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Abstract

In this paper, we firstly consider steady Euler flows in two-dimensional bounded
annuli, as well as in complements of disks, in punctured disks and in the punctured
plane. We prove that, if the flow does not have any stagnation point and satisfies rigid
wall boundary conditions together with further conditions at infinity in the case of un-
bounded domains and at the center in the case of punctured domains, then the flow is
circular, namely the streamlines are concentric circles. In other words, the flow then
inherits the radial symmetry of the domain. We secondly show two classification results
for the steady Euler equations in simply or doubly connected bounded domains with
free boundaries. Here, the flows are further assumed to have constant norm on each
connected component of the boundary, and the domains are then proved to be disks or
annuli. On the one hand, the proofs use ODE and PDE arguments to establish some
geometric properties of the trajectories of the flow and the orthogonal trajectories of
the gradient of the stream function. On the other hand, we also show some comparison
results of independent interest for a derived semilinear elliptic equation satisfied by the
stream function. These last results, which are based on the method of moving planes,
adapted here to some almost circular domains located between some streamlines of the
flow, lead with a limiting argument to the radial symmetry of the stream function and
the streamlines of the flow.
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1 Introduction and main results

Throughout this paper, | | denotes the Euclidean norm in R2 and, for 0 ≤ a < b ≤ ∞, Ωa,b

denotes the two-dimensional domain defined by

Ωa,b =
{
x ∈ R2 : a < |x| < b

}
.

When a < b are two positive real numbers, Ωa,b is a bounded smooth annulus. When 0 <
a < b = ∞, Ωa,∞ is an exterior domain which is the complement of a closed disk. When
0 = a < b < ∞, Ω0,b is a punctured disk. When 0 = a < b = ∞, Ω0,∞ is the punctured
plane R2\{0}, where we denote 0 = (0, 0) with a slight abuse of notation.

We also denote

er(x) =
x

|x|
and eθ(x) = er(x)⊥ =

(
− x2

|x|
,
x1

|x|

)
for x = (x1, x2) ∈ R2\{0}. Moreover, for x ∈ R2 and r > 0,

B(x, r) = {y ∈ R2 : |y − x| < r}

denotes the open Euclidean disk with center x and radius r. We also write Br = B(0, r) and

Cr = ∂Br = {x ∈ R2 : |x| = r}.
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1.1 Liouville-type radial symmetry results for steady Euler flows
in Ωa,b

In Ωa,b, we consider steady flows
v = (v1, v2)

of an inviscid fluid, solving the system of the Euler equations:{
v · ∇ v +∇ p = 0 in Ωa,b,

div v = 0 in Ωa,b,
(1.1)

where the solutions v and p are always understood in the classical sense, that is, they are (at
least) of class C1 in Ωa,b and therefore satisfy (1.1) everywhere in Ωa,b. We always assume rigid
wall boundary conditions, that is, v is (at least) continuous up to the regular parts of ∂Ωa,b

and tangential there: {
v · er = 0 on Ca if a > 0,

v · er = 0 on Cb if b <∞.
(1.2)

The Euler equations are an old but still very active research field. The search for qualitative
properties of steady solutions is an important aspect of the study of the Euler flows, and the
first main motivation of our paper is to understand the effect of the geometry of the underlying
domain Ωa,b on the properties of steady flows, and more precisely to get some conditions on
the flow which guarantee its radially symmetry (see the precise definition below). In other
words, how does the solution inherit the geometric radial symmetry properties of the domain ?
Our primary goal is thus to establish some Liouville-type results for the Euler equations. But
the paper is also concerned with related Serrin-type free boundary problems, for which the
underlying domain, simply or doubly connected, is free, but is eventually proved to be circular
due to additional boundary conditions. Lastly, the paper contains some new comparison results
of independent interest on semilinear elliptic equations in doubly connected domains, which
are used to show the rigidity results for the Euler equations in given domains and for the
related free boundary problems.

A flow v in Ωa,b is called a circular flow if v(x) is parallel to the vector eθ(x) at every
point x ∈ Ωa,b, that is, v · er = 0 in Ωa,b. The main goal of the results of this subsection is
to show that, under some conditions, the flow is circular. We obtain such results in the four
cases 0 < a < b <∞, 0 < a < b =∞, 0 = a < b <∞, and 0 = a < b =∞.

The case of bounded smooth annuli Ωa,b with 0 < a < b <∞

The first result is concerned with flows having no stagnation point in the closed annulus Ωa,b.
Throughout the paper, the stagnation points of a flow v are the points x for which |v(x)| = 0.

Theorem 1.1 Assume 0 < a < b < ∞. Let v be a C2(Ωa,b) flow solving (1.1)-(1.2) and
such that |v| > 0 in Ωa,b. Then v is a circular flow, and there is a C2([a, b]) function V with
constant strict sign such that

v(x) = V (|x|) eθ(x) for all x ∈ Ωa,b.
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It actually turns out that the assumption |v| > 0 in Ωa,b can be slightly relaxed. Namely,
if |v| > 0 in the open annulus Ωa,b and if the set of stagnation points is assumed to be properly
included in one of the connected components of ∂Ωa,b, then the same conclusion holds, and
then in fact |v| > 0 in Ωa,b. This is the purpose of the following result.

Theorem 1.2 Assume 0 < a < b <∞. Let v be a C2(Ωa,b) flow solving (1.1)-(1.2) and such
that {

x ∈ Ωa,b : |v(x)| = 0
}
( Ca or

{
x ∈ Ωa,b : |v(x)| = 0

}
( Cb.

1 (1.3)

Then |v| > 0 in Ωa,b and the conclusion of Theorem 1.1 holds.

Theorem 1.2 is clearly stronger than Theorem 1.1, but we preferred to state Theorem 1.1
separately since the assumption is simpler to read.

Several further comments are in order. First of all, despite the fact that Ωa,b is not simply
connected, the flow v has a stream function u : Ωa,b → R of class C3(Ωa,b) defined by

∇⊥u = v, that is,
∂u

∂x1

= v2 and
∂u

∂x2

= −v1 (1.4)

in Ωa,b, since v is divergence free and tangential on Ca. Notice that the stream function u is
uniquely defined in Ωa,b up to an additive constant. Theorems 1.1 and 1.2 can then be viewed
as Liouville-type symmetry results since their conclusion means that the stream function u is
radially symmetric (and strictly monotone with respect to |x| in Ωa,b). Furthermore, if for x
in Ωa,b one calls ξx the solution of {

ξ̇x(t) = v(ξx(t)),

ξx(0) = x,
(1.5)

the conclusion of Theorems 1.1 and 1.2 then implies that each function ξx is defined in R and
periodic, and that the streamlines Ξx = ξx(R) of the flow are concentric circles.

Theorems 1.1 and 1.2 also mean equivalently that any C2(Ωa,b) non-circular flow for (1.1)-
(1.2) must either have a stagnation point in the open annulus Ωa,b, or must have stagnation
points in both circles Ca and Cb, or in the whole circle Ca, or in the whole circle Cb.

Without the assumption |v| > 0 in Ωa,b or the weaker one (1.3), the conclusion of Theo-
rems 1.1 and 1.2 obviously does not hold in general, in the sense that there are non-circular
flows which do not fulfill (1.3). To construct such flows explicitly, we first point out that, for
any continuous function f : R→ R and any non-radial C2(Ωa,b) solution u of

∆u+ f(u) = 0 (1.6)

in Ωa,b which is constant on Ca and on Cb and which has a critical point in Ωa,b, the C1(Ωa,b)
field

v = ∇⊥u
1Throughout the paper, by E ( F , we mean that E ⊂ F and E 6= F .
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is a non-circular solution of (1.1)-(1.2) with a stagnation point in Ωa,b: notice indeed that
v = ∇⊥u satisfies the boundary condition v · er = −∇u · eθ = 0 on ∂Ωa,b since u is constant
on Ca and on Cb, and v solves (1.1) with pressure

p = −|v|
2

2
− F (u) = −|∇u|

2

2
− F (u),

where F ′ = f . As an example, let λ ∈ R and ϕ ∈ C∞([a, b]) be the principal eigenvalue and
the principal eigenfunction of the eigenvalue problem

−ϕ′′(r)− r−1ϕ′(r) + r−2ϕ(r) = λϕ(r) in [a, b]

with ϕ > 0 in (a, b) and Dirichlet boundary condition ϕ(a) = ϕ(b) = 0 (the principal
eigenvalue λ is unique and the principal eigenfunction ϕ is unique up to multiplication
by positive constants). The C∞(Ωa,b) function u defined by u(x) = ϕ(|x|)x1/|x| (that is,
u(x) = ϕ(r) cos(θ) in the usual polar coordinates) satisfies

∆u+ λu = 0 in Ωa,b

and it has some critical points in Ωa,b (since minΩa,b
u < 0 < maxΩa,b

u and u = 0 on ∂Ωa,b).

Actually, it can easily be seen that ϕ has only one critical point in [a, b] and that u has exactly
6 critical points in Ωa,b (2 in Ωa,b, 2 on Ca, and 2 on Cb). Then the C∞(Ωa,b) flow v = ∇⊥u is
a non-circular flow solving (1.1)-(1.2) and having 2 stagnation points in Ωa,b and 4 on ∂Ωa,b.

