c,perx
(Rx × Rv)

)
and let Rh be an in-

terpolation operator satisfying (12)-(14). Then there exists a constant C such that

(17)
∥∥∥T̃1 ◦ T̃2 ◦ T̃1f(tn) − T̃1 ◦ T̃ �

2 ◦ T̃1f(tn)
∥∥∥

L2
h(Ω)

≤ C∆t
(
en + hm+1

)
+ Chm+1
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and

(18)
∥∥∥E

n+1/2
h − Ẽn+1/2

∥∥∥
L∞([0,L])

≤ C
(
en + hm+1

)
,

where

Ẽn+1/2(x) =
∫ L

0

K(x, y)
(∫

R

T1f(t, y, v)dv − 1
)

dy

and

en = ||f(tn) − fh(tn)||L2
h(Ω).

Proof. We have

(T̃2 − T̃ �
2 )g(tn) = Rh

(
g(tn, x, v − ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE

n+1/2
h (x))

)
and ∣∣∣g(tn, x, v − ∆tẼn+1/2(x)) − g(tn, x, v − ∆tE

n+1/2
h (x))

∣∣∣(19)

≤ ∆t
∣∣∣Ẽn+1/2(x) − E

n+1/2
h (x)

∣∣∣ ‖∇g(tn)‖L∞(Q).

Using Cauchy–Schwarz inequality and the estimates (12)–(14), we get

∥∥∥E
n+1/2
h − Ẽn+1/2

∥∥∥
L2([0,L])

≤ L
√

Q(T )||K||L∞

∥∥∥T̃1fh(tn) − T1f(tn)
∥∥∥

L2(Ω)

≤ L
√

Q(T )||K||L∞

{∥∥∥T̃1 (fh(tn) − f(tn))
∥∥∥

L2(Ω)
+ ||T̃1f(tn) − T1f(tn)||L2(Ω)

}
≤ C||Rh ◦ T1 ◦ Rh (fh(tn) − f(tn)) ||L2(Ω) + C||Rh ◦ T1 ◦ (I − Rh)f(tn)||L2(Ω)

+ Chm+1||T1f ||L∞(0,T ;W m+1,2(Ω))

≤ Cen + C||T1 ◦ (I − Rh)f(tn)||L2(Ω)

+ C||(Rh − I) ◦ T1 ◦ (I − Rh)f(tn)||L2(Ω) + Chm+1

≤ C
(
en + hm+1

)
+ Chm+1||f(tn)||W m+1,2(Ω) + Ch|(I − Rh)f(tn)|W 1,2(Ω)

≤ C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

) (
en + hm+1

)
.

(20)

Using the Poisson equation, we also obtain∣∣∣En+1/2
h − Ẽn+1/2

∣∣∣
H1([0,L])

≤
√

Q(T )
∥∥∥T̃1fh(tn) − T1f(tn)

∥∥∥
L2(Ω)

≤ C
(
en + hm+1

)
.

(21)

As we have the continuous imbedding H1 ↪→ L∞, the estimates (20) and (21) lead
to (18). Hence, we have∥∥∥T̃1 ◦ (T̃2 − T̃ �

2 ) ◦ T̃1f(tn)
∥∥∥

L2
h(Ω)

≤
∥∥∥(T2 − T �

2 ) ◦ T̃1f(tn)
∥∥∥

L2
h(Ω)

≤ C
∥∥∥Rh ◦ (T2 − T �

2 ) ◦ T̃1f(tn)
∥∥∥

L2(Ω)
.
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We note that we have the following decomposition:∥∥∥Rh ◦ (T2 − T �
2 ) ◦ T̃1f(tn)

∥∥∥
L2(Ω)

≤
∥∥∥(T2 − T �

2 ) ◦ T̃1f(tn)
∥∥∥

L2(Ω)

+ ‖(Rh − I) ◦ (T2 − T �
2 ) ◦ (Rh − I) ◦ T1f(tn)‖L2(Ω)

+ ‖(Rh − I) ◦ (T2 − T �
2 ) ◦ T1f(tn)‖L2(Ω) .

(22)

Using (19) we get for the first term in (22)∥∥∥(T2 − T �
2 ) ◦ T̃1f(tn)

∥∥∥
L2(Ω)

≤ ∆t
∥∥∥E

n+1/2
h − Ẽn+1/2

∥∥∥
L2([0,L])

∥∥∥∇(T̃1f(tn))
∥∥∥

L∞(Ω)

≤ C∆t
(
en + hm+1

) ∥∥∥∇(T̃1f(tn))
∥∥∥

L∞(Ω)
.

Now we must show that the term
∥∥∥∇(T̃1f(tn))

∥∥∥
L∞(Ω)

is bounded.∥∥∥∇(T̃1f(tn))
∥∥∥

L∞(Ω)
≤ ‖∇(Rhf(tn, x − v∆t/2, v))‖L∞(Ω)

≤ ‖∇ [(Rhf − f)(tn, x − v∆t/2, v)]‖L∞(Ω)

+ ‖∇(f(tn, x − v∆t/2, v))‖L∞(Ω)

≤ hm||f ||L∞(0,T ;W m+1,∞(Ω)) + ||f ||L∞(0,T ;W m+1,∞(Ω))

≤ C||f ||L∞(0,T ;W m+1,∞(Ω)).

For the second term of (22), we have

‖(Rh − I) ◦ (T2 − T �
2 ) ◦ (Rh − I) ◦ T1f(tn)‖L2(Ω)

≤ Ch |(T2 − T �
2 ) ◦ (Rh − I) ◦ T1f(tn)|W 1,2(Ω)

≤ Ch∆t
(∣∣∣Ẽn+1/2

∣∣∣
H1

+
∣∣∣En+1/2

h

∣∣∣
H1

)
|(Rh − I) ◦ T1f(tn)|W 1,∞(Ω)

+ Ch |(Rh − I) ◦ T1f(tn)|W 1,2(Ω)

≤ C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

)
(1 + ∆t)hm+1.

In order to justify the last inequality we must show that
∣∣∣Ẽn+1/2

∣∣∣
H1

and
∣∣∣En+1/2

h

∣∣∣
H1

are bounded. Indeed, the Poisson equation and (13)–(14) lead to∣∣∣Ẽn+1/2
∣∣∣
H1

≤
√

Q(T ) ‖T1f(tn)‖L2(Ω)

≤
√

Q(T ) ‖f(tn)‖L2(Ω) ≤ C||f ||L∞(0,T ;L∞(Ω))

and ∣∣∣En+1/2
h

∣∣∣
H1

≤
√

Q(T ) ‖Rh ◦ T1fh(tn)‖L2(Ω)

≤ C
√

Q(T ) ‖T1fh(tn)‖L2
h(Ω) ≤ C ‖fh(tn)‖L2

h(Ω) ≤ C.

