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Abstract

This paper is concerned with eigenvalue problems for elliptic operators with
large drifts in bounded domains under Dirichlet boundary conditions. We con-
sider the minimal principal eigenvalue and the related principal eigenfunction
in the class of drifts having a given, but large, pointwise upper bound. We
show that, in the asymptotic limit of large drifts, the maximal points of the
optimal principal eigenfunctions converge to the set of points maximizing the
distance to the boundary of the domain. We also show the uniform asymptotic
profile of these principal eigenfunctions and the direction of their gradients in
neighborhoods of the boundary.

1 Introduction

Throughout this paper, if n ≥ 1, by “domain” of Rn, we mean an open connected
subset of Rn. The set of all bounded domains of Rn with C2 boundary will be denoted
by O. If Ω ∈ O and x ∈ Ω, define d(x) := d(x, ∂Ω). For δ > 0, let

Ωδ =
{
x ∈ Ω : d(x) < δ

}
(1.1)

be the open neighborhood of ∂Ω of width δ, relatively to Ω. The Euclidean norm
in Rn will be denoted by |·|. When v : Ω → Rn is a measurable vector field on Ω,
we say that v ∈ L∞(Ω,Rn) if and only if ‖v‖∞ := ‖|v|‖L∞(Ω) < +∞. If A ⊂ Rn
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Council under the European Union’s Seventh Framework Programme (FP/2007-2013) ERC Grant
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is measurable, |A| stands for the Lebesgue measure of A. Finally, we let Br(x)
denote the open Euclidean ball of Rn with center x ∈ Rn and radius r > 0, and
we set Br = Br(0). With a slight abuse of notation, we also note B0(x) = {x} and
B0 = {0}.

Let n ≥ 1 and Ω ∈ O. Consider a bounded measurable vector field v : Ω → Rn.
We are interested in the principal eigenvalue of the operator −∆ + v · ∇ in Ω under
Dirichlet boundary condition, which will be denoted by λv in the sequel.1 Recall
([1, p. 49]) that λv is real-valued and that the eigenspace corresponding to λv has
dimension 1. Moreover, if ϕ is “the” eigenfunction in L2(Ω) corresponding to the
eigenvalue λv, then (up to normalization) ϕ > 0 in Ω. Thus, the function ϕ satisfies

−∆ϕ+ v · ∇ϕ = λvϕ in Ω,

ϕ > 0 in Ω,

ϕ = 0 on ∂Ω.

(1.2)

By standard elliptic regularity, ϕ ∈ W 2,p(Ω) for all p ∈ [1,∞), which entails that
ϕ ∈ C1,α(Ω) for all α ∈ (0, 1). The strong maximum principle also ensures that
λv > 0.

The main results of the present paper arise from the study of optimization pro-
blems for λv. An archetypical optimization problem is the following question: given
any fixed m > 0 and τ ≥ 0, among all the domains Ω ∈ O with |Ω| = m and all the
vector fields v ∈ L∞(Ω,Rn) with ‖v‖∞ ≤ τ , is the infimum of λv reached for some Ω
and some v ? When τ = 0, this amounts to minimizing the principal eigenvalue of −∆
in Ω under Dirichlet boundary condition, and it is a well-known fact ([4, 10, 11]) that
the infimum is reached if and only if Ω is an Euclidean ball. For τ > 0, it was proved
by the first and the third author ([9, Theorem 2.9]) that λv reaches its infimum if
and only if, up to translation, Ω is an Euclidean ball centered at 0 and v(x) = τ x

|x| .

As a matter of fact, the first step of the proof of [9, Theorem 2.9] given in [7, 8] is
the solution of an optimization problem for λv when the domain Ω is fixed and the
vector field v varies under the constraint ‖v‖∞ ≤ τ . More precisely, given Ω ∈ O,
define, for τ ≥ 0,

λ(τ) := inf {λv : ‖v‖∞ ≤ τ} , (1.3)

where the infimum is taken over all the vector fields v∈L∞(Ω,Rn) such that ‖v‖∞≤τ .
Then ([9, Theorem 6.6]), there exists a unique vector field vτ ∈ L∞(Ω,Rn) with
‖vτ‖∞ ≤ τ such that λ(τ) = λvτ . Moreover, |vτ (x)| = τ for a.e. (almost every)
x ∈ Ω, and, if ϕτ is the corresponding eigenfunction of (1.2) with v = vτ , one has
|∇ϕτ (x)| > 0 for a.e. x ∈ Ω and

vτ = −τ ∇ϕτ
|∇ϕτ |

a.e. in Ω. (1.4)

1Note that λv depends on Ω and v, but the dependence with respect to Ω will not be explicitly
written down, since the domain Ω will be given and fixed in most parts of the paper, except in
Proposition 2.1.
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Thus, ϕτ solves 
−∆ϕτ − τ |∇ϕτ | = λ(τ)ϕτ in Ω,

ϕτ > 0 in Ω,

ϕτ = 0 on ∂Ω.

(1.5)

This entails that, for all α ∈ (0, 1), ∆ϕτ ∈ C0,α(Ω), so that ϕτ ∈ C2,α
loc (Ω) (if Ω is

assumed to be of class C2,α for some α ∈ (0, 1), the function ϕτ would then be of
class C2,α(Ω)). We normalize ϕτ > 0 by setting maxΩ ϕτ = 1. The function ϕτ is
then the unique solution to (1.5) satisfying this normalization. Notice also that the
equality λ(τ) = λvτ immediately yields

λ(τ) > 0.

When Ω = BR for some R > 0, then ϕτ is radially decreasing and vτ (x) = τ x
|x|

for all x ∈ Ω \ {0} ([9, Theorem 6.8]). Moreover ([9, Lemma 7.2]), when n ≥ 2,
there holds lnλ(τ) ∼ −τR when τ → +∞, and, when n = 1, there holds more
precisely λ(τ) ∼ τ 2e−τR when τ → +∞. These asymptotics were also proved in [5]
by probabilistic arguments for more general elliptic operators of second order with
C1 coefficients (note that x

|x| is not C1 at 0, so that the results of [5] do not exactly

fall into the scope of the problems dealt with in the present paper).
This paper is chiefly devoted to the study of the asymptotic behavior of ϕτ as

τ→+∞ for any domain Ω ∈ O. Our first main result deals with the points where
ϕτ reaches its maximum (recall that ϕτ is continuous in Ω). When Ω is a ball, as
recalled before, this maximum is reached at the center of Ω, i.e. the point in Ω where
d reaches its maximum. In the general case, we establish:

Theorem 1.1. Let Ω ∈ O. For all τ ≥ 0, let xτ be a point in Ω where ϕτ reaches
its maximum in Ω. Then

d(xτ )→ max
Ω

d as τ → +∞.

We then prove that ϕτ converges to 1 as τ → +∞ locally uniformly in Ω, and
give the precise asymptotic profile near ∂Ω:

Theorem 1.2. Let Ω ∈ O. There holds

ϕτ (x)

1− e−τd(x)
→ 1 as τ → +∞, (1.6)

uniformly with respect to x ∈ Ω.