However, we do not know whether the hypothesis (1.3) could be more relaxed for the
conclusion of Theorems 1.1 and 1.2 to still hold. For instance, would it be sufficient to as-
sume that v has no stagnation point in Ωa,b? We refer to the comments after the proof of
Theorems 1.1 and 1.2 in Section 3.1 below for further details on this question.

On the other hand, we point out that the sufficient conditions |v| > 0 in Ωa,b or the more
general one (1.3) are obviously not equivalent to being a circular flow, in the sense that there
are circular flows for (1.1)-(1.2) which do not fulfill (1.3) (besides the trivial flow v = (0, 0)!).
Actually, any C1(Ωa,b) circular flow v(x) = V (|x|) eθ(x) solving (1.1)-(1.2) and for which
V ∈ C1([a, b]) does not have a constant strict sign, has a set of stagnation points containing
at least a circle. For instance, let µ ∈ R and φ ∈ C∞([a, b]) be the principal eigenvalue and
the principal eigenfunction of the eigenvalue problem

−φ′′(r)− r−1φ′(r) = µφ(r) in [a, b],

with φ > 0 in (a, b) and Dirichlet boundary condition φ(a) = φ(b) = 0, and let u = φ(| · |).
Then v = ∇⊥u = φ′(| · |) eθ is a C∞(Ωa,b) non-trivial circular flow solving (1.1)-(1.2) with
pressure p(x) = −φ′(|x|)2/2 − µφ(|x|)2/2 and with a circle of stagnation points in Ωa,b: more
precisely, if r∗ ∈ (a, b) denotes a real number such that φ(r∗) = max[a,b] φ (it is easy to see
that r∗ is the only critical point of φ in [a, b]), then the set of stagnation points of the flow v
is equal to the whole circle Cr∗ .

Lastly, the assumption on the C2(Ωa,b) smoothness of v is a technical assumption which is
used in the proof. It warrants the C1 smoothness of the vorticity

ω =
∂v2

∂x1

− ∂v1

∂x2

,
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satisfying v · ∇ω = 0 in Ωa,b, and the C1 smoothness of the vorticity function f arising in the
semilinear elliptic equation of the type (1.6) satisfied by the stream function u. We refer to
the proofs of the preliminary results in Section 2 and especially Lemma 2.8 below for further
details.

The case of exterior domains Ωa,∞ with 0 < a <∞

Theorem 1.3 Assume 0 < a < ∞ and b = ∞. Let v be a C2(Ωa,∞) flow solving (1.1)-(1.2)
and such that {

x ∈ Ωa,∞ : |v(x)| = 0
}
( Ca and lim inf

|x|→+∞
|v(x)| > 0. (1.7)

Assume moreover that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞. (1.8)

Then |v| > 0 in Ωa,∞ and v is a circular flow, namely there is a C2([a,+∞)) function V with
constant strict sign such that v(x) = V (|x|) eθ(x) for all x ∈ Ωa,∞.

As for Theorems 1.1 and 1.2, the conclusion of Theorem 1.3 says that the stream function u
is radially symmetric and strictly monotone with respect to |x| in Ωa,∞, and that the streamlines
of the flow v are concentric circles.

In the proof of Theorem 1.3 given in Section 3.2, the o(1/|x|) behavior in (1.8) seems
merely optimal. Let us show in this paragraph that without the condition (1.8) the conclusion
of Theorem 1.3 does not hold in general. Namely, consider the C∞(Ωa,∞) function u defined
by u(x) = 2(|x|2/a2 − 1) + (|x|/a− a/|x|)x1/|x|, that is,

u = 2
(r2

a2
− 1
)

+
(r
a
− a

r

)
cos θ

in the usual polar coordinates. The function u satisfies ∆u− 8/a2 = 0 in Ωa,∞ with Dirichlet
boundary condition u = 0 on Ca, and the C∞(Ωa,∞) field v = ∇⊥u satisfies (1.1)-(1.2) with
pressure p = −|v|2/2 + 8u/a2. In the usual polar coordinates, the field v is given by

v =
[4r

a2
+
(1

a
+
a

r2

)
cos θ

]
eθ +

[(1

a
− a

r2

)
sin θ

]
er. (1.9)

It satisfies condition (1.7) (and even infΩa,∞ |v| ≥ 2/a > 0). But

v(x) · er(x) =
(1

a
− a

|x|2
) x2

|x|
6= o
( 1

|x|

)
as |x| → +∞,

and v is not a circular flow. However, since u(x) → +∞ as |x| → +∞ and u = 0 on Ca
and since u has no critical point, it is easily seen that all solutions ξx of (1.5) are defined
in R and periodic and that all streamlines Ξx = ξx(R) (which are level sets of u) surround the
origin.2 Nevertheless, the streamlines do not converge to any family of circles at infinity since

2Throughout the paper, we say that a Jordan curve C surrrounds the origin if the bounded connected
component of R2\C contains the origin.
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a calculation yields maxy∈Ξx |y| −miny∈Ξx |y| = maxR |ξx(·)| −minR |ξx(·)| → a/2 > 0 as |x| →
+∞. In this counterexample, one actually has 0 < lim sup|x|→+∞ |v(x) · er(x)| < +∞. Thus,
there may be another critical behavior than o(1/|x|) in (1.8) for which the conclusion would
still hold, although a different proof would be necessary. The question of the characterization
of a critical behavior is left open.

We point out that, in Theorem 1.3, the flow v is not assumed to be bounded. Actually,
there are unbounded circular flows satisfying all assumptions of Theorem 1.3: consider for
instance the C∞(Ωa,∞) unbounded circular flow v defined by

v(x) = |x| eθ(x),

solving (1.1)-(1.2) with stream function u(x) = |x|2/2 and pressure p(x) = |x|2/2, and satisfy-
ing infΩa,∞ |v| = a > 0.

Notice lastly that the condition (1.7) is fulfilled in particular when infΩa,∞ |v| > 0. Further-
more, as soon as |v| > 0 on Ca (that holds if infΩa,∞ |v| > 0), the boundary condition (1.2) and
the continuity of v imply in particular that v · eθ has a constant strict sign on Ca. Under the
condition infΩa,∞ |v| > 0, the following result then provides some estimates on the infimum or
the supremum of the vorticity ∂v2

∂x1
− ∂v1

∂x2
in Ωa,∞, in terms of the sign of v · eθ on Ca.

Theorem 1.4 Assume 0 < a < ∞ and b = ∞. Let v be a C2(Ωa,∞) flow solving (1.1)-(1.2)
and such that infΩa,∞ |v| > 0. If v · eθ > 0 on Ca (respectively if v · eθ < 0 on Ca), then

sup
Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
> 0 (respectively inf

Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
< 0).

The flow v given by (1.9) is an example of a flow satisfying the assumptions of Theorem 1.4,
with v · eθ > 0 on Ca, and for which the vorticity (namely ∆u) is actually equal to the positive
constant 8/a2 everywhere in Ωa,∞.

Theorem 1.4 can also be viewed as a Liouville-type result. Namely, we show in its proof
that, if infΩa,∞ |v| > 0, if v ·eθ > 0 on Ca, and if the vorticity is nonpositive everywhere in Ωa,∞,
then v is a circular flow of the type v = V (| · |) eθ with V : [a,+∞)→ [η,+∞) for some η > 0.
Therefore, the vorticity ∂v2

∂x1
(x)− ∂v1

∂x2
(x) = V ′(|x|)+V (|x|)/|x| can not be nonpositive everywhere

(since otherwise the function r 7→ r V (r) (≥ ηr) would be nonincreasing in [a,+∞), leading
to a contradiction).3

Notice that Theorem 1.4 does not hold good if the assumption infΩa,∞ |v| > 0 is dropped.

There are actually some circular flows v satisfying (1.1)-(1.2) such that |v| > 0 in Ωa,∞ and
v ·eθ > 0 on Ca, but infΩa,∞ |v| = 0 and for which the vorticity is negative everywhere. Consider

for instance the C∞(Ωa,∞) circular flow

v(x) =
1

|x|2
eθ(x),

solving (1.1)-(1.2) with stream function u(x) = −1/|x| and pressure p(x) = −1/(4|x|2): one
has |v| > 0 in Ωa,∞ and v · eθ > 0 on Ca, but infΩa,∞ |v| = 0 and ∂v2

∂x1
(x)− ∂v1

∂x2
(x) = −1/|x|3 < 0

in Ωa,∞.

3The same arguments do not lead to any contradiction in the case of bounded annuli Ωa,b and Ω0,b with b <
∞, see Remark 1.6.
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The case of punctured disks Ω0,b with 0 < b <∞

Theorem 1.5 Assume a = 0 and 0 < b <∞. Let v be a C2(Ω0,b\{0}) flow solving (1.1)-(1.2)
and such that {

x ∈ Ω0,b\{0} : |v(x)| = 0
}
( Cb (1.10)

and ∫
Cε

|v · er| → 0 as ε
>→ 0. (1.11)

Then |v| > 0 in Ω0,b\{0} and v is a circular flow, namely there is a C2((0, b]) function V with
constant strict sign such that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,b\{0}.