This last estimate comes from the L2
h-stability property of the scheme. Indeed,

from (14) we have∥∥fh(tn+1)
∥∥

L2
h(Ω)

≤ ‖Rh ◦ T1 ◦ Rh ◦ T �
2 ◦ Rh ◦ T1fh(tn)‖L2

h(Ω)

≤ ‖fh(tn)‖L2
h(Ω) ≤

∥∥fh(t0)
∥∥

L2
h(Ω)

≤ C.
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Now it remains to estimate the third term of (22). First, let us compute
|(T2 − T �

2 )g|W 1,2(Ω). We have

(23) ∂x [(T2 − T �
2 ) g(x, v)] = E1 − ∆t(E2 + E3)

and

(24) ∂v [(T2 − T �
2 ) g(x, v)] = E4,

with

E1 = ∂xg
(
x, v − ∆tẼn+1/2(x)

)
− ∂xg

(
x, v − ∆tE

n+1/2
h (x)

)
,

E2 =
(
∂xẼn+1/2(x) − ∂xE

n+1/2
h (x)

)
∂vg

(
x, v − ∆tE

n+1/2
h (x)

)
,

E3 = ∂xẼn+1/2(x)
(
∂vg

(
x, v − ∆tẼn+1/2(x)

)
− ∂vg

(
x, v − ∆tE

n+1/2
h (x)

))
,

E4 = ∂vg
(
x, v − ∆tẼn+1/2(x)

)
− ∂vg

(
x, v − ∆tE

n+1/2
h (x)

)
.

(25)

Now, let j ∈ {∂xg, ∂vg}. We then have(∫
Ω

∣∣∣j (x, v − ∆tẼn+1/2(x)
)
− j

(
x, v − ∆tE

n+1/2
h (x)

)∣∣∣2 dxdv

)1/2

= ∆t

⎛⎝∫
Ω

∣∣∣∣∣
∫ E

n+1/2
h (x)

Ẽn+1/2(x)

∂vj(x, v − ∆ts)ds

∣∣∣∣∣
2

dxdv

⎞⎠1/2

≤ C
√

Q(T )∆t|∂vj|L∞(Ω)

(∫ L

0

∣∣∣Ẽn+1/2(x) − E
n+1/2
h (x)

∣∣∣2 dx

)1/2

≤ C∆t(en + hm+1)|∂vj|L∞(Ω).

(26)

Finally, using (21) and (23)–(26) we get

(27) |(T2 − T �
2 )g|W 1,2(Ω) ≤ C∆t(en + hm+1)

(
|g|W 1,∞(Ω) + |g|W 2,∞(Ω)

)
.

Consequently, from (27) we get the estimate for the third term of (22):

‖(Rh − I) ◦ (T2 − T �
2 ) ◦ T1f(tn)‖L2(Ω)

≤ Ch |(T2 − T �
2 ) ◦ T1f(tn)|W 1,2(Ω)

≤ Ch∆t(en + hm+1)
(
|T1f(tn)|W 1,∞(Ω) + |T1f(tn)|W 2,∞(Ω)

)
≤ C

(
‖f‖L∞(0,T ;W 2,∞(Ω))

)
h∆t(en + hm+1),

which completes the proof of the lemma. �

Now, we state the lemma which gives the crucial estimate of the L2-stability.

Lemma 4. Let Rh be an interpolation operator satisfying (12)–(14). We then get

(28)
∥∥∥T̃1 ◦ T̃ �

2 ◦ T̃1(f(tn) − fh(tn))
∥∥∥

L2
h(Ω)

≤ en + Chm+1.
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Proof. The estimates (12)–(14) obviously leads to∥∥∥T̃1 ◦ T̃ �
2 ◦ T̃1(f(tn) − fh(tn))

∥∥∥
L2

h(Ω)

≤ ‖Rh ◦ T1 ◦ Rh ◦ T �
2 ◦ Rh ◦ T1(f(tn) − fh(tn))‖L2

h(Ω)

≤ ‖T1(f(tn) − fh(tn))‖L2
h(Ω)

≤ ‖T1 ◦ Rh(f(tn) − fh(tn))‖L2
h(Ω) + ‖T1 ◦ (I − Rh)f(tn)‖L2

h(Ω)

≤ en + C ‖T1 ◦ (I − Rh)f(tn)‖L2(Ω)

+ C ‖(Rh − I) ◦ T1 ◦ (I − Rh)f(tn)‖L2(Ω)

≤ en + Chm+1 ‖f(tn)‖W m+1,2(Ω) + Ch |(I − Rh)f(tn)|W 1,2(Ω)

≤ en + C
(
||f ||L∞(0,T ;W m+1,∞(Ω))

)
hm+1,

which ends the proof. �

We can now come back to the proof of Theorem 2.

Proof of Theorem 2. Using the estimates stated in Lemmata 1, 2, 3 and 4, we get

en+1 ≤ (1 + C∆t)en + C
(
||f ||W 2,∞(0,T ;W m+1,∞(Ω))

) (
∆t3 + hm+1 + hm+1∆t

)
.

A discrete Grönwall inequality leads to

en+1 ≤ exp(CT )e0 + C
(
||f ||W 2,∞(0,T ;W m+1,∞(Ω))

)(
∆t2 +

hm+1

∆t
+ hm+1

)
.

As e0 is a fixed interpolation error, using (33) and (43) finally we get

||f − fh||l∞(0,T ;L2(Ω)) ≤ ||Rh(f − fh)||l∞(0,T ;L2(Ω)) + ||Rhf − f ||l∞(0,T ;L2(Ω))

≤ C sup
n
{en} + Chm+1||f ||L∞(0,T ;W m+1,∞(Ω))

≤ C
(
||f ||W 2,∞(0,T ;W m+1,∞(Ω))

)(
∆t2 +

hm+1

∆t
+ hm+1

)
.

The electric field error estimate is obtained as shown in the end of the proof of the
Main Theorem 5.1 in [6]. �

Remark 2. We note that our convergence analysis can be extended to higher split-
ting formulae in order to reach the order N ≥ 3 in time. To build up approximations
of the order N in time (cf. [16, 17, 27]), we consider splitting schemes of the form

f(t+∆t) = T α:1
x (∆t)◦T β:1

v (∆t)◦· · ·◦T αi
x (∆t)◦T βi

v (∆t)◦· · ·◦T αk
x (∆t)◦T βk

v (∆t)f(t)

where

T αi
x (∆t) = exp (αi∆tLx) , T βi

v (∆t) = exp (βi∆tLv) ,

with

Lx = −v · ∂x, Lv = −E · ∂v.

The actions of T αi
x (∆t) and T βi

v (∆t) on the function f(x, v) are, respectively,

T αi
x (∆t)f(x, v) = f(x − αiv∆t, v), T αi

v (∆t)f(x, v) = f(x, v − βiE(t, x)∆t).
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For example, if T2n(∆t), a 2nth-order approximation of the global transport oper-
ator, is known, then a (2n + 2)th-order approximation is obtained as follows:

T2n+2(∆t) = T2n(αn∆t) ◦ T2n(βn∆t) ◦ T2n(αn∆t)

with αn =
1

2 − 21/(2n+1)
and βn =

1
1 − 22n/(2n+1)

.