Finally, we also describe the behavior of ∇ϕτ when τ → +∞. In the case where
Ω is a ball BR, since ϕτ is radial, ∇ϕτ (x)

|∇ϕτ (x)| = − x
|x| = ∇d(x) for all x ∈ Ω\{0}. For a

general domain Ω ∈ O, we compare ∇ϕτ
|∇ϕτ | with ∇d near ∂Ω when τ → +∞. More

precisely:

3



Theorem 1.3. Let Ω ∈ O. For any M > 0, there holds

min
ΩM/τ
|∇ϕτ | & τ and max

ΩM/τ

∣∣∣∣ ∇ϕτ|∇ϕτ |
− ∇d

∣∣∣∣→ 0 as τ → +∞.2

We point out that ∇d = −ν on ∂Ω, where ν(y) denotes the outward unit normal
to Ω at any point y ∈ ∂Ω. Therefore, the second part of the conclusion of Theorem 1.3
implies that the gradient of the optimal eigenfunction ϕτ almost points towards the
same direction as the opposite of the normal vector field to Ω in thin neighborhoods
of ∂Ω. We conjecture that, for a general domain Ω ∈ O, the vector fields ∇ϕτ/|∇ϕτ |
converge to ∇d a.e. in Ω as τ → +∞, that is, the minimizing vector fields vτ given
by (1.4) are asymptotically proportional to the opposite of the gradient of the distance
to ∂Ω. That problem is still open for general domains Ω. However, the property holds
when Ω is an annulus, say with center 0, that is, Ω = BR \Br for some 0 < r < R.

Theorem 1.4. Let n ≥ 2, 0 < r < R and Ω = BR \ Br. Then, for every τ ≥ 0, the
principal eigenfunction ϕτ solving (1.5) is radially symmetric, i.e., ϕτ (x) = Φτ (|x|)
in Ω for some function Φτ : [r, R]→ [0, 1], and

−vτ (x)

τ
=
∇ϕτ (x)

|∇ϕτ (x)|
→ ∇d(x) as τ → +∞ for all x ∈ Ω with |x| 6= r +R

2
.

Before going into the proofs, let us give some heuristic analytic and probabilistic
interpretations of these main results. On the one hand, minimizing the principal
eigenvalue λv of (1.2) means minimizing the deleterious effect of the Dirichlet bound-
ary condition, which makes the solutions of the related Cauchy problem

ut + v · ∇u = ∆u, u|∂Ω = 0, (1.7)

converge to 0 as t→ +∞ with at least a rate of the type e−λvt. The solutions diffuse
and are transported along the vector field v. When v points from the boundary
to the center of the domain, the boundary value 0 tends to be propagated inside
the domain, making the solutions converge to 0 as t → +∞ with a faster decay
rate λv. Therefore, in order to minimize these negative effects, the vector fields
vτ = −τ∇ϕτ/|∇ϕτ | minimizing (1.3) should better point towards the boundary. Our
results make this formal statement rigorous and quantitative: the minimizing vector
fields have the largest possible magnitude and their direction is parallel and opposite
to that of the gradient of the distance to the boundary in neighborhoods of the
boundary. The size of the boundary layer is precisely estimated and the asymptotic
profile is found. Furthermore, outside of this boundary layer, the eigenfunctions
become approximately constant and their maximal points are as far as possible from
the boundary.

On the other hand, (1.7) coincides with the Kolmogorov equation of the stochastic
differential equation

dX(t) = −v dt+
√

2 dW (t),

2The notation min
ΩM/τ

|∇ϕτ | & τ as τ → +∞ means that there exist C > 0 and τ0 > 0 such
that min

ΩM/τ
|∇ϕτ | ≥ Cτ for all τ ≥ τ0.
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subject to absorption on ∂Ω. Namely, the solution of (1.7) with a nonnegative initial
datum u0 is given by

u(x, t) = E[u0(X(t)) |X(0) = x],

in which the contribution of the trajectories X hitting the boundary of Ω before the
time t is equal to 0. Thus in order to minimize the decay rate λv of u one should
prevent the trajectories from hitting ∂Ω. One could think that the best strategy to
do this would be taking −v pointing in the direction opposed to the closest point
of the boundary at the maximum allowed intensity τ , that is, −vτ = τ∇d. This is
not the case because the presence of the Brownian motion “deviates” the trajectory
from the imposed drift −v and makes the optimization problem a nonlocal one which
depends on the whole boundary of Ω. However, as τ goes to +∞, the influence
of the Brownian motion becomes negligible compared with the drift, leading to the
conjecture that −vτ aligns with ∇d in the limit.

Let us now quickly describe the proofs. For Theorem 1.1, we compare ϕτ with
the function u(x) := 1 − e−γτ(d(x)+ε), where γ > 1 and ε > 0. Namely, for all τ
large enough, there holds −∆u − τ |∇u| ≥ γτe−γτ(d+ε) in the viscosity sense in Ω.
Then, looking at the points where ϕτ

u
reaches its maximum in Ω, it follows from

the asymptotic behavior of λ(τ) recalled above that, ϕτ ≤ 1−e−γτd
1−e−τR/γ in Ω for τ large

enough, with R := maxΩ d. This yields the desired conclusion, since the maximum
of ϕτ in Ω is 1. The major ingredient in this argument is the semiconcavity of d (see
Section 3 below).

As far as Theorem 1.2 is concerned, one readily deduces from the inequality
ϕτ (x) ≤ 1−e−γτd(x)

1−e−τR/γ seen before that

lim sup
τ→+∞

(
sup
x∈Ω

ϕτ (x)

1− e−τd(x)

)
≤ 1.

In order to derive a corresponding lower bound, a preliminary step is to prove that
ϕτ converges to 1 as τ → +∞ locally uniformly in Ω. This is first shown in a
neighborhood of xτ where ϕτ (xτ ) = 1, by means of a blow-up of the function ϕτ
around xτ that can be performed thanks to Theorem 1.1. Next we propagate this
convergence result up to a boundary layer of width of order 1/τ using a technical
lemma about the variation of the minimum on concentric spheres, together with a
covering argument. The convergence result in the whole Ω is eventually obtained by
comparison with a lower barrier function of the type x 7→ 1− e−ητ(d(x)−ε).

Finally, for the proof of Theorem 1.3, we argue by contradiction, using a rescaling
procedure of ϕτ again.

In the present paper we consider the problem of minimizing the principal eigen-
value λv in (1.2), but one could also be interested in maximizing such an eigenvalue.
That is, one could define λ(τ) by replacing the “inf” with a “sup” in (1.3). It turns
out that also λ(τ) is attained by a unique vector field vτ , with the principal eigenfunc-
tions ϕτ satisfying (1.4) and (1.5) with −τ replaced by τ . In such case we conjecture
that, after the L∞ normalization, ϕτ converges as τ → +∞ locally uniformly to 0 in
the complement of the set where d reaches its maximum.
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The paper is organized as follows. Some basic properties of λ(τ) are given in
Section 2. We show Theorem 1.1 in Section 3. Section 4 is devoted to the proof of
the local uniform convergence of ϕτ to 1, and the proof of Theorem 1.2 is completed
in Section 5. Section 6 is concerned with the proof of Theorem 1.3. We complete the
paper with Section 7 and the proof of Theorem 1.4 in the case when Ω is an annulus.