Notice that the condition (1.11) is fulfilled in particular if v(x) · er(x) = o(1/|x|) as |x| >→ 0.
Let us show in this paragraph that without (1.11) the conclusion of Theorem 1.5 does not
hold in general. To do so, let us give a counter-example similar to (1.9) above (which was
there defined in Ωa,∞). More precisely, consider the C∞(Ω0,b \ {0}) function u defined by
u(x) = (|x|/b− b/|x|)x1/|x|, that is,

u =
(r
b
− b

r

)
cos θ

in the usual polar coordinates. The function u satisfies ∆u = 0 in Ω0,b \{0} with Dirichlet
boundary condition u = 0 on Cb, and the C∞(Ω0,b\{0}) field v = ∇⊥u satisfies (1.1)-(1.2) with
pressure p = −|v|2/2 (and vorticity equal to 0). In the usual polar coordinates, the field v is
given by

v =
[(1

b
+

b

r2

)
cos θ

]
eθ +

[(1

b
− b

r2

)
sin θ

]
er. (1.12)

It has only two stagnation points in Ω0,b \ {0} and they both lie on Cb. Hence, (1.10) is

fulfilled. But
∫
Cε
|v · er| = 4(b/ε − ε/b) 6→ 0 as ε

>→ 0, and v is not a circular flow. In this

counterexample, one actually has
∫
Cε
|v · er| ∼ 4b/ε as ε

>→ 0. Thus, there may be another
critical behavior than o(1) in the condition (1.11) for which the conclusion would still hold,
although a different proof would be necessary. The question of the characterization of a critical
behavior is still open.

Lastly, in Theorem 1.5, the flow v is not assumed to be bounded. Actually, there are
unbounded circular flows satisfying all assumptions of Theorem 1.5: consider for instance
the C∞(Ω0,b\{0}) unbounded circular flow v defined by

v(x) =
1

|x|
eθ(x) (1.13)

solving (1.1)-(1.2) with stream function u(x) = ln |x| and pressure p(x) = −1/(2|x|2), and
satisfying |v| > 0 in Ω0,b\{0} and then (1.10)-(1.11).

Remark 1.6 A result similar to Theorem 1.4 does not hold in the punctured disk Ω0,b. For
instance, the C∞(Ω0,b\{0}) flow (1.13) satisfies (1.1)-(1.2), v · eθ > 0 on Cb, infΩ0,b

|v| > 0,

but ∂v2
∂x1
− ∂v1

∂x2
≡ 0 in Ω0,b. The same observation holds good in a smooth annulus Ωa,b with

0 < a < b <∞.
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Remark 1.7 Let us comment here the similar conditions (1.8) and (1.11). Condition (1.8)
implies that

∫
CR
|v · er| → 0 as R → +∞, which would be the dual of (1.11). But the

stronger pointwise asymptotic behavior (1.8) is truly used in the proof of Theorem 1.3, and in
particular in the proof of Lemma 3.1 below. Replacing (1.8) by the weaker integral condition
limR→+∞

∫
CR
|v · er| = 0 still yields some intermediary results (see the common preliminary

results of Section 2 below), but it is an open question to decide whether the conclusion of
Theorem 1.3 would still hold with the integral condition instead of the pointwise one.

The case of the punctured plane Ω0,∞

The last geometric configuration considered in the paper is that the punctured plane

Ω0,∞ = R2\{0}.

Theorem 1.8 Let v be a C2(Ω0,∞) flow solving (1.1) and such that |v| > 0 in Ω0,∞ and
lim inf |x|→+∞ |v(x)| > 0. Assume moreover that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞ and

∫
Cε

|v · er| → 0 as ε
>→ 0. (1.14)

Then v is a circular flow. Furthermore, there is a C2((0,+∞)) function V with constant strict
sign such that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,∞.

The conclusion says that, under roughly speaking the absence of stagnation points in the
punctured plane and at infinity, and under the same conditions as in Theorems 1.3 and 1.5
on the behavior of the radial component of v at infinity and at the origin, all streamlines are
closed and are nothing but concentric circles.

Remark 1.9 Let us mention here other rigidity results for the stationary solutions of (1.1) in
various geometrical configurations. The analyticity of the streamlines under a condition of the
type v1 > 0 in the unit disk was shown in [19]. The local correspondence between the vorticities
of the solutions of (1.1) and the co-adjoint orbits of the vorticities for the non-stationary version
of (1.1) in more general annular domains was investigated in [8]. In a previous paper [14] (see
also [15]), we considered the case of a two-dimensional strip with bounded section and the case
of bounded flows in a half-plane, assuming in both cases that the flows v are tangential on the
boundary and that inf |v| > 0: all streamlines are then proved to be lines which are parallel
to the boundary of the domain (in other words the flow is a parallel flow). Compared to [14],
the results of the present paper are concerned with different geometrical situations, and the
cases of punctured disks or exterior domains involve specific difficulties. We here also include
and prove some new comparison results of independent interest for the solutions of semilinear
elliptic equations in doubly connected domains, see Proposition 1.14 in Section 1.3 below, not
to mention the Serrin-type free boundary problems considered in Section 1.2. These types
of problems, as well as some methods used here such as the method of moving planes or the
Kelvin transform, were not used in [14, 15, 16]. Earlier results by Kalisch [18] were concerned
with flows in two-dimensional strips under the additional assumption v · e 6= 0, where e is
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the main direction of the strip. In [16], we considered the case of the whole plane R2 and we
showed that any C2(R2) bounded flow v is still a parallel flow under the condition infR2 |v| > 0,
with completely different tools based on the study of the growth of the argument of the flow
at infinity.

1.2 Serrin-type free boundary problems with overdetermined boun-
dary conditions

The last main results on the solutions of the Euler equations (1.1) are two Serrin-type results
in smooth simply or doubly connected bounded domains whose boundaries are free but on
which the flow is assumed to satisfy an additional condition.

Theorem 1.10 Let Ω be a C2 non-empty simply connected bounded domain of R2. Let v ∈
C2(Ω) satisfy the Euler equations (1.1) and assume that v · n = 0 and |v| is constant on ∂Ω,
where n denotes the outward unit normal on ∂Ω. Assume moreover that v has a unique
stagnation point in Ω. Then, up to translation,

Ω = BR

for some R > 0. Furthermore, the unique stagnation point of v is the center of the disk and v is
a circular flow, that is, there is a C2([0, R]) function V : [0, R]→ R such that V 6= 0 in (0, R],
V (0) = 0, and v(x) = V (|x|) eθ(x) for all x ∈ BR\{0}.

In the proof, we will show that the C3(Ω) stream function u defined by (1.4) satisfies
a semilinear elliptic equation ∆u + f(u) = 0 in Ω. Furthermore, up to normalization, the
function u vanishes on ∂Ω and is positive in Ω. Lastly, since |v| is assumed to be constant
along ∂Ω, the normal derivative ∂u

∂n
of u along ∂Ω is constant. This problem is therefore

an elliptic equation with overdetermined boundary conditions. Since the celebrated paper by
Serrin [25], it has been known that these overdetermined boundary conditions on ∂Ω determine
the geometry of Ω, namely, Ω is then a ball and the function u is radially symmetric (hence,
here, v would then be a circular flow). The proof is based on the method of moving planes
developed in [3, 6, 11, 25] and on the maximum principle, and it relies on the Lipschitz
continuity of the function f . In our case, the function f is given in terms of the function u
itself and it is continuous in [0,maxΩ u], as will be seen in the proof of Theorem 1.10. But it
can be non-Lipschitz-continuous on the whole range [0,maxΩ u]. More precisely, it can be non-
Lipschitz-continuous in any left neighborhood of the maximal value maxΩ u.4 One therefore
has to adapt the proof to this case by removing small neighborhoods of size ε around the
maximal point of u (which is the unique stagnation point of v): one shows the symmetry of

the domain in all directions up to ε and one concludes by passing to the limit as ε
>→ 0.

4For instance, for any R > 0, the C∞(BR) flow v(x) = −4|x|2x⊥ satisfies (1.1) in BR with v · er = 0
on CR, and with pressure p(x) = (8/3)|x|6 (up to an additive constant). Furthermore, |v| is constant on CR
and the only stagnation point of v in BR is the center of the disk. The stream function u(x) = R4 − |x|4 (up
to an additive constant) satisfies the elliptic equation ∆u + f(u) = 0 in BR with f(s) = 16

√
R4 − s, and the

function f is not Lipschitz continuous in any left neighborhood of maxBR
u = R4.
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Remark 1.11 Other free boundary problems related to the Euler equations have been con-
sidered by Gómez-Serrano, Park, Shi and Yao in [13]. Among other things, the authors proved
that, if a solution v of the Euler equations (1.1) in R2 has a vorticity which is the indicator
function of a bounded set (a patch) and if v is tangential on the boundary of this set, then v is
circular (up to translation) and the patch is a disk (see also [9, Chapter 4] for an earlier result
when the patch is assumed to be simply connected). It was also shown in [13] that smooth
solutions of (1.1) in R2 with nonnegative compactly supported vorticity must be radially sym-
metric (up to translation). Other rigidity results of [13, 17] also deal with non-stationary
uniformly-rotating solutions.

In connection with Theorems 1.5 and 1.10, we state the following conjecture.

Conjecture 1.12 Let D be an open non-empty disk and let z ∈ D. Let v be a C2(D\{z})
and bounded flow solving (1.1) and v · n = 0 on ∂D, where n denotes the outward unit normal
on ∂D. Assume that |v| > 0 in D\{z}. Then z is the center of the disk and the flow is circular
with respect to z.