5. Some examples for Rh

In this section we give two examples illustrating the interpolation operator Rh.
The first one is based on the symmetric Lagrange interpolation. The other one is
built on B-splines. The Lagrange interpolation has the advantage of being local,
so that it is well-suited for parallel computing. Nevertheless, it is more diffusive
than B-splines. For example, in order to get the same rate of diffusion of the
cubic B-splines a 9th order Lagrange interpolation must be used. This has been
illustrated numerically in [15]. On the other hand, the B-splines interpolation is
global, as a linear system involving all the points of computation domain should be
solved. The B-splines interpolation has been chosen in many numerical applications
[2, 13, 24]. Hereafter, for each interpolation operator we explain its construction,
recalling its useful properties before proving the crucial estimates (12)–(14). Note
that in Theorem 2 we have given a general criteria on Rh which can be used for
any reconstruction.

5.1. Symmetric Lagrange interpolation. Letting xi+1/2 = (xi + xi+1)/2, we
define the cells Ci+1/2,j+1/2 and Ci,j by

Ci+1/2,j+1/2 = (xi, xi+1) × (vj , vj+1), Ci,j = (xi−1/2, xi+1/2) × (vj−1/2, vj+1/2).

We then introduce the characteristic functions χi+1/2,j+1/2 and χi,j defined by

χi+1/2,j+1/2(x, v) =
{

1 if (x, v) ∈ Ci+1/2,j+1/2,
0 otherwise

and

χi,j(x, v) =
{

1 if (x, v) ∈ Ci,j ,
0 otherwise.

In one dimension, if m is odd, we can then define the symmetric m+1 interpolation
points on (xi, xi+1) by

xi−(m−1)/2, . . . , xi+(m+1)/2,

and if m is even, the m + 1 interpolation points on (xi−1/2, xi+1/2) are then

xi−m/2, . . . , xi+m/2,

which are also symmetric with respect to the interval (xi−1/2, xi+1/2).
We denote by {�i

k,∆x}k∈{0,...,m} the Lagrange basis associated to the interval
(xi, xi+1) (resp. (xi−1/2, xi+1/2)):

�i
k,∆x

(z) =
s=m∏
s=0
s �=k

(z − zs)
(zk − zs)

,

with the interpolation points zs = xi−(m−1)/2 + s∆x (respectively zs = xi−m/2 +
s∆x). Similarly we define �j

k,∆v. Now, we define the interpolation operator Rh as
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follows, and consider a function g defined on the grid Mh. If m is odd, we then
define Rh as

(29) Rhg(x, v) =
∑
i∈Z

∑
j∈Z

R
i+1/2,j+1/2
h g(x, v)χi+1/2,j+1/2(x, v),

where

R
i+1/2,j+1/2
h g(x, v) = Rhg(x, v)|Ci+1/2,j+1/2

=
i+(m+1)/2∑

k=i−(m−1)/2

j+(m+1)/2∑
l=j−(m−1)/2

gk,l�
i
k,∆x(x)�j

l,∆v(v).
(30)

If m is even, we then define Rh as

(31) Rhg(x, v) =
∑
i∈Z

∑
j∈Z

Ri,j
h g(x, v)χi,j(x, v),

where

(32) Ri,j
h g(x, v) = Rhg(x, v)|Ci,j

=
i+m/2∑

k=i−m/2

j+m/2∑
l=j−m/2

gk,l�
i
k,∆x(x)�j

l,∆v(v)

with gk,l = g(xk mod Nx+1, vl mod Nv+1).
The interpolation operator Rh satisfies the following interpolation error estimate

(see [20]):

(33) ||f − Rhf ||W k,p(Ω) ≤ Chm+1−k|f |W m+1,p(Ω), f ∈ Wm+1,p(Ω) ∩ P(Ω),
k = 0, 1, m ≥ 0, 1 ≤ p ≤ ∞.

5.1.1. Proof of the estimate (14). The first step of this proof consists in computing
‖Rhf‖L2

h,∆α,0
h

and ‖Rhf‖L2
h,∆0,β

h
. We recall that N = (Nx, Nv) and zk,l = (xk, vl).

The Fourier series decomposition of fk,l is

fk,l =
1

|Ω|1/2

∑
|ω|≤N/2

f̂(ω)ei〈k(ω),zk,l〉.

Introducing this formula in the definition of the interpolation operator Rh repre-
sented by the equations (29)–(32) and using the notations

p(i)=
{

i if m is even,
i + 1/2 if m is odd,

q(i)=
{

i if m is even,
i + 1/2 if m is odd,

db(m)=
{

m/2 if m is even,
(m − 1)/2 if m is odd,

de(m)=
{

m/2 if m is even,
(m + 1)/2 if m is odd,
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we obtain

(Rhf)i+αj ,j =
1

|Ω|1/2

∑
|ω|≤N/2

i+de(m)∑
k=i−db(m)

j+de(m)∑
l=j−db(m)

× f̂(ω)�k(xi + αj∆x)�l(vj)ei〈k(ω),zk,l〉

=
1

|Ω|1/2

∑
|ω|≤N/2

i+de(m)∑
k=i−db(m)

f̂(ω)�k(xi + αj∆x)ei〈k(ω),zk,j〉

=
1

|Ω|1/2

∑
|ω|≤N/2

f̂(ω)�(αj , ωx)e−i〈k(ω),(db,0)〉ei〈k(ω),zi,j〉,

(34)

where

�(αj , ωx) =
m∑

k=0

�k((db(m) + αj)∆x)eikx(ωx)xk .

Hence,

‖Rhf‖2
L2

h,∆α,0
h

= ∆x∆v

Nx∑
i=0

Nv∑
j=0

(Rhf)i+αj ,j (Rhf)i+αj ,j

=
∆x∆v

|Ω|

Nx∑
i=0

Nv∑
j=0

∑
|ω|≤N/2

∑
|ω′|≤N/2

f̂(ω)f̂(ω′)�(αj , ωx)�(αj , ω′
x)

×e−i〈k(ω)−k(ω′),(db,0)〉ei〈k(ω)−k(ω′),zi,j〉.

Since

(35)
∆x

|L|

Nx∑
i=0

ei(kx(ωx)−kx(ω′
x))xi = δωx,ω′

x
,

it follows that

‖Rhf‖2
L2

h,∆α,0
h

=
∆v

|2R|

Nv∑
j=0

∑
|ω|≤N/2

∑
|ω′

v|≤Nv/2

f̂(ω)f̂(ωx, ω′
v)|�(αj , ωx)|2ei(kv(ωv)−kv(ω′

v))vj .

Since

(36)
∆v

|2R|

Nv∑
j=0

ei(kv(ωv)−kv(ω′
v))vj = δωv,ω′

v
,

we get

‖Rhf‖2
L2

h,∆α,0
h

≤ sup{|�(α, ωx)|2, |ωx| ≤ Nx/2, 0 ≤ α ≤ 1}

× ∆v

|2R|

Nv∑
j=0

∑
|ω|≤N/2

∑
|ω′

v |≤Nv/2

f̂(ω)f̂(ωx, ω′
v)ei(kv(ωv)−kv(ω′

v))vj

≤ sup{|�(α, ωx)|2, |ωx| ≤ Nx/2, 0 ≤ α ≤ 1}
∑

|ω|≤N/2

|f̂(ω)|2

≤ sup{|�(α, ωx)|2, |ωx| ≤ Nx/2, 0 ≤ α ≤ 1}‖f‖2
L2

h(Ω).
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Similarly, we obtain

‖Rhf‖2
L2

h,∆0,β
h

≤ sup{|�(β, ωv)|2, |ωv| ≤ Nv/2, 0 ≤ β ≤ 1}‖f‖2
L2

h(Ω).