2 Preliminary properties of λ(τ )

We show in this section some basic properties of the minimizing principal eigen-
value λ(τ), which will be used in the next sections.

Proposition 2.1. There holds

λ(τ) = max
{
λ : ∃ϕ ∈ C2(Ω), ϕ > 0 and −∆ϕ− τ |∇ϕ| ≥ λϕ in Ω

}
= min

{
λ : ∃ϕ ∈ C2(Ω) ∩ C1(Ω), ϕ > 0 in Ω,

−∆ϕ− τ |∇ϕ| ≤ λϕ in Ω and ϕ = 0 on ∂Ω
}
,

(2.1)

Moreover, the max and the min are achieved only by λ(τ) and the corresponding
functions ϕ must coincide with ϕτ up to positive scalar multiples. Finally, λ(τ) is
strictly decreasing with respect to τ as well as to the inclusion of domains Ω.

Proof. Let λ ∈ R and ϕ ∈ C2(Ω) be such that ϕ > 0 and

−∆ϕ− τ |∇ϕ| ≥ λϕ in Ω.

Then, for any v such that ‖v‖L∞(Ω) ≤ τ there holds

−∆ϕ+ v · ∇ϕ ≥ λϕ in Ω.

By [1], one knows that

λv = max
{
µ : ∃φ ∈ W 2,n

loc (Ω), φ > 0 and −∆φ+ v · ∇φ ≥ µφ a.e. in Ω
}
,

hence λ ≤ λv, and that the equality λ = λv holds if and only if ϕ is the principal
eigenfunction of (1.2). Taking v = vτ given by (1.4) we get λ ≤ λvτ = λ(τ) and then
using the fact that the function ϕτ satisfies (1.5) we derive the first equality in (2.1).
Moreover, λ < λ(τ) unless ϕ coincides with ϕτ up to a scalar multiple.

The first equality in (2.1) also implies that λ(τ) is non-increasing with respect to
both τ and the inclusion of domains Ω (the former also immediately follows from the
definition (1.3)). Consider now τ ′ ∈ R such that τ ′ > τ and assume by contradiction
that λ(τ ′) = λ(τ). Since |∇ϕτ ′| > 0 a.e. in Ω, one then gets

−∆ϕτ ′ − τ |∇ϕτ ′| > −∆ϕτ ′ − τ ′|∇ϕτ ′ | = λ(τ ′)ϕτ ′ = λ(τ)ϕτ ′ a.e. in Ω. (2.2)

Hence, ϕ := ϕτ ′ is a supersolution of (1.5) with λ := λ(τ). The conclusion of the
previous paragraph implies that ϕτ ′ and ϕτ must coincide up to a scalar multiple,
which contradicts the strict inequality in (2.2). Therefore, λ(τ ′) < λ(τ). Similarly, the
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solution ϕ′ of the nonlinear eigenvalue problem (1.5) with Ω replaced by a (connected)
domain Ω′ ) Ω and with principal eigenvalue λ′ satisfies −∆ϕ′− τ |∇ϕ′| = λ′ϕ′ in Ω.
Since max∂Ω ϕ

′ > 0, ϕ′ does not coincide with ϕτ in Ω up to a scalar multiple and
we conclude from the previous paragraph that λ′ < λ(τ). This means that the
monotonicities of λ(τ) with respect to both τ and Ω are strict.

For the second equality in (2.1), consider λ ∈ R and let ϕ ∈ C2(Ω) ∩ C1(Ω) be
such that ϕ > 0 in Ω, −∆ϕ− τ |∇ϕ| ≤ λϕ in Ω and ϕ = 0 on ∂Ω. Define

v(x) :=

−τ
∇ϕ(x)

|∇ϕ(x)|
if |∇ϕ(x)| > 0,

0 otherwise.

The function ϕ is a positive subsolution of the eigenvalue problem

−∆ϕ+ v · ∇ϕ = λϕ in Ω, ϕ = 0 on ∂Ω.

By [1], this means that λv ≤ λ and that equality holds if and only if ϕ is the principal
eigenfunction for the above problem. Since ‖v‖L∞(Ω) ≤ τ , it follows that λ(τ) ≤ λ
and, by uniqueness of the vector field v minimizing (1.3), one infers that equality
λ(τ) = λ holds if and only if ϕ coincides with the principal eigenfunction ϕτ up to a
scalar multiple. The proof of Proposition 2.1 is thereby complete.

3 Location of maxima

This section is devoted to the proof of Theorem 1.1. We first recall from Section 1
that d : Ω → [0,+∞) denotes the distance function from ∂Ω. Then define the open
neighborhood of ∂Ω of width δ > 0, relatively to Ω, as in (1.1), that is,

Ωδ =
{
x ∈ Ω : d(x) < δ

}
.

We will make use of some properties of the distance function in order to construct
a family of supersolutions to (1.5). One of them is the semiconcavity, which is a
straightforward consequence of the regularity of d in a neighborhood of ∂Ω, as shown
for instance in [2]. We include the proof of this fact below because we use a different
notion of semiconcavity, expressed in terms of the second order sub-differential jet.
For a continuous function u at a point x, the latter is defined by

J−u(x) :=
{

(p,X) ∈ RN × SN : u(y) ≥ u(x) + p · (y − x) +
1

2
X(y − x) · (y − x)

+ o(|y − x|2) as y → x
}
,

where SN denotes the space of N×N symmetric matrices and Xz ·z denotes Xz ·z =∑
1≤i,j≤N Xijzizj for X = (Xij)1≤i,j≤N ∈ SN and z = (zi)1≤i≤N ∈ RN . This notion is

used to give a meaning to ∇d and D2d in the viscosity sense, see, e.g., [3].
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Lemma 3.1. There exists K > 0 such that for all x ∈ Ω and all (p,X) ∈ J−d(x),
there holds

|p| = 1 and X ≤ K IN ,

where IN is the identity matrix and ≤ is the usual order on SN .

Proof. First of all, we know from [6, Lemmas 14.16 and 14.17] that there exists δ > 0
such that d is of class C2(Ωδ) and therefore has bounded Hessian matrix in Ωδ.
Consider now x ∈ Ω \ Ωδ and let z ∈ ∂Ω be its or one of its projections on ∂Ω, that
is, |x − z| = d(x). The function g(y) := |y − z| satisfies g(x) = d(x) and, for all
y ∈ Ω, g(y) ≥ d(y). As a consequence, if there exists (p,X) ∈ J−d(x) then for y ∈ Ω
there holds

g(y) ≥ d(y) ≥ d(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o(|y − x|2)

= g(x) + p · (y − x) +
1

2
X(y − x) · (y − x) + o(|y − x|2),

that is, (p,X) ∈ J−g(x). Since g is a C2 function outside z, we infer that

p = ∇g(x) =
x− z
|x− z|

, X = D2g(x) =
1

|x− z|
IN −

1

|x− z|3
(x− z)⊗ (x− z).