Up to translation, one can assume that D = Bb for some b ∈ (0,+∞), hence n = er
on ∂D. If the point z is a priori assumed to be the center of the disk, namely the origin, then
Theorem 1.5 implies that v is a circular flow. Up to rotation, assume now that z = (α, 0) for
some α ∈ (0, b) and, without loss of generality, that the stream function u is positive in D\{z}
and vanishes on ∂D. The goal would be to reach a contradiction. As far as Theorem 1.10
is concerned, the method of proof described in the paragraph following the statement shows
simultaneously the symmetry of the domain and the symmetry of the function u (which obeys
an equation of the type ∆u + f(u) = 0), thanks to the overdetermined boundary conditions
satisfied by u. Here in Conjecture 1.12, the same technics based on the method of moving
method implies for instance on the one hand that the function u is even in x2 in Ω0,b\{z}, and
on the other hand that u(x1, x2) < u(2α−x1, x2) for all (x1, x2) ∈ Ω0,b such that x1 > α. But,
regarding the second property, the Hopf lemma might not apply to the function (x1, x2) 7→
u(x1, x2) − u(2α − x1, x2) at the point z = (α, 0) since the vorticity function f might not be
Lipschitz continuous around the limiting value of u at z (see also the comments after the proof
of Theorems 1.1 and 1.2 in Section 3.1 below, and notice that u is not differentiable at z, unless
one further assumes that |v(x)| → 0 as x→ z). Therefore, the same arguments as the ones in
the proof of Theorem 1.10 do not lead to an obvious contradiction if z is not the center of the
disk. However, Conjecture 1.12 seems natural and will be the purpose of further investigation.

A related weaker conjecture (with stronger assumptions) can also be formulated: if D is an
open non-empty disk, if z ∈ D, if v ∈ C2(D) solves (1.1), if v ·n = 0 on ∂D and if z is the only
stagnation point of v in D, then z is the center of the disk and v is circular with respect to z.
For the same reasons as in the previous paragraph (since the vorticity function f might not
be Lipschitz continuous around u(z)), the proof of that second conjecture is not clear either.

The last main result related to the Euler equations is concerned with the case of doubly
connected bounded domains.

Theorem 1.13 Let ω1 and ω2 be two C2 non-empty simply connected bounded domains of R2

such that ω1 ⊂ ω2, and denote
Ω = ω2\ω1.
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Let v ∈ C2(Ω) satisfy the Euler equations (1.1). Assume that v · n = 0 on ∂Ω = ∂ω1 ∪ ∂ω2,
where n denotes the outward unit normal on ∂Ω, and that |v| is constant on ∂ω1 and on ∂ω2.
Assume moreover that |v| > 0 in Ω. Then ω1 and ω2 are two concentric disks and, up to
translation,

Ω = Ωa,b

for some 0 < a < b < ∞ and v is a circular flow satisfying the conclusion of Theorem 1.1
in Ω = Ωa,b.

In this case, by using the arguments of Section 2 below (which also lead to the proof of
Theorems 1.1 and 1.2 in Ωa,b with 0 < a < b < ∞), it follows that the stream function u of
the flow v satisfies a semilinear elliptic equation ∆u + f(u) = 0 in Ω, with u = c1 on ∂ω1

and u = c2 on ∂ω2, for some real numbers c1 6= c2. Furthermore, min(c1, c2) < u < max(c1, c2)
in Ω and the normal derivative ∂u

∂n
is constant along ∂ω1 and along ∂ω2. Since v has no

stagnation point in Ω, the function f is then shown to be Lipschitz continuous in the whole
interval [min(c1, c2),max(c1, c2)], and known results of Reichel [21] and Sirakov [27] then imply
that, up to translation, Ω = Ωa,b for some 0 < a < b <∞, and u is radially symmetric.

Further symmetry results have been obtained for nonlinear elliptic equations of the type
∆u + f(u) = 0 or more general ones in exterior domains with overdetermined boundary
conditions (see e.g. [1, 22, 27]), or in the whole space (see e.g. [12, 20, 26]), in both cases with
further assumptions on the solution u at infinity and on the function f . Such conditions are
in general not satisfied by the stream function u and the vorticity function f of a flow v that
would be defined in the complement of a simply connected bounded domain or in the whole
or punctured plane. Lastly, we refer to [5, 10, 23, 24] for further references on overdetermined
boundary value elliptic problems in domains with more complex topology or in unbounded
epigraphs.

1.3 Directional comparison results for semilinear elliptic equations
in some doubly connected domains

As briefly mentioned after Theorems 1.10 and 1.13, the main strategy of these results, as well as
the other ones in the fixed annular domains Ωa,b, is to show that the stream function u satisfies
a semilinear elliptic equation ∆u + f(u) = 0 in the considered domain and that this stream
function is then radially symmetric (and the domain itself is circular if the boundary is free).
The radial symmetry of the stream function u means that the flow v is circular. The proof
of the radial symmetry of u follows from its even symmetry and monotonicity with respect
to each direction. The proof of the symmetry and monotonicity relies on some directional
comparison results which are themselves based on the method of moving planes in doubly
connected domains trapped between two level sets of u. We point out that these level sets are
not known a priori to be circles and their precise shape is not known. This is why we have to
show in this framework a key-proposition containing some new directional comparison results,
which we think are of independent interest and which we state and will use for more general
semilinear heterogeneous elliptic equations. Proposition 1.14 below will be used as a key-step
in the proof of Theorems 1.3-1.5, 1.8 and 1.10. We also point out that the heterogeneity in the
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considered equations (1.17) below is not an artifice, since we will truly deal with heterogeneous
equations obtained after a Kelvin transform of some original equations set in exterior domains.

To do so, let us first introduce a few notations. For e ∈ S1 = C1 and λ ∈ R, we denote

Te,λ =
{
x ∈ R2 : x · e = λ

}
, He,λ =

{
x ∈ R2 : x · e > λ

}
, (1.15)

and, for x ∈ R2,
Re,λ(x) = xe,λ = x− 2(x · e− λ)e. (1.16)

In other words, Re,λ is the orthogonal reflection with respect to the line Te,λ.

Proposition 1.14 Let Ξ and Ξ′ be two C1 Jordan curves surrounding the origin, and let Ω
and Ω′ be the bounded connected components of R2\Ξ and R2\Ξ′, respectively. Assume that
Ω′ ⊂ Ω and let

ω = Ω\Ω′

be the non-empty and doubly connected domain located between Ξ and Ξ′, with boundary

∂ω = Ξ ∪ Ξ′.

Call R′ = minx∈Ξ′ |x| > 0 and R = maxx∈Ξ |x| > R′. Let e ∈ S1, let λ = maxx∈Ξ x · e > 0 and
let ε ∈ [0, λ). Let c1 < c2 ∈ R and let ϕ ∈ C2(ω) be a solution of

∆ϕ+ F (|x|, ϕ) = 0 in ω,

c1 < ϕ < c2 in ω,

ϕ = c1 on Ξ, ϕ = c2 on Ξ′,

(1.17)

with a continuous function F : [R′, R] × [c1, c2] → R that is nonincreasing with respect to its
first variable and uniformly Lipschitz continuous with respect to its second variable. Assume
that

Re,λ(He,λ ∩ Ω) ⊂ Ω for all λ > ε (1.18)

and that
Re,λ(He,λ ∩ Ξ′) ⊂ Ω′ for all λ > ε, (1.19)

see Fig. 1. Then, for every λ ∈ [ε, λ), there holds

ϕ(x) ≤ ϕe,λ(x) = ϕ(xe,λ) for all x ∈ ωe,λ, (1.20)

with
ωe,λ = (He,λ ∩ ω) \Re,λ(Ω′).

5

5Notice that ωe,λ is open by definition, and it is non-empty for each λ ∈ [0, λ): indeed, for such λ, the
set Te,λ ∩ Ξ is not empty and, for any x ∈ Te,λ ∩ Ξ and r > 0, ωe,λ ∩ B(x, r) 6= ∅. But ωe,λ may not be
connected, as in Fig. 1.
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0

R
R'

Figure 1: The sets Ω, Ω′, ω = Ω\Ω′, He,λ ∩ Ω (light blue background), Re,λ(Ω
′) (with dashed

boundary), and ωe,λ (dashed red)

Organization of the paper

In Section 2, we show some common preliminaries for the proofs of Theorems 1.1-1.5, 1.8, 1.10
and 1.13 in given or free domains. Namely, we study the properties of the streamlines of the
flow and we derive a semilinear elliptic equation for the stream function. Section 3 is devoted
to the proof of Theorems 1.1-1.5 and 1.8, when the circular domain Ωa,b is fixed. The cases of
the exterior domains Ωa,∞ and the punctured disks Ω0,b and punctured plane Ω0,∞ involve some
additional difficulties and require specific additional assumptions. The proof of the Serrin-type
Theorems 1.10 and 1.13 is carried out in Section 4. Lastly, Section 5 is concerned with the
proof of Proposition 1.14. Proposition 1.14 and its subsequent limiting argument showing that
the considered flow is circular are necessary for the proof of Theorems 1.3-1.5 and 1.8 in the
case of exterior or punctured domains, as well as for the proof of Theorem 1.10 about simply
connected domains with free boundary.