The second step is to show that

sup{|�(α, ωx)|2, 0 ≤ α ≤ 1, |ωx| ≤ Nx/2} ≤ 1

and

sup{|�(β, ωv)|2, 0 ≤ β ≤ 1, |ωv| ≤ Nv/2} ≤ 1,

where

�(α, ωx) =
m∑

k=0

�k((db + α)∆x)eikxxk and �(β, ωv) =
m∑

l=0

�l((db + β)∆v)eikvvl .

Without loss of generality, we can suppose that L = 2R = 2π and ∆x = ∆v = ∆y,
so as to prove that sup {|�(y, ω)| , y ∈ [−∆y(m − 1)/2, ∆y(m + 1)/2], ω ∈ Z} ≤ 1,
where �(y, ω) =

∑m
k=0 �k(y)eiωyk . We set θ = ω∆y and y = η∆y, where 0 ≤ η ≤ m.

Since �(η, θ) is periodic in θ, we must now show that

(37) sup {|�(η, θ)| , η ∈ [(m − 1)/2, (m + 1)/2], θ ∈ [0, 2π]} ≤ 1.

Finally, with the change of variables ξ = 1 − cos θ and ζ = η − m/2, we obtain the
following lemma which implies (37).

Lemma 5.

|�θ
2n(ζ)|2 = |�2n(ζ, ξ)|2

= 1 − ζ2
(
1 − ζ2

)
· · ·

(
n2 − ζ2

)
ξn+1[

c0 + c1ξ
(
1 − ζ2

)
+ · · · + cn−1ξ

n−1
(
1 − ζ2

)
· · ·

(
(n − 1)2 − ζ2

)]
,

m = 2n,

|�θ
2n−1(ζ)|2 = |�2n−1(ζ, ξ)|2

= 1 −
((

1
2

)2 − ζ2
)
· · ·

((
2n−1

2

)2 − ζ2
)

ξn[
d0+d1ξ

((
1
2

)2−ζ2
)
+· · ·+dn−1ξ

n−1
((

1
2

)2−ζ2
)
· · ·

((
2n−3

2

)2−ζ2
)]

,

m = 2n + 1,

with

ci =
2n+i+1

(2n)!(2i + 1)!(n + 1 + i)
> 0 and di =

2n+i

(2n − 1)!(2i)!(n + i)
> 0.

Proof. The proofs of Theorems 3 and 4 are given in Appendix A. �
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5.1.2. Proof of the estimate (13). We suppose that m is even (the proof is similar
when m is odd). We use a change of variable in the following computation:∫

Ci,j

|Rhf |2dxdv =
∫

Ci,j

|Ri,j
h f(x, v)|2dxdv

=
∫

Ci,j

∣∣∣∣∣∣
∑

|(k,l)|≤m/2

fi+k,j+l�
i
i+k,∆x(x)�j

j+l,∆v(v)

∣∣∣∣∣∣
2

dxdv

= ∆x∆v

∫
[−1/2,1/2]2

∣∣∣∣∣∣
∑

|(k,l)|≤m/2

fi+k,j+l�
0
k,1(x)�0l,1(v)

∣∣∣∣∣∣
2

dxdv

=: ∆x∆vG(fi−m/2,j−m/2, . . . , fi+m/2,j+m/2).

The quantity G is the square of a norm over Rm+1, which is thus equivalent to the
euclidian one, with the constants c and C depending on m, but not on h. We thus
obtain∫

Ω

|Rhf |2 ≤
N∑

(i,j)=0

∫
Ci,j

|Rhf |2dxdv ≤ C2∆x∆v
N∑

(i,j)=0

∑
|(k,l)|≤m/2

|fi+k,j+l|2

≤ C2∆x∆v(2m + 1)2
N∑

(i,j)=0

|fi,j |2,

and the converse is also true, since we have

|fi,j |2 ≤
∑

|(k,l)|≤m/2

|fi+k,j+l|2 ≤ 1
c2

∫
Ci,j

|Rhf |2dxdv.

5.2. B-splines interpolation. In this section we define the space of B-splines of
order m + 1 and the approximation space Yh. Letting m and r be two positive
integers, we define Bm+1,∆x

, the linear space of the B-spline functions of order
m + 1 on Rx, as

Bm+1,∆x
=

{
s(x) ∈ C m−1(R), Dm+1s(x) = 0, ∀x ∈ (xi, xi+1), ∀i ∈ Z

}
,

when m + 1 is even, and as

Bm+1,∆x
=

{
s(x) ∈ C m−1(R), Dm+1s(x) = 0, ∀x ∈ (xi−1/2, xi+1/2), ∀i ∈ Z

}
,

when m + 1 is odd.
Similarly we define Br+1,∆v

, the space of B-spline functions of order r+1 on Rv.
The space of B-spline functions in two dimensions is therefore defined as the tensor
product of the spaces Bm+1,∆x

and Br+1,∆v
:

Bm+1,r+1,∆x,∆v
= Bm+1,∆x

⊗ Br+1,∆x

= {s(x, v) = s1(x)s2(v) : s1 ∈ Bm+1,∆x
, s2 ∈ Br+1,∆v

} .

Let us note that Sm+1,r+1,∆x,∆v
⊂ W k,p(R2) with k = min(r, m) and 1 ≤ p ≤ ∞. If

we suppose that r = m, then Bm+1,h denotes the two-dimensional B-spline functions
space of order m + 1. Hence, the interpolation operator Rh is defined by

(38) Rhf =
∑
i∈Z

∑
j∈Z

γi,j(f)Bm+1(x/∆x − i)Bm+1(v/∆v − j),
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where the unidimensional B-spline Bm of order m is recursively defined by

Bm(·) = (B ∗ · · · ∗ B︸ ︷︷ ︸
m times

)(·) =
∫

Bm−1(· − u)B(u)du,

with

B1(u) = B(u) =
{

1 −1/2 ≤ u ≤ 1/2,
0 elsewhere.

The coefficients γi,j(f) are solutions of the linear system

(39) fi,j =
∑
k,l

γk,l(f)Bm+1(i − k)Bm+1(j − l),

(i, j) ∈ [0, Nx] × [0, Nv], and γi,j(f) := γi mod Nx+1,j mod Nv+1(f). Now, we recall
some useful properties on B-splines interpolation.

i)

(40) Bm+1,h = Span {Bm+1(·/∆x − i)Bm+1(·/∆v − j); i ∈ Z, j ∈ Z} .

ii)

(41) Bm+1,h ⊂ Wm,p, 1 ≤ p ≤ ∞, 0 ≤ k ≤ m.

iii) Stability:

(42) ‖Rhf‖Lp(Ω) ≤ C‖f‖Lp(Ω), ∀f ∈ Lp(Ω) ∩ P(Ω), 1 ≤ p ≤ ∞.

iv) Consistency and optimal accuracy: for 1 ≤ p ≤ ∞ and 0 ≤ k ≤ m,

(43) ‖Rhf − f‖W k,p(Ω) ≤ Chm+1−k|f |W m+1,p(Ω), ∀f ∈ Wm+1,p(Ω) ∩ P(Ω).

v) As the matrix
[∑

k,l Bm+1(i − k)Bm+1(j − l)
]Nx,Nv

i,j=0
is positive and definite,

a unique solution of the linear system (39) exists.
vi) ∑

i

Bm(·/h − i) = 1,

∫
Bm(u)du = 1.

vii) The B-spline Bm,i(·) = Bm(·/h − i) is constructed on the points

{xi−m/2, . . . , xi+m/2}.