It follows that X ≤ (d(x))−1IN ≤ δ−1IN . This concludes the proof of the lemma.

Proof of Theorem 1.1. Consider an arbitrary γ > 1. For τ > 0 and ε > 0, define the
function

uτ,ε(x) = 1− e−γτ(d(x)+ε). (3.1)

If d were a C2 function in the whole Ω we would have

−∆uτ,ε − τ |∇uτ,ε| = γτe−γτ(d+ε)
(
−∆d+ γτ |∇d|2 − τ |∇d|

)
.

It is easy to check, using the fact that uτ,ε is the composition of the function d with
a strictly increasing smooth function, that the above formal computation holds for
the sub-differential jets, in the sense of multivalued functions, i.e.,{

− TrY − τ |q| : (q, Y ) ∈ J−uτ,ε(x)
}

=
{
γτe−γτ(d(x)+ε)

(
− TrX + γτ |p|2 − τ |p|

)
: (p,X) ∈ J−d(x)

}
for every x ∈ Ω. Owing to Lemma 3.1 and because γ > 1, there is τ0 > 0 such that,
for every τ ≥ τ0, x ∈ Ω and (p,X) ∈ J−d(x), one has −TrX + γτ |p|2 − τ |p| ≥ 1. It
follows that −∆uτ,ε− τ |∇uτ,ε| ≥ γτe−γτ(d+ε) in Ω, still in the viscosity sense, that is,

∀τ ≥ τ0, ∀ε > 0, ∀x ∈ Ω, ∀(q, Y ) ∈ J−uτ,ε(x), −TrY −τ |q|≥γτe−γτ(d(x)+ε). (3.2)

Next, define

kτ,ε := sup
Ω

ϕτ
uτ,ε

.
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Because uτ,ε > 0 in Ω together with ϕτ > 0 in Ω and ϕτ = 0 on ∂Ω, the above supre-
mum is actually a maximum, attained at some xτ,ε ∈ Ω. Namely, the function k−1

τ,εϕτ
touches uτ,ε from below at xτ,ε, whence

k−1
τ,ε(∇ϕτ , D2ϕτ ) ∈ J−uτ,ε(xτ,ε).

We then deduce from (3.2) that

∀ τ ≥ τ0, ∀ ε > 0, −∆ϕτ (xτ,ε)− τ |∇ϕτ (xτ,ε)| ≥ kτ,εγτe
−γτ(d(xτ,ε)+ε),

this time in the classical sense. On the other hand, by (1.5),

−∆ϕτ (xτ,ε)− τ |∇ϕτ (xτ,ε)| = λ(τ)ϕτ (xτ,ε),

and therefore

∀ τ ≥ τ0, ∀ ε > 0, γτe−γτ(d(xτ,ε)+ε) ≤ λ(τ)
ϕτ (xτ,ε)

kτ,ε
= λ(τ)uτ,ε(xτ,ε) < λ(τ). (3.3)

Now, let us call R := maxΩ d > 0. By the monotonicity with respect to the inclu-
sion of domains, the quantity λ(τ) is bounded from above by the one corresponding
to the case Ω = BR, and we know from [9, Lemma 7.2] that the logarithm of the latter
behaves like −τR as τ → +∞. We can then find τ1 > 0 such that λ(τ) ≤ e−τR/γ

for τ ≥ τ1. We can assume without loss of generality that τ1 ≥ max(τ0, 1). It then
follows from (3.3) that

∀ τ ≥ τ1, ∀ ε > 0, d(xτ,ε) + ε ≥ R

γ2
.

Recalling the definition of kτ,ε, we eventually derive, for all τ ≥ τ1 and ε > 0,

∀x ∈ Ω,
ϕτ (x)

uτ,ε(x)
≤ kτ,ε =

ϕτ (xτ,ε)

uτ,ε(xτ,ε)
≤ 1

1− e−γτ(d(xτ,ε)+ε)
≤ 1

1− e−τR/γ
.

Whence, passing to the limit as ε→ 0 yields

∀ τ ≥ τ1, ∀x ∈ Ω, ϕτ (x) ≤ 1− e−γτd(x)

1− e−τR/γ
. (3.4)

It follows that, for τ ≥ τ1, the function ϕτ cannot attain its maximal value 1 at any
point x with d(x) < R/γ2. This concludes the proof by the arbitrariness of γ > 1.

4 Local uniform convergence

In this section we derive the locally uniform convergence of the functions ϕτ to 1
as τ → +∞ (see Lemma 4.3 below), which is part of Theorem 1.2. To do so, we first
show that the minimum of ϕτ in some concentric balls strongly included in Ω can be
controlled by some constants close to 1 as τ becomes large.
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Lemma 4.1. Let x0 ∈ Ω and 0 < R < R′ be such that BR′(x0) ⊂ Ω and let
ε ∈ (0, 1/R). Then there exists τ0 > 0, only depending on n, R, R′ and ε, such
that

∀ τ ≥ τ0, ∀
2(n− 1)

τ
≤ r ≤ r′ ≤ R, min

∂Br′ (x0)
ϕτ ≥

1− εr′

1− εr
min

∂Br(x0)
ϕτ . (4.1)

Remark 4.2. For any τ ≥ 0, since the function ϕτ ∈ C2(Ω) ∩ C(Ω) satisfies

−∆ϕτ = τ |∇ϕτ |+ λ(τ)ϕτ > 0 in Ω,

the maximum principle implies that

min
ω
ϕτ = min

∂ω
ϕτ (4.2)

for any non-empty subset ω ⊂ Ω. In particular, (4.1) can be rewritten as

min
Br′ (x0)

ϕτ ≥
1− εr′

1− εr
min
Br(x0)

ϕτ

for all τ ≥ τ0 and 2(n− 1)/τ ≤ r ≤ r′ ≤ R.

Proof of Lemma 4.1. Let us assume for simplicity that x0 = 0 and let R, R′ and ε
be as in the statement. Consider a smooth function χ which is radially symmetric,
nonincreasing in the radial direction and satisfies

χ(x) = 1 for |x| ≤ R, χ(x) = 0 for |x| ≥ R′.

Then define
u(x) := χ(x)− ε|x|

for all x ∈ Rn. The set where this function is positive is equal to some ball BRε , with

0 < R < Rε < R′.

Because the gradients of the functions χ(x) and−|x| point towards the same direction,
we see that |∇u| ≥ ε, and therefore we get in BRε \ {0},

−∆u− τ |∇u| ≤ −∆χ− ε
(
τ − n− 1

|x|

)
.

In order to estimate the right-hand side, we restrict to the annulus BRε \ B2(n−1)/τ ,
getting

−∆u− τ |∇u| ≤ −∆χ− ετ

2
.