2 Some common preliminaries

In this section, we state and prove some common properties which will be used in the proof
of the main results related to the Euler equations (1.1) in a fixed annular domain Ωa,b or in
simply or doubly connected domains with free boundaries. To cover all possible cases, we
consider throughout this section two C1 Jordan curves C1 and C2 and we assume that they
both surround the origin, that is, the bounded connected components ω1 and ω2 of R2 \C1

and R2\C2 contain the origin 0. We further assume that

ω1 ⊂ ω2.

Our aim here is to study the properties of the stream function u and the streamlines of a
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divergence-free flow v in the open connected set Ω in one of the following four possible cases:

Ω = ω2\ω1, or Ω = R2\ω1, or Ω = ω2\{0}, or Ω = R2\{0}.

Notice that Ω is bounded if Ω = ω2\ω1 or ω2\{0}, and unbounded in the other two cases. We
say that Ω is not punctured if Ω = ω2\ω1 or R2\ω1, and punctured in the other two cases. We
point out that the annular domains Ωa,b with 0 ≤ a < b ≤ ∞ fall within these four types of
domains Ω. We also set {

D = Ω if Ω is not punctured,

D = Ω\{0} if Ω is punctured.
(2.1)

Throughout this section, v = (v1, v2) is a C1(D) vector field. We point out that the C2(D)
regularity of v will be specified and used only in Lemma 2.8 below, as well as the Euler
equations v · ∇v+∇p = 0 themselves. We also point out that, if Ω is punctured, then v is not
assumed to be defined at 0. It is however always assumed that

div v = 0 in D, |v| > 0 in Ω, (2.2)

and 
v · n = 0 on ∂ω1 if Ω is not punctured,∫
Cε

|v · er| → 0 as ε
>→ 0 if Ω is punctured,

(2.3)

where n denotes the outward unit normal to Ω (that is, on C1 and/or C2 where appropriate).
The assumptions (2.2)-(2.3) are made throughout Section 2, and are therefore not repeated in
the statements.

The first common result is concerned with the existence and some elementary properties
of the stream function u.

Lemma 2.1 (i) There is a unique (up to additive constants) C2(D) scalar function u such
that

∇⊥u = v in D,

and there is a constant cin such that{
u = cin ∈ R on ∂ω1 if Ω is not punctured,

u(x)→ cin ∈ R as |x| >→ 0 if Ω is punctured.
(2.4)

(ii) If one further assumes that
v · n = 0 on ∂ω2 if Ω is bounded,∫
CR

|v · er| → 0 as R→ +∞ if Ω is unbounded,
(2.5)

then there is a constant cout such that{
u = cout ∈ R on ∂ω2 if Ω is bounded,

u(x)→ cout ∈ R as |x| → +∞ if Ω is unbounded.
(2.6)
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Furthermore,
cin 6= cout and min(cin, cout) < u < max(cin, cout) in Ω.6 (2.7)

Proof. (i) The existence and uniqueness (up to additive constants) of a stream function
u ∈ C2(D) is a consequence of the fact that Ω is doubly connected, v is divergence free and
satisfies the conditions (2.3) on the inner boundary of Ω.

Assume now that Ω is not punctured, and consider a parametrization of its inner boundary
C1 by a C1(R) periodic function ζ1 such that |ζ ′1| > 0 in R. From the first condition in (2.3),
the function u ◦ ζ1 is constant in R, that is, there is cin ∈ R such that u = cin on C1 = ∂ω1.

Assume now that Ω is punctured, and let ρ > 0 be such that Br\{0} ⊂ Ω for all r ∈ (0, ρ).
Since u has no critical point in Ω (because |v| > 0 in Ω by (2.2)), it follows that

u > min
(

min
Cr1

u,min
Cr3

u
)

in Ωr1,r3 , for all 0 < r1 < r3 < ρ.

In particular, minCr2 u > min(minCr1 u,minCr3 u) for all 0 < r1 < r2 < r3 < ρ, hence the

function r 7→ minCr u is strictly monotone in a right neighborhood of 0 and has a limit cin ∈ R
at 0. On the other hand, the integral condition in (2.3) means that

∫
Cr
|∇u · eθ| → 0 as r

>→ 0,

hence the oscillation of u on Cr converges to 0 as r
>→ 0, that is:

osc
Cr
u := max

Cr
u−min

Cr
u→ 0 as r

>→ 0. (2.8)

Finally, maxCr u→ cin as r
>→ 0, and u(x)→ cin as |x| >→ 0.

(ii) Similarly, the conditions (2.5), together with (2.2), imply the existence of cout ∈ R
such that (2.6) holds in both the bounded and unbounded cases. In the unbounded case, the
integral condition in (2.5) also implies, as in (2.8) above, that

max
CR

u−min
CR

u→ 0 as R→ +∞. (2.9)

Finally, in all cases, since u has no critical point in Ω, the properties (2.4) and (2.6) immedi-
ately yield (2.7). �

The second common result is concerned with the trajectories of the gradient flow ∇u,
with u given by Lemma 2.1. Namely, for x ∈ D, with D as in (2.1), let σx be the solution of{

σ̇x(t) = ∇u(σx(t)),

σx(0) = x.
(2.10)

In the sequel, for y ∈ R2 and E ⊂ R2, we set

dist(y, E) = inf
z∈E
|y − z|.

6The index in in cin refers to the “inner” boundary of Ω, that is ∂ω1 (resp. {0}) if Ω is not punctured
(resp. punctured). Similarly, the index out in cout refers to the “outer” boundary of Ω, that is ∂ω2 (resp. the
infinity) if Ω is bounded (resp. unbounded).
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Lemma 2.2 (i) If x ∈ Ω, then there exist −∞≤ t−x <0<t+x ≤+∞ such that σx : (t−x , t
+
x )→Ω

is of class C1 with (u ◦ σx)′ > 0 in (t−x , t
+
x ) and{

dist(σx(t), ∂Ω)→ 0 as t→ t±x if Ω is bounded,

dist(σx(t), ∂Ω)→ 0 or |σx(t)| → +∞ as t→ t±x if Ω is unbounded.
(2.11)

(ii) If Ω is not punctured and x ∈ ∂ω1, then either σx(t) = x for all t ∈ R, or there is
t+x ∈ (0,+∞] such that σx : [0, t+x ) → Ω ∪ ∂ω1 is of class C1 with (u ◦ σx)′ > 0 in [0, t+x ),
σx((0, t

+
x )) ⊂ Ω, and

dist(σx(t), ∂ω2)−→
t→t+x

0 if Ω is bounded
(
resp. |σx(t)| −→

t→t+x
+∞ if Ω is unbounded

)
, (2.12)

or there is t−x ∈ [−∞, 0) such that σx : (t−x , 0] → Ω ∪ ∂ω1 is of class C1 with (u ◦ σx)′ > 0
in (t−x , 0], σx((t

−
x , 0)) ⊂ Ω, and (2.12) holds with t−x instead of t+x .

(iii) If Ω is bounded, if (2.5) holds and if x ∈ ∂ω2, then either σx(t) = x for all t ∈ R, or
there is t+x ∈ (0,+∞] such that σx : [0, t+x )→ Ω∪∂ω2 is of class C1 with (u◦σx)′ > 0 in [0, t+x ),
σx((0, t

+
x )) ⊂ Ω, and

dist(σx(t), ∂ω1)−→
t→t+x

0 if Ω is not punctured
(
resp. |σx(t)| −→

t→t+x
0 if Ω is punctured

)
, (2.13)

or there is t−x ∈ [−∞, 0) such that σx : (t−x , 0] → Ω ∪ ∂ω2 is of class C1 with (u ◦ σx)′ > 0
in (t−x , 0], σx((t

−
x , 0)) ⊂ Ω, and (2.13) holds with t−x instead of t+x .

Proof. (i) Consider any x in Ω. Since ∇u is of class C1(D), the solution σx of (2.10) is defined
in a neighborhood of 0 and the quantities t±x defined by{

t+x = sup
{
t > 0 : σx((0, t)) ⊂ Ω},

t−x = inf
{
t < 0 : σx((t, 0)) ⊂ Ω}

(2.14)

are such that −∞ ≤ t−x < 0 < t+x ≤ +∞. The functions σx : (t−x , t
+
x ) → Ω and u ◦ σx :

(t−x , t
+
x )→ R are of class C1, with

(u ◦ σx)′(t) = |∇u(σx(t))|2 = |v(σx(t))|2 > 0 for all t ∈ (t−x , t
+
x ),

since |v| > 0 in Ω by (2.2). Let us then show (2.11) as t → t+x (the limit as t → t−x can be
treated similarly). Let us assume by way of contradiction that (2.11) (with t → t+x ) does not
hold. So, in all configurations, there exist an increasing sequence (tn)n∈N in (t−x , t

+
x ) converging

to t+x and a point y ∈ Ω such that σx(tn)→ y as n→ +∞. Since the continuous field |∇u| = |v|
does not vanish in Ω by (2.2), there are three real numbers r > 0, η > 0 and τ > 0 such that{

B(y, r) ⊂ Ω, |∇u| ≥ η in B(y, r),

σz(t) ∈ B(y, r) for all z ∈ B(y, r/2) and t ∈ [−τ, τ ].