5.2.1. Proof of the estimate (14). By substituting

fi,j =
1

|Ω|1/2

∑
|ω|≤N/2

f̂(ω)ei〈k(ω),zi,j〉 and γk,l =
1

|Ω|1/2

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zk,l〉
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in (39) and using the notation αi,j = (i, j), ξ(ω) = (ξx(ωx), ξv(ωv)) = (kx(ωx)∆x,
kv(ωv)∆v), we get

1
|Ω|1/2

∑
|ω|≤N/2

f̂(ω)ei〈k(ω),zi,j〉

=
1

|Ω|1/2

∑
k,l

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zk,l〉Bm+1(i − k)Bm+1(j − l)

=
1

|Ω|1/2

∑
k,l

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zi,j〉e−i〈ξ(ω),αi,j−αk,l〉Bm+1(i−k)Bm+1(j−l)

=
1

|Ω|1/2

∑
p,q

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zi,j〉e−i〈ξ(ω),αp,q〉Bm+1(p)Bm+1(q),

and it follows that

(44)
1

|Ω|1/2

∑
|ω|≤N/2

f̂(ω)ei〈k(ω),zi,j〉 =
1

|Ω|1/2

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zi,j〉D(ω),

where D(ω) is defined by

D(ω) =
∑
p,q

e−i〈ξ(ω),αp,q〉Bm+1(p)Bm+1(q).

By multiplying (44) with its conjugate and ∆x∆v, we get
∆x∆v

|Ω|
∑

|ω|≤N/2

∑
|ω′|≤N/2

f̂(ω)f̂(ω′)ei〈k(ω)−k(ω′),zi,j〉

=
∆x∆v

|Ω|
∑

|ω|≤N/2

∑
|ω′|≤N/2

ei〈k(ω)−k(ω′),zi,j〉γ̂(ω)γ̂(ω′)D(ω)D(ω′).

As

∆x∆v

|Ω|

Nx∑
i=0

Nv∑
j=0

ei〈k(ω)−k(ν),zi,j〉 = δω,ν(45)

we find the following relation which we will use later:∑
|ω|≤N/2

|f(ω)|2 =
∑

|ω|≤N/2

|γ̂(ω)|2|D(ω)|2.(46)

We now want to compute ‖Rhf‖L2
h,∆α,0

h
and ‖Rhf‖L2

h,∆0,β
h

. Beginning with
‖Rhf‖L2

h,∆α,0
h

, we have

(Rhf)i+αj ,j =
∑
k,l

γk,l(f)Bm+1(i + αj − k)Bm+1(j − l)

=
1

|Ω|1/2

∑
k,l

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zk,l〉Bm+1(i + αj − k)Bm+1(j − l)

=
1

|Ω|1/2

∑
k,l

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zi+αj,j〉e−i〈k(ω),zi+αj−k,j−l〉

× Bm+1(i + αj − k)Bm+1(j − l)
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so that

(47) (Rhf)i+αj ,j =
1

|Ω|1/2

∑
|ω|≤N/2

γ̂(ω)ei〈k(ω),zi+αj,j〉�(ωx, αj)D(ωx)D(ωv),

where

�(ωx, αj) =
∑

k eiξx(ωx)(i+αj−k)Bm+1(i + αj − k)∑
p eiξx(ωx)pBm+1(p)

and
D(ωx) =

∑
p

eiξx(ωx)pBm+1(p).

By multiplying (47) with its conjugate, summing on i and j, and using (35) we get

‖Rhf‖2
L2

h,∆α,0
h

=
∆v

|2R|
∑

|ω|≤N/2
|ω′

v |≤Nv/2
j=0,...,Nv

γ̂(ω)γ̂(ωx, ω′
v)|D(ωx)|D(ωv)D(ω′

v)|�(αj , ωx)|2ei(kv(ωv)−kv(ω′
v))vj .

Using (36) and (46), the above becomes,

‖Rhf‖2
L2

h,∆α,0
h

≤
∑

|ω|≤N/2

�sup(ωx)|γ̂(ω)|2|D(ω)|2 ≤ �sup ‖f‖2
L2

h(Ω)

with
�sup = sup{|�(αj , ωx)|2, 0 ≤ αj ≤ 1, ωx ∈ Z}.

From Theorem 5 in Appendix B, we get |�sup| ≤ 1 and consequently

‖Rhf‖L2
h,∆α,0

h
≤ ‖f‖L2

h(Ω) and ‖Rhf‖L2
h,∆0,β

h
≤ ‖f‖L2

h(Ω).

5.2.2. Proof of the estimate (13). Let us now prove the estimate (13) for which we
will use the Fourier analysis. First, we have

(48) c‖γ‖L2
h(Ω) ≤ ‖Rhf‖L2(Ω) ≤ C‖γ‖L2

h(Ω).

Supposing again for convenience that m + 1 is even, we get∫
Ci,j

|Rhf |2dxdv

=
∫

Ci,j

∣∣∣∣∣∣
∑

|(k,�)|≤(m+1)/2

γi+k,j+lBm+1(x/∆x − k)Bm+1(v/∆v − l)

∣∣∣∣∣∣
2

dxdv.

Since Bm+1 has its support on the interval [−(m + 1)/2, (m + 1)/2], and by con-
sidering again a change of variables, we get∫

Ci,j

|Rhf |2dxdv

= ∆x∆v

∫
[−1/2,1/2]2

∣∣∣∣∣∣
∑

|(k,�)|≤(m+1)/2

γi+k,j+lBm+1(x − k)Bm+1(v − l)

∣∣∣∣∣∣
2

dxdv.
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The right-hand side again defines the square of a norm, since we know that the ma-

trix
[∑

k,l Bm+1(i − k)Bm+1(j − l)
]m+1/2,m+1/2

i,j=0
is invertible. Since all the quanti-

ties are now independent of h, we obtain the equivalence (48). It remains to prove
that

c1‖γ‖L2
h(Ω) ≤ ‖f‖L2

h(Ω) ≤ c2‖γ‖L2
h(Ω).

We will consider this relation in the discrete Fourier space, and will therefore es-
tablish that

c1‖γ̂‖L2
h(Ω) ≤ ‖f̂‖L2

h(Ω) ≤ c2‖γ̂‖L2
h(Ω).

From the equality (46) and

|D(ω)| = |φm+1(0, ξx(ωx))| · |φm+1(0, ξv(ωv))|, φm+1(α, θ) :=
∑
p∈Z

Bm+1(p+α)eiθp

we see that the proof is completed, if we can establish that

inf
θ∈R

|φm+1(0, θ)| > 0 and sup
θ∈R

|φm+1(0, θ)| < ∞.