Then, there exists τ0 > 0 large enough, depending on n, Rε, χ and ε (hence, depending
on n, R, R′ and ε) such that

2(n− 1)

τ
< Rε and −∆u− τ |∇u| < 0 in BRε \B2(n−1)/τ , for all τ ≥ τ0. (4.3)
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Fix any τ ≥ τ0, any r ∈ [2(n− 1)/τ, R] (hence, εr ≤ εR < 1), and set

k :=
1

1− εr
min
∂Br

ϕτ > 0

Suppose by contradiction that ϕτ −ku < 0 somewhere in the annulus BRε \Br. Since
ϕτ − ku is nonnegative on the boundary of this set (we recall that u = 0 on ∂BRε

and u = 1 − εr on ∂Br), the negative minimum is reached at some interior point
x̂ ∈ BRε \Br, and thus there holds

λ(τ)ϕτ (x̂) = −∆ϕτ (x̂)− τ |∇ϕτ (x̂)| ≤ −k∆u(x̂)− kτ |∇u(x̂)| < 0

by (4.3). This is impossible because λ(τ) > 0. As a consequence,

ϕτ − ku ≥ 0 in BRε \Br,

from which (4.1) is readily obtained recalling that χ = 1 in BR.

By making use of Theorem 1.1 and Lemma 4.1 together with a covering argument,
the following local uniform limit holds as τ → +∞:

Lemma 4.3. The family (ϕτ )τ>0 converges locally uniformly to 1 in Ω as τ → +∞.

Proof. Let (xτ )τ>0 be a family of maximal points of (ϕτ )τ>0, i.e., such that ϕτ (xτ )=1.
Remember from Theorem 1.1 that d(xτ ) → maxΩ d > 0 as τ +∞. Firstly, we show
that ϕτ → 1 near xτ as τ → +∞. Consider the family of functions (ψτ )τ>0 defined by

ψτ (x) := ϕτ

(
xτ +

x

τ

)
.

Since the points xτ are bounded away from ∂Ω as τ → +∞, the functions (ψτ )τ>0

are defined in a family of domains which converge to the whole space Rn as τ → +∞,
and satisfy there

−∆ψτ − |∇ψτ | =
λ(τ)

τ 2
ψτ .

Therefore, since the eigenvalues λ(τ) are bounded as τ → +∞ by Proposition 2.1 (and
even converge to 0 as τ → +∞ as recalled in Section 1), interior elliptic estimates 3

imply that, as τ → +∞, the functions ψτ converge in C2
loc(Rn), at least for a sequence

(τn)n∈N → +∞, to some function ψ∞ satisfying

ψ∞(0) = 1 = max
Rn

ψ∞, −∆ψ∞ − |∇ψ∞| = 0 in Rn.

Since the latter equation can be written in linear form, with a bounded first order
coefficient and without zero order term, it follows from the strong maximum principle

3One first writes the equation in linear form, with first order coefficient equal to −∇ψτ/|∇ψτ |,
which has L∞ norm equal to 1, and derives W 2,p

loc a priori estimates for any p ∈ (1,+∞); then, by

Morrey’s inequality, the terms |∇ψτ | can be considered as bounded data in C0,α
loc , for any α ∈ (0, 1),

leading to C2,α
loc estimates.
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that ψ∞ ≡ 1 in Rn. By uniqueness of the limit, this means that the whole family
(ψτ )τ>0 converges locally uniformly to 1 as τ → +∞. Namely,

∀M ≥ 0, ‖ϕτ − 1‖L∞(BM/τ (xτ )) → 0 as τ → +∞. (4.4)

Next, we extend the above convergence to compact subsets of Ω using Lemma 4.1
together with a covering argument. Consider now

Ω \ Ωδ =
{
x ∈ Ω : d(x) ≥ δ

}
.

Because of the regularity of Ω, this compact set is non-empty, smooth and connected
for δ > 0 sufficiently small. Fix in the sequel any value of δ ∈ (0,maxΩ d) for which
this holds and take any ε > 0 such that

0 < ε <
2

δ
.

We now apply Lemma 4.1 with this value of ε, any point x0 = y ∈ Ω\Ωδ, R = δ/2
and R′ = δ. It implies that, for τ larger than some τ1, only depending on n, δ and ε,
there holds:

∀ y ∈ Ω \ Ωδ, ∀ 2(n− 1)

τ
≤ r ≤ r′ ≤ δ

2
, min

∂Br′ (y)
ϕτ ≥

(
1− εδ

2

)
min
∂Br(y)

ϕτ ,

from which, taking r = 2(n− 1)/τ , r′ = δ/2 and using (4.2), we deduce

∀ y ∈ Ω \ Ωδ, min
Bδ/2(y)

ϕτ ≥
(

1− εδ

2

)
min

B2(n−1)/τ (y)
ϕτ . (4.5)

On the other hand, using (4.4) with M = 2(n− 1) we get, for τ larger than some τ2,

min
B2(n−1)/τ (xτ )

ϕτ ≥ 1− εδ

2
. (4.6)

Finally, because limτ→+∞ d(xτ ) = maxΩ d > δ, we can find τ3 > 0 such that xτ ∈
Ω \ Ωδ for τ ≥ τ3. As a consequence, for τ larger than τ̄ := max{τ1, τ2, τ3}, we can
apply (4.5) with y = xτ and next (4.6) to derive

min
Bδ/2(xτ )

ϕτ ≥
(

1− εδ

2

)2

. (4.7)

Consider then a covering of Ω \ Ωδ with balls of radius δ/6, i.e.,

Ω \ Ωδ ⊂ Bδ/6(y1) ∪ · · · ∪Bδ/6(ym)

with y1, . . . , ym ∈ Ω \ Ωδ. Let τ ≥ τ̄ be large enough so that 2(n − 1)/τ ≤ δ/6.
Using (4.5) we obtain

∀ j = 1, . . . ,m, min
Bδ/2(yj)

ϕτ ≥
(

1− εδ

2

)
min

Bδ/6(yj)
ϕτ . (4.8)
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Moreover, because xτ ∈ Ω \Ωδ, there exists j1 ∈ {1, . . . ,m} such that xτ ∈ Bδ/6(yj1)
and, in particular, Bδ/6(yj1) ⊂ Bδ/2(xτ ). Combining (4.7) and (4.8) we then get

min
Bδ/2(yj1 )

ϕτ ≥
(

1− εδ

2

)3

.

Now, because Ω \ Ωδ is connected, there exists j2 6= j1 such that

Bδ/6(yj2) ∩Bδ/6(yj1) 6= ∅

which entails Bδ/6(yj2) ⊂ Bδ/2(yj1). Thus, as before, we derive

min
Bδ/2(yj2 )

ϕτ ≥
(

1− εδ

2

)4

.

By a recursive argument we then find a permutation {j1, . . . , jm} of {1, . . . ,m} satis-
fying the following property:

∀ k = 2, . . . ,m, Bδ/6(yjk) ∩

(
k−1⋃
l=1

Bδ/6(yjl)

)
6= ∅ and min

Bδ/2(yjk )
ϕτ ≥

(
1− εδ

2

)2+k

.