Since σx(tn) → y as n → +∞, one has σx(tn) ∈ B(y, r/2) for all n large enough, hence σx
is defined in [tn − τ, tn + τ ] with σx(t) ∈ B(y, r) ⊂ Ω for all t ∈ [tn − τ, tn + τ ] and n
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large enough. This implies that t+x = +∞. Furthermore, for all n large enough, one has
(u ◦ σx)′(t) = |∇u(σx(t))|2 ≥ η2 for all t ∈ [tn − τ, tn + τ ], hence

u(σx(tn + τ)) ≥ u(σx(tn − τ)) + 2η2τ.

Since u ◦ σx is increasing in (t−x , t
+
x ) and since tn → t+x = +∞ as n→ +∞, one then gets that

u(σx(t)) → +∞ as t → t+x = +∞, contradicting the fact that σx(tn) → y, tn → t+x and the
continuity of u at y. Therefore, (2.11) has been proved.

(ii) Assume now that Ω is not punctured and consider x ∈ ∂ω1. From (2.3), either |∇u(x)|=
0 (and then σx(t) = x for all t ∈ R), or |∇u(x)| > 0 and

∇u(x) = ±|∇u(x)|n(x),

with n(x) the outward normal vector to Ω at x. If ∇u(x) = −|∇u(x)|n(x) (resp. ∇u(x) =
|∇u(x)|n(x)) with |∇u(x)| > 0, then ∇u(x) points inward (resp. outward) Ω at x and the
quantity t+x (resp. t−x ) given in (2.14) is well defined and satisfies 0 < t+x ≤ +∞ together
with σx((0, t

+
x )) ⊂ Ω and σx([0, t

+
x )) ⊂ Ω ∪ ∂ω1 (resp. −∞ ≤ t−x < 0, σx((t

−
x , 0)) ⊂ Ω,

and σx((t
−
x , 0]) ⊂ Ω∪∂ω1). Furthermore, σx and u◦σx are of class C1([0, t+x )) (resp. C1((t−x , 0]))

and (u◦σx)′ > 0 in [0, t+x ) (resp. in (t−x , 0]). Lastly, if∇u(x) = −|∇u(x)|n(x) with |∇u(x)| > 0,
then, as in (i), (2.11) still holds with t → t+x and, since the continuous function u is equal to
the constant cin ∈ R on ∂ω1 by Lemma 2.1-(i), one gets (2.12). If ∇u(x) = |∇u(x)|n(x)
with |∇u(x)| > 0, one similarly gets (2.12) with t−x instead of t+x .

(iii) If Ω is bounded, if (2.5) holds and if x ∈ ∂ω2, then either |∇u(x)| = 0 and σx(t) ≡ x
in R, or σx is defined in (t−x , 0] or [0, t+x ) and ranges in Ω ∪ ∂ω2, and the conclusion follows as
in (ii). �

Remark 2.3 The extremal values t±x in Lemma 2.2 can be finite or infinite. Consider for
instance the case Ω = Ωa,b with 0 ≤ a < b ≤ ∞ and a circular flow v(x) = V (|x|) eθ(x) with
a C1((a, b)) positive scalar function V (the function V can be assumed to be extended in a C1

fashion at a and b when they are positive real numbers, and therefore v is of class C1(D), withD
as in (2.1)). The assumptions (2.2)-(2.3) and (2.5) are fulfilled, and the stream function u is
given by u(x) = U(|x|) in D, with U ′ = V . For any x ∈ Ωa,b, the solution σx of (2.10) can
then be written as σx(t) = ςx(t) er(x), with ς ′x(t) = V (ςx(t)) for all t ∈ (t−x , t

+
x ). Therefore, the

finiteness of t+x (resp. of t−x ) is equivalent to the integrability of the function 1/V at b (resp.
at a).

The third common result provides the existence of a C1 curve in D connecting the inner and
outer boundaries of Ω, along which u is strictly monotone, and which will be as in Lemma 2.2
a trajectory of the gradient flow.

Lemma 2.4 Call
S =

{
x ∈ D : |v(x)| = 0

}
the set of stagnation points of v in D, defined by (2.1) (notice that S ⊂ ∂Ω ∩D by (2.2)).
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(i) Assume that

S ( C1 or S ( C2, and v · n = 0 on C2 if Ω = ω2\ω1,

S ( C1 if Ω = R2\ω1,

S ( C2 and v · n = 0 on C2 if Ω = ω2\{0},∫
CR

|v · er| → 0 as R→ +∞ if Ω = R2\{0}.

(2.15)

Then there exist −∞ ≤ tin < tout ≤ +∞, an interval I ⊂ R and a C1 function σ : I → D
such that (u ◦ σ)′ 6= 0 in I and

I = [tin, tout], σ(tin) ∈ ∂ω1, σ(tout) ∈ ∂ω2, if Ω = ω2\ω1,

I = [tin, tout), σ(tin) ∈ ∂ω1, |σ(t)| → +∞ as t
<→ tout, if Ω = R2\ω1,

I = (tin, tout], |σ(t)| → 0 as t
>→ tin, σ(tout) ∈ ∂ω2, if Ω = ω2\{0},

I = (tin, tout), |σ(t)| → 0 as t
>→ tin, |σ(t)| → +∞ as t

<→ tout, if Ω = R2\{0}.

(2.16)

(ii) If Ω = R2\ω1 together with

S ( C1 and lim inf
|x|→+∞

|v(x)| > 0, (2.17)

then there exist −∞ < tin < tout ≤ +∞ and a C1 function σ : [tin, tout) → D = Ω such that
(u ◦ σ)′ 6= 0 in [tin, tout) and

σ(tin) ∈ ∂ω1, |σ(t)| → +∞ as t
<→ tout, and |u(σ(t))| → +∞ as t

<→ tout.

Furthermore, one can take tin = 0 without loss of generality.

Remark 2.5 Notice that the condition (2.15) implies (2.5) in all possible configurations of Ω
except when Ω = R2\ω1: in that case, (2.15) does not assume that limR→+∞

∫
CR
|v · er| = 0,

whereas (2.5) does. We also point out that, again if Ω = R2\ω1, condition (2.17) implies (2.15),
but still does not imply (2.5).

Proof of Lemma 2.4. (i) Let us assume here (2.15). Consider first the case Ω = ω2 \ω1, and
assume that S ( C1 in (2.15) (the case S ( C2 can be handled similarly). Then |v| = |∇u| > 0
on C2 = ∂ω2 and there exists a point

A ∈ C1 = ∂ω1

such that |∇u(A)| = |v(A)| > 0 and ∇u(A) is parallel to the normal vector n(A). Assume
first that ∇u(A) points inward Ω at A, that is, ∇u(A) = −|∇u(A)|n(A), and let

σ = σA

be the solution of (2.10) with x = A. With the notations of Lemma 2.2-(ii), the function σ
is of class C1([0, t+A)) and (u ◦ σ)′ > 0 in [0, t+A), with u(σ(0)) = u(A) = cin by Lemma 2.1-
(i). Furthermore, (2.12) implies that dist(σ(t), ∂ω2) → 0 as t → t+A, hence u(σ(t)) → cout
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as t → t+A, where cout ∈ R is given by Lemma 2.1-(ii) (since (2.5) is satisfied by (2.15), here
with Ω = ω2\ω1). In particular, one has cin < cout and cin < u < cout in Ω. On the other hand,
the function |∇u ◦ σ| is continuous in [0, t+A), positive at 0 (since |∇u(σ(0))| = |v(A)| > 0),
positive in (0, t+A) (since σ((0, t+A)) ⊂ Ω), and

lim inf
t→t+A

|∇u(σ(t))| = lim inf
t→t+A

|v(σ(t))| > 0

(since the continuous field |v| is positive on the compact set C2 = ∂ω2 and dist(σ(t), ∂ω2)→ 0
as t→ t+A). As a consequence, there is η > 0 such that |σ̇(t)| = |∇u(σ(t))| ≥ η for all t ∈ [0, t+A).
Therefore, (u ◦ σ)′(t) = |∇u(σ(t))|2 ≥ η2 for all t ∈ [0, t+A) and t+A is a positive real number,
since u is bounded in the compact set Ω. Moreover, for every t ∈ [0, t+A), there holds

cout − cin ≥ u(σ(t))− u(A) = u(σ(t))− u(σ(0)) =

∫ t

0

|∇u(σ(s))|2ds ≥ η

∫ t

0

|σ̇(s)| ds,

hence the length of the curve σ([0, t+A)) is finite. Finally, there is a point A+ ∈ C2 = ∂ω2

such that σ(t) → A+ as t → t+A. By setting σ(t+A) = A+ and remembering that the field ∇u
is (at least) continuous in Ω, it follows that the function σ : [0, t+A] → Ω = D is then of
class C1([0, t+A]) and (u ◦ σ)′ > 0 in [0, t+A]. To sum up, if ∇u(A) points inward Ω at A,
then (2.16) holds in the case Ω = ω2 \ω1 with tin = 0 and tout = t+A. Similarly, if ∇u(A) points
outward Ω at A, then (2.16) still holds, with tin = 0, tout = −t−A ∈ (0,+∞), σ(t) = σA(−t)
for t ∈ [0,−t−A], and σA of class C1([t−A, 0]).