The proof of this property for the B–splines is detailed at the end of the Appendix
(Lemma 9).

Appendix A. Lagrange interpolation

A.1. Theorems. Let n ∈ N∗, θ ∈ R. We define �θ
2n ∈ C2n[X] such that �θ

2n(j) =
exp(ijθ) for j = −n, . . . , n, and �θ

2n−1 ∈ C2n−1[X] such that �θ
2n−1(j) = exp(ijθ)

for j = −n + 1/2, . . . , n − 1/2, and introduce ξ := 1 − cos(θ). We then have the
following properties.

Theorem 3. We have

|�θ
2n(ζ)|2 = 1 − ζ2(1 − ζ2) · · · (n2 − ζ2)ξn+1

× [c0 + c1ξ(1 − ζ2)cn−1ξ
n−1(1 − ζ2) · · · ((n − 1)2 − ζ2)],

with positive numbers ci, i = 0, . . . , n − 1, given by

ci =
2n+i+1

(2n)!(2i + 1)!(n + i + 1)
.

Theorem 4. We have

|�θ
2n−1(ζ)|2 = 1 −

((
1
2

)2

− ζ2

)
· · ·

((
2n − 1

2

)2

− ζ2

)
ξn

[
d0 + d1ξ

((
1
2

)2

− ζ2

)

+ · · · + dn−1ξ
n−1

((
1
2

)2

− ζ2

)
· · ·

((
2n − 3

2

)2

− ζ2

)]
with positive numbers di, i = 0, . . . n − 1, which are given by

di =
2n+i

(2n − 1)!(2i)!(n + i)
.
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Corollary 1. We have

sup
[−1/2,1/2]

|�θ
2n−1| = 1, sup

[−1,1]

|�θ
2n| = 1.

Remark 3. Corollary 1 was already proven by Strang in [26]. The interest of these
formulae is that it also says that the zone of stability is exactly [−1, 1] in the even
case, and [−1/2, 1/2] in the odd case, at least for n ≤ 82 (see the computer proof
done in [19], where an analogous result is also given in the odd case). See also
[14] for comments about the justification of the relation between the amplification
factor (here �θ

n) and the stability region.

Remark 4. The analysis which is carried out here for the Lagrange reconstruction
on uniform grids does not apply if we take the same scheme on unstructured meshes
(triangulation) by using high-order Lagrange interpolation on triangles. The deter-
mination of the stability region in that case remains an interesting open question.
In the case of a constant advection, the semi-Lagrangian method can be interpreted
as a finite difference method for which the stability and the convergence have been
already studied in [26]. The analytical formula of the amplication factor indicates
where the stability region is, and justifies the bad numerical behaviour when we use
standard finite element reconstruction, whether it is on uniform grids or unstruc-
tured meshes. If the origin of the characteristic curves always falls in the region
where the amplication factor is greater than one, the scheme will be unstable. Since
in the semi-Lagrangian methods the characteristic origin is localised sometimes in
a stable area and sometimes elsewhere, it is difficult to prove that there is conver-
gence or not, but we observe that the solution becomes numerically unphysical. In
this case the concept of convergence might have to be changed.

Here we present new proofs of Theorems 3 and 4. We also give a very short proof
of the Corollary 1 where the proof of the odd case is derived from the even case.

A.2. Proof. We first give an explicit formula for �θ
2n which will be useful in the

sequel. We recall that ξ = 1 − cos(θ).

Lemma 6. Let �θ
2n ∈ C2n[X] such that �θ

2n(j) = exp(ijθ) for j = −n, . . . , n. We
then have

(49) �θ
2n(z) = �θ

2n−2(z) + z(z2 − 1) · · · (z2 − (n − 1)2)(ϕ(z − n) + ϕ(z + n)),

with ϕ = (−2)n−1

(2n−1)! ξ
n−1(eiθ − 1).

Proof. We know that such a decomposition holds by expressing �θ
2n in the basis:

1, z, z(z − 1), z(z − 1)(z + 1) . . . , and since

(50) �θ
2n(−z) = �−θ

2n (−z) = �θ
2n(z).

The coefficient ϕ is given by the divided difference: ϕ = �θ
2n[0, 1, . . . , n− 1,−1, . . . ,

n + 1, n] which can also be expressed in terms of �θ
2n(k) = exp(ikθ):

ϕ =
n∑

k=−n+1

n∏
j=−n+1,j �=k

1
k − j

exp(ikθ).



116 NICOLAS BESSE AND MICHEL MEHRENBERGER

Since
∏k−1

j=−n+1(k − j) = (n− 1 + k)! and
∏n

j=k+1(k − j) = (−1)n−k(n− k)!, we
obtain that

ϕ=
2n−1∑
k=0

(−1)2n−1−k

k!(2n − 1 − k)!
exp(i(−n + 1 + k)θ)=

(exp(iω) − 1)2n−1

(2n − 1)!
exp(i(−n + 1)θ)

and

(exp(iθ) − 1)2n−2 exp(i(−n + 1)θ)=(exp(iθ/2)−exp(−iθ/2))2n−2=(−2)n−1ξn−1,

where ξ = 2 sin2 θ/2. We then have an the expression of ϕ. �

In order to prove the algebraic formula (3), we first give a less precise form of it.

Proposition 1. We have the formula

|�θ
2n(x)|2 = 1 − x2(1 − x2) · · · (n2 − x2)

× [C0(ξ) + C1(ξ)(1 − x2) + Cn−1(ξ)(1 − x2) · · · ((n − 1)2 − x2)],
(51)

where the constants Cj are polynomials in ξ (for j = 0, . . . , n− 1) and are given by

(52) Cj(ξ) = (−1)n+1+j

j+1∑
k=1

R′
n(k)
αk,j

,

where the polynomial Rn is defined by

Rn(x2) := |�θ
2n(x)|2 − 1

and αk,j := k2
∏j+1

�=0� �=k(k2 − �2)2
∏n

�=j+2(k
2 − �2).

Proof. Since �θ
2n ∈ C2n[X] and since �θ

2n�θ
2n is even (from (50)), we deduce that

�θ
2n�θ

2n ∈ C2n[X2]. Now, we decompose �θ
2n in the basis x2, x2(x2 − 1), . . . , x2 · · ·

(x2 − n2), x2 · · · (x2 − n2)(x2 − 1), . . . , x2 · · · (x2 − n2)(x2 − 1) · · · (x2 − (n − 1)2).
We remark that the coefficients of x2, x2(x2 − 1), . . . , x2 · · · (x2 − (n− 1)2) are null,
since

�θ
2n�θ

2n(j) − 1 = 0, j = 0, . . . , n.