It follows that the estimate

min
Ω\Ωδ

ϕτ ≥
(

1− εδ

2

)2+m

holds for τ sufficiently large, and thus for the lower limit as τ → +∞. Then, letting ε
go to 0, we eventually infer that ϕτ converges to 1 uniformly in Ω\Ωδ. This concludes
the proof owing to the arbitrariness of δ.

5 Asymptotic profile near the boundary

This section is devoted to the proof of Theorem 1.2, namely the limit (1.6). Since
Lemma 4.3 provides the limit in any compact subset of Ω, we only have to show the
asymptotic profile (1.6) in a neighborhood of ∂Ω. To do so, we will make use of the
upper bound (3.4) derived before and of a lower barrier function of the same type as
the upper barrier function (3.1) used in the proof of Theorem 1.1.

Proof of Theorem 1.2. The upper bound follows from (3.4). Indeed, for any given
γ > 1, we have that (3.4) holds for τ1 > 0 sufficiently large (depending on Ω and γ).
It follows that

lim sup
τ→+∞

(
sup
x∈Ω

ϕτ (x)

1− e−γτd(x)

)
≤ 1.

Now, since the function χ defined by

χ(s) =
1− sγ

1− s
(5.1)
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is increasing on (0, 1) and tends to γ as s→ 1−, we deduce that

lim sup
τ→+∞

(
sup
x∈Ω

ϕτ (x)

1−e−τd(x)

)
≤ lim sup

τ→+∞

[(
sup
x∈Ω

ϕτ (x)

1−e−γτd(x)

)
×
(

sup
x∈Ω

1−e−γτd(x)

1−e−τd(x)

)]
≤ γ,

which provides us with the desired upper bound, due to the arbitrariness of γ > 1.
It remains to derive the lower bound. To do this, from [6, Lemmas 14.16 and

14.17], we fix δ > 0 such that d is of class C2 in Ωδ, with Ωδ defined by (1.1), and
we consider any 0 < η < 1. Then, we define the following family of functions, which
will play the role of lower barriers, for τ > 0 and ε > 0:

wτ,ε(x) = 1− e−ητ(d(x)−ε).

These functions satisfy

−∆wτ,ε − τ |∇wτ,ε| = ητe−ητ(d(x)−ε) (−∆d+ τ (η − 1)) in Ωδ.

Therefore, there exists τ0 > 0, only depending on Ω, η and δ, such that

∀ τ ≥ τ0, ∀ ε > 0, −∆wτ,ε − τ |∇wτ,ε| < 0 in Ωδ. (5.2)

Let us call
kτ,ε := sup

Ωδ

wτ,ε
ϕτ

.

For any τ > 0 and 0 < ε < δ, the function wτ,ε is nonpositive in Ωε and positive

in Ωδ \ Ωε, thus the above supremum kτ,ε is positive and is actually a maximum,
attained at some xτ,ε such that ε < d(xτ,ε) ≤ δ. We claim that d(xτ,ε) = δ for any
τ ≥ τ0 and ε ∈ (0, δ). Indeed, otherwise ε < d(xτ,ε) < δ and the point xτ,ε would
then be a local maximum of the function wτ,ε − kτ,εϕτ which is interior to Ωδ \ Ωε.
Hence,

−∆wτ,ε(xτ,ε)− τ |∇wτ,ε(xτ,ε)| ≥ kτ,ε
(
−∆ϕτ (xτ,ε)− τ |∇ϕτ (xτ,ε)|

)
,

whence 0 > kτ,ελ(τ)ϕτ (xτ,ε) by (5.2) and (1.5). This contradicts the positivity of kτ,ε,
λ(τ) and ϕτ (xτ,ε).

Therefore, for all τ ≥ τ0 and ε ∈ (0, δ), we have that d(xτ,ε) = δ and

∀x ∈ Ωδ,
wτ,ε(x)

ϕτ (x)
≤ wτ,ε(xτ,ε)

ϕτ (xτ,ε)
≤ 1− e−ητδ

mind(y)=δ ϕτ (y)
,

from which, letting ε→ 0 we obtain

∀x ∈ Ωδ,
1− e−ητd(x)

ϕτ (x)
≤ 1− e−ητδ

mind(y)=δ ϕτ (y)
.

By Lemma 4.3, the right-hand side converges to 1 as τ → +∞, and thus

lim inf
τ→+∞

(
inf
x∈Ωδ

ϕτ (x)

1− e−ητd(x)

)
≥ 1.
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Finally, using again the monotonicity of the function χ defined in (5.1) above, we
easily deduce that

lim inf
τ→+∞

(
inf
x∈Ωδ

ϕτ (x)

1− e−τd(x)

)
≥ η.

Because η < 1 is arbitrary, we can replace it by 1 in the above inequality. This
provides the desired lower bound in Ωδ. Observe that in the set Ω \ Ωδ, the uniform
lower bound (as well as the upper bound) follows immediately from Lemma 4.3. The
proof of Theorem 1.2 is thereby complete.

6 Asymptotic behavior of ∇ϕτ
In this section we prove Theorem 1.3. First of all, for any y ∈ ∂Ω, we let ν(y)
denote the outward unit normal to Ω at y. The proof of Theorem 1.3 is based on the
following lemma.

Lemma 6.1. For any sequence (yk)k∈N of ∂Ω converging to y ∈ ∂Ω and for any
sequence (τk)k∈N of positive real numbers converging to +∞, there holds

ϕτk

(
yk +

x

τk

)
−→
k→+∞

1− ex·ν(y) for all x ∈ Rn such that x · ν(y) < 0.

Proof. The proof strongly relies on Theorem 1.2. First of all, up to rotation and
translation of the frame, one can assume without loss of generality that

y = 0 = (0, · · · , 0) and ν(y) = (0, · · · , 0,−1).

Fix then any x = (x1, · · · , xn) ∈ Rn such that x · ν(y) < 0, that is, xn > 0. Since
ν(yk)→ ν(y) as k → +∞, it follows that yk+x/τk belongs to Ω for all k large enough
(in particular, d(yk + x/τk) > 0 for k large enough), and, since yk ∈ ∂Ω,

d
(
yk +

x

τk

)
≤ |x|

τk
→ 0 as k → +∞. (6.1)