Consider now the case Ω = R2\ω1. By (2.3) and (2.15), there is a point A ∈ C1 = ∂ω1

such that ∇u(A) is not zero and parallel to the normal vector n(A). Assume that ∇u(A)
points inward Ω at A (the other case can be treated similarly) and let σ = σA. The function
σ : [0, t+A) → Ω ∪ ∂ω1 = Ω = D is of class C1([0, t+A)) and (u ◦ σ)′ > 0 in [0, t+A), for some
t+A ∈ (0,+∞]. It then follows from Lemma 2.2-(ii) (with t→ t+A) that |σ(t)| → +∞ as t→ t+A.
This yields (2.16) with tin = 0 and tout = t+A.

Consider then the case Ω = ω2 \{0}. By (2.15), there is a point A ∈ C2 = ∂ω2 such
that ∇u(A) is not zero and parallel to the normal vector n(A). Assume that ∇u(A) points
outward Ω at A (the other case can be treated similarly) and let σ = σA. The function
σ : (t−A, 0]→ Ω∪∂ω2 = D is of class C1((t−A, 0]) and (u◦σ)′ > 0 in (t−A, 0], for some t−A ∈ [−∞, 0).
Since (2.5) is satisfied by (2.15) (here with Ω = ω2\{0}), it then follows from Lemma 2.2-(iii)
(with t→ t−A) that |σ(t)| → 0 as t→ t−A. This yields (2.16) with tin = t−A and tout = 0.

Lastly, consider the case Ω = R2 \{0}. By (2.15), the condition (2.5) is fulfilled. By

Lemma 2.1, there are then cin 6= cout in R such that u(x) → cin as |x| >→ 0 and u(x) → cout
as |x| → +∞. Pick any point A ∈ Ω. By Lemma 2.2-(i), the function σA : (t−A, t

+
A) → Ω = D

is of class C1((t−A, t
+
A)), with −∞ ≤ t−A < t+A ≤ +∞, and (u ◦ σA)′ > 0 in (t−A, t

+
A). Together

with (2.11), one gets that either |σA(t)| → 0 as t → t−A and |σA(t)| → +∞ as t → t+A,
or |σA(t)| → +∞ as t → t−A and |σA(t)| → 0 as t → t+A. In the former case, (2.16) holds
with σ = σA and (tin, tout) = (t−A, t

+
A), whereas in the latter case (2.16) holds with σ = σA(−·)

and (tin, tout) = (−t+A,−t
−
A).

(ii) Assume now that Ω = R2\ω1 and that (2.17) is fulfilled. In particular, (2.15) holds
and the previous part (i) yields the existence of 0 = tin < tout ≤ +∞ and a C1 function
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σ : [tin, tout) → Ω such that (u ◦ σ)′ 6= 0 in [tin, tout), σ(tin) = σ(0) ∈ ∂ω1, and |σ(t)| → +∞
as t

<→ tout. Furthermore, by construction, either σ = σA, with A = σ(0) ∈ ∂ω1 such that

|v(A)| > 0, or σ = σA(−·). The only thing to be proven is that |u(σ(t))| → +∞ as t
<→ tout.

By (2.17), there are R > 0 and η > 0 such that R2\BR ⊂ Ω and |v(x)| ≥ η for all |x| ≥ R.
Let T ∈ (0, tout) such that |σ(s)| ≥ R for all s ∈ [T, tout). For all t ∈ [T, tout), one has

∣∣u(σ(t))− u(σ(T ))
∣∣ =

∫ t

T

|∇u(σ(s))|2ds ≥ η

∫ t

T

|σ̇(s)| ds ≥ η (|σ(t)| − |σ(T )|).

Consequently, |u(σ(t))| → +∞ as t
<→ tout. The proof of Lemma 2.4 is thereby complete. �

The fourth common result states that the streamlines of the flow are C1 Jordan curves
surrounding the origin, and that they approach 0 or infinity where appropriate. For x in D
defined by (2.1), ξx denotes the solution of (1.5), ranging in D and defined in a maximal
interval Ix containing 0, and

Ξx = ξx(Ix)

denotes the streamline of the flow containing x. We recall that, by definition, the stream
function u given in Lemma 2.1 is constant along each streamline of the flow.

Lemma 2.6 (i) If (2.5) holds, then, for every x ∈ Ω, the function ξx is defined in R and
periodic, and the streamline Ξx = ξx(R) is a C1 Jordan curve surrounding the origin. Further-
more,  min

R
|ξx| → +∞ as |x| → +∞ if Ω is unbounded,

max
R
|ξx| → 0 as |x| >→ 0 if Ω is punctured.

(ii) If (2.5) holds with Ω unbounded and lim inf |x|→+∞ |v(x) · eθ(x)| > 0, then

max
R
|ξx| −min

R
|ξx| → 0 as |x| → +∞.

(iii) If Ω = R2\ω1 and infΩ |v| > 0, then, for every x ∈ Ω, the function ξx is defined in R
and periodic, and the streamline Ξx = ξx(R) is a C1 Jordan curve surrounding the origin.
Furthermore, minR |ξx| → +∞ and |u(x)| → +∞ as |x| → +∞, and u − cin has a constant
strict sign in Ω, where u = cin on ∂ω1.

Proof. (i) From Lemma 2.1, there are cin 6= cout in R such that the stream function u
satisfies (2.4) and (2.6)-(2.7). Therefore, together with the continuity of u in D and the
fact that u is constant along each streamline of the flow, it follows that, for each x ∈ Ω,
inft∈Ix dist(ξx(t), ∂Ω) > 0 and Ξx = ξx(Ix) is bounded. Since |∇u| = |v| > 0 in Ω by (2.2), it
is standard to conclude that, for each x ∈ Ω, the function ξx is periodic and the streamline
Ξx = ξx(R) (here, Ix = R) is a C1 Jordan curve surrounding the origin.

If Ω is unbounded, then u(x)→ cout ∈ R as |x| → +∞ by (2.6). Together with (2.4), (2.7),
and the continuity of u in D, it easily follows that mint∈R |ξx(t)| → +∞ as |x| → +∞.

Similarly, if Ω is punctured, then maxt∈R |ξx(t)| → 0 as |x| >→ 0.
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(ii) In the unbounded case, assume now that lim inf |x|→+∞ |v(x) · eθ(x)| > 0, in addition
to (2.5). From (i), one knows that, for each x ∈ Ω, the streamline Ξx is a C1 Jordan curve
surrounding the origin, with minR |ξx| → +∞ as |x| → +∞. Let us now show that maxR |ξx|−
minR |ξx| → 0 as |x| → +∞. Let R > 0 and η > 0 be such that R2\BR ⊂ Ω and |∇u(x)·er(x)| =
|v(x) · eθ(x)| ≥ η for all |x| ≥ R. Together with the continuity of ∇u, let us only consider the
case

∇u(x) · er(x) ≥ η for all |x| ≥ R (2.18)

(the case ∇u(x) · er(x) ≤ −η can be handled similarly). Consider any ε > 0. From (2.9)
and (2.18), there is Rε ≥ R + ε such that

max
C|x|−ε

u < u(x)− ε η

2
and min

C|x|+ε
u > u(x) +

ε η

2
, for all |x| ≥ Rε.

Thus, for every x with |x| ≥ Rε, one has Ξx ⊂ Ω|x|−ε,|x|+ε and maxR |ξx| −minR |ξx| < 2ε.
(iii) Consider now the case Ω = R2\ω1 and assume that

η := inf
Ω
|v| > 0. (2.19)

Notice that we do not assume the condition (2.5), so Lemma 2.1-(ii) and parts (i)-(ii) of the
present lemma can not be applied. In particular, we do not know yet that u has a limit
at infinity or that all streamlines of the flow surround the origin. However, Lemma 2.4-(ii)
can be applied, since (2.17) is fulfilled here. Therefore, there exist tout ∈ (0,+∞], a point
A ∈ ∂ω1 (actually, A can here be arbitrarily chosen on ∂ω1 since |v| > 0 on ∂ω1), and a C1

function σ : [0, tout) → D such that σ(0) = A, (u ◦ σ)′ 6= 0 in [0, tout), and |σ(t)| → +∞
and |u(σ(t))| → +∞ as t

<→ tout. Let us assume without loss of generality that (u ◦ σ)′ > 0
in [0, tout) (the other case can be handled similarly), hence

u(σ(t))→ +∞ as t
<→ tout. (2.20)

By construction of σ in Lemma 2.4-(ii), this case corresponds to the condition ∇u(A)·n(A)<0.
Denote

E =
{
s ∈ [0, tout) : the streamline Ξσ(s) is a C1 Jordan curve surrounding the origin

}
,

and let us show that
E = [0, tout). (2.21)

To do so, we prove that E is not empty (it contains 0), open relatively to [0, tout) and that the
largest interval containing 0 and contained in E is actually equal to [0, tout). Note first that,
since v · n = 0 and |v| > 0 on C1 = ∂ω1, the streamline Ξσ(0) = ΞA is equal to the C1 Jordan
curve C1 and it surrounds the origin by assumption. In other words, 0 ∈ E.