In order to calculate the other coefficients, we fix 1 > ε > 0 and we decompose �θ
2n in

the basis x2, x2(x2−1), . . . , x2 · · · (x2−n2), x2 · · · (x2−n2)(x2−1−ε), . . . , x2 · · · (x2−
n2)(x2 − 1 − ε) · · · (x2 − (n − 1)2 − ε). All the factors are now being distinct, and
we can use the divided differences for evaluating the coefficients, and as ε tends to
0, we obtain

(−1)n+1+jCj = lim
ε→0

j+1∑
k=1

Rn(k + ε)
αk,j,ε

,

with αk,j,ε :=
∏n

�=0(k
2 + ε − �2)

∏j+1
�=1� �=k(k2 + ε − �2 − ε), since Rn(j) = 0 for

j = 0, . . . , n, and the formula (52) follows. It remains to prove that these coefficients
can be expressed as polynomials in ξ. In fact, they are even in θ, since �θ

2n�θ
2n is

real and thus they are polynomials in cos θ (the remaining term in sin θ disappears
with parity) and therefore in ξ. �

In order to prove (3), we first prove :

Lemma 7. The Cj are polynomials in ξ of degree less than or equal to n + 1 + j.
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Proof. From (52), we know that each Cj is a linear combination of

(53) R′
n(1), . . . , R′

n((j + 1)2),

where the coefficients are independent of θ. Now, we have

(54) �θ
2n(x) − exp(−iθ)�θ

2n(x + 1) = (ϕ + ϕ)(1 − exp(−iθ))w(x),

where w stands for

w(x) = x(x + n)
n−1∏
k=1

(x2 − k2),

and ϕ is defined in Lemma 6. Indeed, the member of the left vanishes at the
points −n,−n + 1, . . . , n− 1 and is of degree less than or equal to 2n. The leading
coefficient of �θ

2n is given by ϕ + ϕ, from Lemma 6. Now, by differentiating the
relation Rn(x2) = �θ

2n(x)�θ
2n(x) − 1 and evaluating at an integer k = 0, . . . , n − 1,

we obtain

2(k + 1)R′
n((k + 1)2) = ei(k+1)θ�θ′

2n(k + 1) + e−i(k+1)θ�θ′
2n(k + 1).

Similar operations with (54) give:

�θ′
2n(k + 1) = exp(iθ)�θ′

2n(k) − (exp(iθ) − 1)(ϕ + ϕ)w′(k).

We combine the two preceding equalities

(55) 2(k + 1)R′
n((k + 1)2) = 2(cos(kθ) − cos((k + 1)θ))(ϕ + ϕ)w′(k)

+ eikθ�θ′
2n(k) + e−ikθ�θ′

2n(k) = 2kR′
n(k2) + cξn(−(e−iθ + eiθ)k+1 +

k∑
�=−k

a�e
i�θ)

with numbers c, a−k, . . . , ak independent of ω, since ϕ + ϕ = (−2ξ)n

(2n−1)! . From the
last expression, we see through induction that R′

n(k + 1) is a polynomial of ξ and
cannot be of degree greater than n+k +1. That means, from (53), that the Cj are
polynomials of ξ of degree less than n + j + 1. �

By using another decomposition, we obtain the converse.

Lemma 8. The coefficients Cj are polynomials in ξ of degree greater than or equal
to n + 1 + j (or are null).

Proof. We first prove by induction that |�θ
2n|2 can be decomposed in sums and

products of monomials of the form ξ(z2 − k2), where k = 0, . . . , n. Beginning with
equation (49), we compute

|�θ
2n(z)|2 = |�θ

2n−2(z)|2 + Sn(z),

where Sn(z) is a linear combination of the terms that are products of such mono-
mials together with the products of

(56) z(eiθ − 1)(z − k)(e−iθ − 1)(z − �),

where k and � are integers. Since |eiθ −1|2 = ξ2 +ξ(2−ξ) = 2ξ, the preceding term
reads

−2ξz2(k + �).
The odd terms are simplified in Sn, as �θ

2n is even, thus leading to the above
decomposition. Now, a product of monomials of the form ξ(z2−k2) can be expressed
in the basis 1, z2, z2(z2−1), . . . , z2 · · · (z2−n2), z2 · · · (z2−n2)(z2−1), . . . , z2 · · · (z2−
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n2)(z2−1) · · · (z2− (n−1)2), and its coordinate along a vector z2 · · · (z2−n2)(z2−
1) · · · (z2 − k2) is either null or of degree greater than or equal to n + 1 + k, if the
product contains at least n + 1 + k such monomials. We have just seen that |�θ

2n|2
is a sum of products of such monomials. The lemma hence follows. �

Now, from the two preceding lemmata, we have the existence of numbers cj such
that Cj = cjξ

n+1+j , and we can therefore prove the Theorem 3.

Proof of Theorem 3. We are left with the determination of the numbers cj . We
obtain from (52) and (55)

cj =
(−1)n+1+jΠn+1+jR

′
n((j + 1)2)

aj,n
,

where Πn+1+jR
′
n((j + 1)2) stands for the coordinates of R′

n((j + 1)2) over ξn+1+j ,
and

aj,n :=
j∏

k=0

((j + 1)2 − k2)2
n∏

�=j+2

((j + 1)2 − �2)

=
(−1)n−j−1(2j + 1)!(n − j − 1)!(n + j + 1)!

2j + 2
.

On the other hand, we obtain from (55)

Πn+1+jR
′
n((j + 1)2) =

w′(j)2n+1+j(−1)n+1+j

(2n)!2(j + 1)

where we compute w′(j) from

w′(j) = (−1)n−1−j(j + n)(n − 1 − j)!(n − 1 + j)!.

By collecting the different terms together, we obtain the expression of cj . �

We can now also obtain Corollary 1.

Proof of Corollary 1. The numbers ci in Theorem 3 are positive. We have, from
Neville’s algorithm,

�θ
2n+1(ζ) =

(ζ + n + 1/2)�θ
2n(ζ + 1/2) − (ζ − n − 1/2)�θ

2n(ζ − 1/2)
2n + 1

.

Hence, if ζ ∈ [−1/2, 1/2], we then obtain from the even case |�θ
2n+1(ζ)| ≤ 1. �

We now give the proof of Theorem 4.

Proof of Theorem 4. Following [26], first we will compute the derivative of the mod-
ulus of �θ

2n−1 by expressing it in a function of the real part R and the imaginary
part I of �θ

2n−1. We compute precisely ∂θ|�θ
2n−1|2(ζ) = 2 (I∂θI + R∂θR) (ζ, θ)

where

R(ζ, θ) =
n−1/2∑

k=−n+1/2

�k(ζ) cos(kθ), I(ζ, θ) =
n−1/2∑

k=−n+1/2

�k(ζ) sin(kθ),

and �k(ζ) =
n−1/2∏

i=−n+1/2
i �=k

(ζ − i)
(k − i)

.
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Let us now compute R, I, ∂θR and ∂θI. Expressing the Lagrange inter-
polation polynomial in the Newton basis and using the notation �n−1/2(ζ) =
(ζ2 − (1/2)2) · · · (ζ2 − (n − 1/2)2), we get for ζ ∈ [0, 1/2] and θ ∈ [0, 2π],

R(ζ, θ) = R−1/2 + (ζ + 1/2)∆R−1/2 +
�1/2(ζ)

2!
∆2R−3/2

+ · · · +
�n−3/2(ζ)(ζ + n − 1/2)

(2n − 1)!
∆2n−1R−n+1/2

and

I(ζ, θ) = I−1/2 + (ζ + 1/2)∆R−1/2 +
�1/2(ζ)

2!
∆2I−3/2

+ · · · +
�n−3/2(ζ)(ζ + n − 1/2)

(2n − 1)!
∆2n−1I−n+1/2.