From formula (1.6) in Theorem 1.2, it is therefore sufficient to show that

τk d
(
yk +

x

τk

)
→ xn as k → +∞ (6.2)

in order to conclude the proof of Lemma 6.1.
Since ν(y) = (0, · · · , 0,−1) and ∂Ω is of class C2, there exist r > 0 and a C2

function g defined in a neighborhood V of (0, · · · , 0) ∈ Rn−1 such that

∂Ω ∩Br =
{

(x′, xn) : x′ ∈ V, xn = g(x′)}

and
∂g

∂xi
(0) = 0 for all 1 ≤ i ≤ n− 1,
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where, for all points x = (x1, · · · , xn) ∈ Rn, we write x′ = (x1, · · · , xn−1). Since
yk ∈ ∂Ω for every k ∈ N and limk→+∞ d(yk + x/τk) = 0, one can assume without loss
of generality that, for every k ∈ N, there is a unique point ξk ∈ ∂Ω such that

d
(
yk +

x

τk

)
=
∣∣∣yk +

x

τk
− ξk

∣∣∣.
Notice that, by (6.1),

|ξk| ≤
∣∣∣ξk − yk − x

τk

∣∣∣+
∣∣∣yk +

x

τk

∣∣∣ ≤ d
(
yk +

x

τk

)
+ |yk|+

|x|
τk
≤ |yk|+

2|x|
τk
→ 0

as k → +∞. For each k ∈ N large enough, the non-zero vector yk + x/τk − ξk is
parallel to the normal ν(ξk). Since for k ∈ N sufficiently large, the tangent space of Ω
at the point ξk is generated by the vectors

Ti(ξk) :=
(

0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−1−i

,
∂g

∂xi
(ξ′k)

)
, i = 1, . . . , n− 1,

we find that (yk + x/τk − ξk) · Ti(ξk) = 0 for all 1 ≤ i ≤ n− 1, that is,

yk,i +
xi
τk
− ξk,i = − ∂g

∂xi
(ξ′k)×

(
yk,n +

xn
τk
− ξk,n

)
.

Therefore,

τk d
(
yk+

x

τk

)
= τk

∣∣∣yk+ x

τk
−ξk

∣∣∣ = τk

√
1 +

∑
1≤i≤n−1

( ∂g
∂xi

(ξ′k)
)2

×
∣∣∣yk,n+

xn
τk
−ξk,n

∣∣∣ (6.3)

for all k ∈ N large enough. Now, since∣∣yk − ξk| ≤ ∣∣∣yk +
x

τk
− ξk

∣∣∣+
|x|
τk

= d
(
yk +

x

τk

)
+
|x|
τk
≤ 2|x|

τk

by (6.1), it follows in particular that

|y′k − ξ′k| = O
( 1

τk

)
as k → +∞.

On the other hand, for k ∈ N large enough such that yk, ξk ∈ ∂Ω ∩ Br and the
segment [y′k, ξ

′
k] is included in V , there holds

|yk,n − ξk,n| = |g(y′k)− g(ξ′k)| ≤
(

max
[y′k,ξ

′
k]
|∇g|

)
× |y′k − ξ′k|.

Since limk→+∞ y
′
k = limk→+∞ ξ

′
k = 0 and g is (at least) of class C1 in V with ∇g(0) =

0, one infers that |yk,n − ξk,n| = o(1/τk) as k → +∞. Finally, using (6.3), ∇g(0) = 0
and xn > 0, one concludes that

τk d
(
yk +

x

τk

)
=

√
1 +

∑
1≤i≤n−1

( ∂g
∂xi

(ξ′k)
)2

×
∣∣τk(yk,n− ξk,n) + xn

∣∣→ xn as k → +∞.

This is the desired result (6.2) and the proof of Lemma 6.1 is thereby complete.
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Proof of Theorem 1.3. Fix any real number M > 0. Let us first show that
min

ΩM/τ
|∇ϕτ | & τ as τ → +∞. Assume not. Then there exist some se-

quences (τk)k∈N of positive real numbers and (xk)k∈N in Ω such that

xk ∈ ΩM/τk for all k ∈ N, τk → +∞ and
|∇ϕτk(xk)|

τk
→ 0 as k → +∞. (6.4)

For every k ∈ N large enough, there is a unique

yk ∈ ∂Ω such that d(xk) = |xk − yk|. (6.5)

Consider now, for all k ∈ N large enough, the functions

ψk(x) = ϕτk

(
yk +

x

τk

)
, (6.6)

which are defined in Ωk with
Ωk = τk(Ω− yk). (6.7)

Up to extraction of a subsequence, one can assume that

yk → y ∈ ∂Ω as k → +∞. (6.8)

Denote H the half-space

H =
{
x ∈ Rn : x · ν(y) < 0

}
. (6.9)

Since τk → +∞ and ν(yk) → ν(y) as k → +∞, it follows that, for any compact set
K ⊂ H (resp. K ⊂ Rn \ H), one has K ⊂ Ωk (resp. K ∩ Ωk = ∅) for all k large
enough. Furthermore, the functions ψk : Ωk → [0, 1] satisfy −∆ψk − |∇ψk| =

λ(τk)

τ 2
k

ψk in Ωk,

ψk = 0 on ∂Ωk,

(6.10)

with λ(τk)/τ
2
k → 0 as k → +∞. Since the families (∂Ωk ∩ BR)k∈N are bounded

in C2 for every R > 0, standard elliptic estimates up to the boundary and Sobolev
injections imply that the sequences (‖ψk‖W 2,p(Ωk∩BR))k∈N and (‖ψk‖C1,α(Ωk∩BR))k∈N
are bounded for every 1 ≤ p < +∞ and 0 ≤ α < 1. From the equations (6.10)
satisfied by the functions ψk, one also infers that, for any compact set K ⊂ H, the
functions ψk are also bounded in C2,α(K) for k large enough. Therefore, there is a
function ψ ∈ C2(H) such that, up to extraction of a subsequence,

ψk → ψ in C2
loc(H) as k → +∞. (6.11)

From the previous observations, the function ψ can also be extended as a C1,α
loc (H)

function (for all 0 ≤ α < 1) such that ψ = 0 on ∂H and

|ψk(ξk)− ψ(ξ)|+ |∇ψk(ξk)−∇ψ(ξ)| → 0 as k → +∞ (6.12)
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for any sequence (ξk)k∈N such that ξk ∈ Ωk for all k ∈ N and ξk → ξ ∈ H as k → +∞.
Consider now, for all k ∈ N large enough, the points

zk = τk(xk − yk) ∈ Ωk. (6.13)

Since xk ∈ ΩM/τk for all k ∈ N and d(xk) = |xk − yk|, it follows that |zk| = τkd(xk) ≤
M for all k ∈ N large enough. Therefore, up to extraction of a subsequence, there is
z ∈ H such that

zk → z as k → +∞, (6.14)

hence ∇ψk(zk)→ ∇ψ(z) as k → +∞ by (6.12). Since

∇ψk(zk) =
∇ϕτk(xk)

τk
→ 0 as k → +∞

by (6.4) and (6.6), it follows that ∇ψ(z) = 0. But, finally, Lemma 6.1 implies that

ψ(x) = 1− ex·ν(y)

for all x ∈ H and then for all x ∈ H by continuity. In particular, |∇ψ(z)| = ez·ν(y) > 0.
This leads to a contradiction. As a consequence, the assumption (6.4) is ruled out,
hence min

ΩM/τ
|∇ϕτ | & τ as τ → +∞.