Let us show that ∆2n−1f−n+1/2 = 0 when f(ζ) is an even function:

∆2n−1f−n+1/2 =
2n−1∑
l=0

(
2n − 1

l

)
(−1)2n−1−lfl−n+1/2

=
n−1∑
l=0

(
2n − 1

l

)
(−1)2n−1−lfl−n+1/2

+
2n−1∑
l=n

(
2n − 1

l

)
(−1)2n−1−lfl−n+1/2

=
n−1∑
l=0

(
2n − 1

l

)
(−1)2n−1−lfl−n+1/2

+
n−1∑
l=0

(
2n − 1

2n − l − 1

)
(−1)lfn−l−1/2

=
n−1∑
l=0

(
2n − 1

l

)
(−1)l

(
fk−1/2−l − fl+1/2−k

)
= 0.

Let us find ∆2k−2R−k+1/2:

∆2k−2R−k+1/2 =
2k−2∑
l=0

(
2k − 2

l

)
(−1)2k−2−lRl−k+1/2

=
2k−2∑
l=0

(
2k − 2

l

)
(−1)2k−2−l

n−1/2∑
j=−n+1/2

�j(l − k + 1/2) cos(jθ)

= �e

{
ei(−k+1/2)θ

2k−2∑
l=0

(
2k − 2

l

)
(−1)2k−2−leilθ

}
= (−1)k−1 cos(θ/2)22k−2(sin(θ/2))2k−2.



120 NICOLAS BESSE AND MICHEL MEHRENBERGER

We deduce that R(ζ, θ) can be rewritten as

R(ζ, θ) = cos(θ/2)

[
1 +

n−1∑
k=1

�k−1/2(ζ)(−1)k22k sin2k(θ/2)
(2k)!

]
.

Similar determination of ∆2k−2I−k+1/2 and ∆2k−1I−k+1/2 lead to the following
expression for I:

I(ζ, θ) = − sin(θ/2) + 2(ζ + 1/2) sin(θ/2)

+
n−1∑
k=1

�k−1/2(ζ)22k(−1)k+1 sin2k+1(θ/2)
(2k)!

+
n−1∑
k=1

�k−1/2(ζ)(ζ + k + 1/2)22k+1(−1)k sin2k+1(θ/2)
(2k + 1)!

= ζ

n−1∑
k=0

�k−1/2(ζ)22k+1(−1)k sin2k+1(θ/2)
(2k + 1)!

.

Differentiating I and R with respect to θ gives

∂θI(ζ, θ) = −1
2

cos(θ/2) + (ζ + 1/2) cos(θ/2)

+
n−1∑
k=1

�k−1/2(ζ)22k−1(−1)k+1(2k + 1) sin2k(θ/2) cos(θ/2)
(2k)!

+
n−1∑
k=1

�k−1/2(ζ)(ζ + k + 1/2)22k(−1)k(2k + 1) sin2k(θ/2) cos(θ/2)
(2k + 1)!

= ζ cos
(

θ

2

)
+

n−1∑
k=1

�k−1/2(ζ)22k(−1)k sin2k( θ
2 )

(2k + 1)!

×
(
−1

2
(2k + 1) cos

(
θ

2

)
+ cos

(
θ

2

)(
ζ + k +

1
2

))
= ζ cos(θ/2)

[
1 +

n−1∑
k=1

�k−1/2(ζ)22k(−1)k sin2k(θ/2)
(2k)!

]
= ζR

and

∂θR(ζ, θ) = −
sin( θ

2 )
2

n−1∑
k=0

�k−1/2(ζ)22k(−1)k sin2k( θ
2 )

(2k)!

+ cos
(

θ

2

) n−1∑
k=0

�k−1/2(ζ)22k(−1)kk sin2k−1( θ
2 ) cos( θ

2 )
(2k)!

.
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Replacing cos2(θ/2) by (1 − sin2(θ/2)), we rewrite the sum in k from 0 to n − 2:

∂θR(ζ, θ) =
�n−3/2(ζ)(n − 1/2)222n−1(−1)n sin2n−1(θ/2)

(2n − 1)!

+
n−2∑
k=0

�k−1/2(ζ)22k−1(−1)k+1 sin2k+1(θ/2)
(2k)!

+
n−2∑
k=0

�k−1/2(ζ)22k(−1)k+1k sin2k+1(θ/2)
(2k)!

+
n−2∑
k=0

�k−1/2(ζ)22k+1(−1)k+1 sin2k+1(θ/2)
(2k + 1)!

.

Reducing all the sums, we obtain

∂θR(ζ, θ) = −
�n−3/2(ζ)(n − 1/2)222n−1(−1)n+1 sin2n−1(θ/2)

(2n − 1)!

+
n−2∑
k=0

�k−1/2(ζ)22k(−1)kk sin2k+1(θ/2)
(2k)!

×

− 2ζ2
2k+1︷ ︸︸ ︷(

−
(

k +
1
2

)
−

2(ζ2 − (k + 1
2 )2)

2k + 1

)
=

�n−1/2(ζ)22n−1(−1)n+1 sin2n−1(θ/2)
(2n − 1)!

− ζI.

Collecting the expression of I, R, ∂θI and ∂θR we have

∂θ|�θ
2n:1(ζ)|2 = −22n (−1)n�n−1/2(ζ)

(2n − 1)!
sin2n−1

(
θ

2

)
cos

×
(

θ

2

)[
1 +

n−1∑
k=1

�k−1/2(ζ)(−1)k22k sin2k(θ/2)
(2k)!

]
.

Integrating the above gives

|�θ
2n−1(ζ)|2 = g(ζ) + −22n+1 (−1)n

2n!
�n−1/2(ζ) sin2n

(
θ

2

)
−

(−1)n�n−1/2(ζ)
(2n − 1)!

n−1∑
k=1

�k−1/2(ζ)(−1)k22(k+n)+1 sin2(k+l)(θ/2)
(2k)!2(k + l)

.

As |�2n−1(ζ, θ = 0)|2 = 1, we get g(ζ) = 1 and finally by setting ξ = 1 − cos θ =
2 sin2(θ/2), we find the desired result:

|�θ
2n−1(ζ)|2 = 1 − (−1)n�n−1/2(ζ)ξn

(
n−1∑
k=0

2k+n+1(−1)kξk�k−1/2(ζ)
(2n − 1)!(2k)!(2(k + n))

)
. �
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Appendix B. B-splines interpolation

We have used two important properties of the B-splines whose the proofs can be
found in [21].

Theorem 5. Let θ ∈ R and define Φm(α) = |
∑

k∈Z
Bm(k + α)eikθ|2. Then, Φm

admits its maximum on the integers.

Lemma 9. If we define φ(α, θ) := |
∑

k∈Z
Bm+1(k + α)eikθ|, then we have

0 < φ(0, π) ≤ φ(0, θ) = φ(0, 0) = 1, θ ∈ R.
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