Let us now show that max
ΩM/τ

∣∣∇ϕτ/|∇ϕτ | −∇d∣∣→ 0 as τ → +∞. Once again,
argue by way of contradiction and assume that there exist ε > 0, a sequence (τk)k∈N
of positive real numbers converging to +∞, and a sequence (xk)k∈N in Ω such that

xk ∈ ΩM/τk and

∣∣∣∣ ∇ϕτk(xk)|∇ϕτk(xk)|
− ∇d(xk)

∣∣∣∣ ≥ ε > 0 for all k ∈ N. (6.15)

Up to extraction of a subsequence, let yk, ψk, Ωk, y, H, ψ, zk and z be defined as
in (6.5), (6.6), (6.7), (6.8), (6.9), (6.11), (6.13) and (6.14). On the one hand, as above
there holds ∇ψk(zk)→ ∇ψ(z) = −ez·ν(y)ν(y) 6= 0 as k → +∞, hence

∇ψk(zk)
|∇ψk(zk)|

→ −ν(y) and
∇ϕτk(xk)
|∇ϕτk(xk)|

→ −ν(y) as k → +∞. (6.16)

On the other hand, since |xk − yk| = d(xk) → 0 and yk → y ∈ ∂Ω, one infers
that ∇d(xk) → ∇d(y) = −ν(y) as k → +∞. Together with (6.16), one gets a
contradiction with (6.15). Finally, max

ΩM/τ
|∇ϕτ/|∇ϕτ | − ∇d| → 0 as τ → +∞ and

the proof of Theorem 1.3 is thereby complete.

7 The case of the annulus Ω = BR \Br

This section is devoted to the proof of Theorem 1.4. It is actually an immediate
consequence of the following proposition.
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Proposition 7.1. Let Ω be the annulus Ω = BR\Br with 0 < r < R and n ≥ 2. Then,
for every τ ≥ 0, the principal eigenfunction ϕτ solving (1.5) is radially symmetric,
i.e., ϕτ (x) = Φτ (|x|) in Ω for some function Φτ : [r, R] → [0, 1]. Furthermore, there
exists rτ ∈ (r, r+R

2
) such that Φ′τ > 0 in [r, rτ ), Φ′τ < 0 in (rτ , R], and

rτ →
r +R

2
as τ → +∞.

Remark 7.2. The property that the critical point rτ for ϕτ is smaller than r+R
2

is not
contained in Theorem 1.4. However, it is interesting in itself because it confirms the
heuristic stochastic interpretation of the result described in the introduction. Namely,
though the sphere ∂B r+R

2
is equidistant from the inner and outer components of the

boundary of Ω, a trajectory of the Brownian motion starting from a point x0 ∈ ∂B r+R
2

is more likely to hit the boundary at ∂BR than at ∂Br, because for all ρ > r+R
2

the

measure of (∂Bρ(x0)) \ BR is (strictly) larger than the measure of (∂Bρ(x0)) ∩ Br.
For this reason, in order to prevent the trajectory from hitting the boundary, it is
convenient to have a drift −vτ (x0) = τ∇ϕτ (x0)/|∇ϕτ (x0)| at x0 pointing towards the
origin, meaning that Φ′τ ((r +R)/2) < 0.

Proof of Proposition 7.1. We know from Proposition 2.1 that ϕτ is the unique so-
lution to (1.5) satisfying maxΩ ϕτ = 1. Thus, because Ω is invariant by rotation,
the same is true for ϕτ . The function Φτ : [r, R] 3 ρ 7→ Φτ (ρ) ∈ [0, 1] defined
by ϕτ (x) = Φτ (|x|) for every x ∈ Ω, is a C2([r, R]) solution of the equation

− Φ′′τ −
n− 1

ρ
Φ′τ − τ |Φ′τ | = λ(τ)Φτ , ρ ∈ [r, R], (7.1)

with Φτ > 0 in (r, R) and Φτ (r) = Φτ (R) = 0. Since λ(τ) > 0 and Φτ > 0 in (r, R),
we see that Φ′′τ < 0 at all interior critical points of Φτ , which readily implies the
existence of a unique radius

rτ ∈ (r, R)

at which Φ changes monotonicity. More precisely, one infers that Φ′τ > 0 in (r, rτ )
and Φ′τ < 0 in (rτ , R). The Hopf lemma also yields Φ′τ (r) > 0 and Φ′τ (R) < 0.
Furthermore, Theorem 1.1 implies that

rτ →
r +R

2
as τ +∞.

As a consequence, for any given x ∈ Ω, there holds, for τ large enough,

−vτ (x)

τ
=
∇ϕτ (x)

|∇ϕτ (x)|
=


x

|x|
= ∇d(x) if r ≤ |x| < r +R

2
,

− x

|x|
= ∇d(x) if

r +R

2
< |x| ≤ R.

These properties are actually sufficient to get the conclusion of Theorem 1.4.
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In order to complete the proof of Proposition 7.1, let us also show the additional
property rτ < (r + R)/2. To do so, for any given τ ≥ 0, consider the reflection of Φ
with respect to rτ , i.e.,

Φ̃τ (ρ) :=

{
Φτ (ρ) if ρ ∈ [r, rτ ]

Φτ (2rτ − ρ) if ρ ∈ (rτ , 2rτ − r].

The function Φ̃τ is of class C2([r, 2rτ − r]) and it satisfies, for ρ ∈ (rτ , 2rτ − r],

−Φ̃′′τ −
n− 1

ρ
Φ̃′τ − τ |Φ̃′τ | − λ(τ)Φ̃τ =

(
n− 1

ρ
+

n− 1

2rτ − ρ

)
Φ′τ (2rτ − ρ) > 0.

Namely, Φ̃τ is a strict supersolution of (7.1) in (rτ , 2rτ − r], that is, the function
ϕ̃τ ∈ C2(B2rτ−r \Br) defined by

ϕ̃τ (x) := Φ̃τ (|x|), x ∈ B2rτ−r \Br,

satisfies
−∆ϕ̃τ − τ |∇ϕ̃τ | > λ(τ)ϕ̃τ in B2rτ−r \Brτ .

It also satisfies −∆ϕ̃τ − τ |∇ϕ̃τ | ≥ λ(τ)ϕ̃τ in Brτ \ Br, where it coincides with ϕτ .
Thus, calling λ̃(τ) the eigenvalue given by problem (1.5) with domain B2rτ−r \ Br

and observing that ϕ̃τ > 0 in B2rτ−r \ Br, the first characterization in formula (2.1)
of Proposition 2.1 yields

λ̃(τ) ≥ λ(τ).

Then, by the monotonicity of λ(τ) provided by Proposition 2.1, we infer that
B2rτ−r \ Br ⊂ BR \ Br. Moreover, the inclusion is strict because otherwise, again
by Proposition 2.1, ϕ̃τ would coincide with ϕτ up to a scalar multiple, but we know
that ϕ̃τ is a strict supersolution of the equation satisfied by ϕτ in B2rτ−r \Brτ . This
shows that 2rτ − r < R, that is, rτ < (r + R)/2. The proof of Proposition 7.1 is
thereby complete.
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