Let us now show that E is open relatively to [0, tout). Let s0 ∈ E and denote x = σ(s0) ∈ Ω.
By definition, the function ξx is periodic, with some period Tx > 0. Remember also that u
is constant along each streamline of the flow. Therefore, since v is (at least) continuous and
|v(x)| = |∇u(x)| > 0 in Ω, there are some real numbers r > 0 and τ ∈ (0, Tx) such that, for
every y ∈ B(x, r) ∩ Ω, there are some real numbers t±y such that

−τ < t−y < 0 < t+y < τ and B(x, r) ∩ Ξy = B(x, r) ∩ u−1({u(y)}) = ξy((t
−
y , t

+
y )).
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On the other hand, since ξx(Tx) = ξx(0) = x, the Cauchy-Lipschitz theorem provides the
existence of a real number r′ ∈ (0, r] such that, for every z ∈ B(x, r′) ∩ Ω, the function ξz is
defined (and of class C1) at least on the interval [0, Tx] and ξz(Tx) ∈ B(x, r)∩Ω. Furthermore,
by continuity of σ, there is ε > 0 such that s0 + ε < tout and

σ(s) ∈ B(σ(s0), r′) ∩ Ω = B(x, r′) ∩ Ω for all s ∈ [max(0, s0 − ε), s0 + ε].

As a consequence, for every s ∈ [max(0, s0 − ε), s0 + ε], the points z := σ(s) ∈ B(x, r′) ∩ Ω
and y := ξz(Tx) ∈ B(x, r) ∩ Ω satisfy u(z) = u(y), hence

z ∈ B(x, r′) ∩ u−1({u(y)}) ⊂ B(x, r) ∩ u−1({u(y)})

and z = ξy(t) for some t ∈ (t−y , t
+
y ) (⊂ (−τ, τ)). Thus, ξy(−Tx) = z = ξy(t) and since

|t| < τ < Tx, the function ξy is defined in R and (Tx + t)-periodic. So is ξz since z ∈ Ξy.
In other words, for every s ∈ [max(0, s0 − ε), s0 + ε], the function ξσ(s) = ξz is defined in R
and periodic. Since |∇u| = |v| > 0 in Ω, one then concludes that Ξσ(s) is a C1 Jordan curve
surrounding the origin. Finally, the set E is open relatively to [0, tout).

Denote
T∗ = sup

{
t ∈ [0, tout) : [0, t] ⊂ E

}
.

The previous paragraphs imply that 0 < T∗ ≤ tout. The proof of (2.21) will be complete once
we show that T∗ = tout. Assume by way of contradiction that T∗ < tout (in particular, T∗ is then
a positive real number). Consider any increasing sequence (sn)n∈N in (0, T∗) and converging
to T∗. Owing to the definition of T∗, each function ξσ(sn) is periodic and each streamline Ξσ(sn)

surrounds the origin. Furthermore, since each sn is positive and u ◦ σ is increasing in [0, tout)
and u is constant on C1 (3 A = σ(0)), each streamline Ξσ(sn) is included in the (open) set Ω.
Consider now any n ∈ N and any point

x ∈ Ξσ(sn).

Notice that u(x) = u(σ(sn)) and remember that u ◦ σ is increasing in [0, tout), hence

u(A) = u(σ(0)) < u(σ(sn)) = u(x) < u(σ(T∗)).

Moreover, by Lemma 2.2-(i), there exist −∞ ≤ t−x < 0 < t+x ≤ +∞ such that σx : (t−x , t
+
x )→ Ω

is of class C1 with

(u ◦ σx)′ > 0 in (t−x , t
+
x ), and dist(σx(t), ∂ω1)→ 0 or |σx(t)| → +∞ as t→ t±x . (2.22)

The non-zero vector σ̇x(0) = ∇u(σx(0)) = ∇u(x) is orthogonal to Ξσ(sn) at x by definition of u.
Since u(σx(0)) = u(x) > u(A) = cin with u = cin on C1 = ∂ω1, and since Ξσ(sn) is a C1 Jordan
curve surrounding the origin and meeting orthogonally σx((t

−
x , t

+
x )) at the only point x, it then

follows from (2.22) that dist(σx(t), ∂ω1) → 0 as t → t−x and u(σx(t)) > cin for all t ∈ (t−x , t
+
x ).

Then, for any t ∈ (t−x , 0), there holds

u(σ(T∗)) > u(x) = u(σx(0))=

∫ 0

t

|∇u(σx(s))|2ds+ u(σx(t)) ≥ η

∫ 0

t

|σ̇x(s)| ds+ cin

≥ η
(
|x|−|σx(t)|

)
+ cin,
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with η > 0 as in (2.19). At the limit as t → t−x , one gets that |x| ≤ R1 + (u(σ(T∗)) − cin)/η,
with R1 := maxy∈C1 |y|. This property holds for any n ∈ N and any x ∈ Ξσ(sn), hence

sup
n∈N

(
max

R
|ξσ(sn)|

)
≤ R1 +

u(σ(T∗))− cin
η

=: M.

Finally, consider the streamline Ξσ(T∗) parametrized by the function ξσ(T∗). If there is a real
number t such that |ξσ(T∗)(t)| > M , then |ξσ(sn)(t)| > M for all n large enough, by the Cauchy-
Lipschitz theorem. Therefore, Ξσ(T∗) ⊂ BM and, since |v| > 0 in Ω, it follows that ξσ(T∗) is
defined in R and periodic, and that Ξσ(T∗) is a C1 Jordan curve surrounding the origin. In
other words, T∗ ∈ E. Since E has been proved to be open relatively to [0, tout), one is led to a
contradiction with the definition of T∗ if T∗ < tout. Eventually, T∗ = tout and (2.21) is thereby
proved.

We now claim that
min
R
|ξσ(s)| → +∞ as s

<→ tout. (2.23)

Indeed, for any R > R1, let C ∈ [0,+∞) be such that |u| ≤ C in Ω ∩ BR. By (2.20), there is
then τ ∈ (0, tout) such that u(σ(s)) > C for all s ∈ (τ, tout), hence u(ξσ(s)(t)) = u(σ(s)) > C
and |ξσ(s)(t)| > R for all s ∈ (τ, tout) and t ∈ R. Thus, minR |ξσ(s)| > R for all s ∈ (τ, tout).
This yields (2.23).

Consider then any point x ∈ Ω and let us deduce that Ξx surrounds the origin. From (2.20)-
(2.21) and (2.23), there is s ∈ (0, tout) such that u(σ(s)) > u(x) and the streamline Ξσ(s) is a C1

Jordan curve surrounding both x and the origin. Therefore, the streamline Ξx is bounded (it
belongs to the bounded connected component of R2\Ξσ(s)). Using again that |v| > 0 in Ω, one
then concludes that the function ξx is periodic and that Ξx is a C1 Jordan curve surrounding
the origin.

From the previous properties, we then easily get that minR |ξx| → +∞ as |x| → +∞.
Indeed, for any fixed R > R1 = maxy∈∂ω1 |y|, there is s ∈ (0, tout) such that minR |ξσ(s)| > R,
by (2.23). Then, for any x with |x| > R′ := maxR |ξσ(s)| > R, the streamlines Ξx and Ξσ(s) do
not intersect, and both of them are C1 Jordan curves surrounding the origin, hence minR |ξx| >
minR |ξσ(s)| > R. This shows that minR |ξx| → +∞ as |x| → +∞.

Finally, let us prove that u(x) → +∞ as |x| → +∞. Fix any B > 0, and, by (2.20),
let s ∈ (0, tout) such that u ◦ σ > B in (s, tout). Let then RB > R1 be such that minR |ξx| >
maxt∈[0,s] |σ(t)| for all |x| ≥ RB. For every x such that |x| ≥ RB, the streamline Ξx surrounds
the origin and necessarily crosses σ([0, tout)), at a point σ(sx) with sx ∈ (s, tout), hence u(x) =
u(σ(sx)) > B. This shows that u(x)→ +∞ as |x| → +∞. Since u = cin on ∂ω1 and u has no
critical point in Ω, one then concludes that u > cin in Ω. The proof of Lemma 2.6 is thereby
complete. �

Remark 2.7 If |v| > 0 on C1 = ∂ω1 (resp. on C2 = ∂ω2), then the boundary conditions (2.3)
(resp. (2.5)) imply that, for any x ∈ ∂ω1 with Ω not punctured, (resp. x ∈ ∂ω2 with Ω
bounded), ξx is still defined and periodic in R with Ξx = ∂ω1 (resp. Ξx = ∂ω2). If x ∈ ∂Ω∩D
and |v(x)| = 0, then ξx(t) = x for all t ∈ R and Ξx = {x}. If x ∈ ∂ω1 with Ω not punctured
(resp. x ∈ ∂ω2 with Ω bounded) with |v(x)| > 0 and if v has some stagnation points on ∂ω1

(resp. ∂ω2), then ξx is still defined in R, but it is not periodic anymore and Ξx is a proper arc
of ∂ω1 (resp. ∂ω2) which is open relatively to ∂ω1 (resp. ∂ω2).
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In the last common preliminary result, we derive a semilinear elliptic equation ∆u+f(u) = 0
in D for some C1 function f defined in the range of u. We recall that D is defined in (2.1).

Lemma 2.8 Assume that v is of class C2(D) and that v solves the Euler equations (1.1)
in D, still together with (2.2)-(2.3). Let u, in C3(D), be given by Lemma 2.1 and let J its
range defined by

J = {u(x) : x ∈ D}.

(i) If (2.5) and (2.15) are fulfilled, then there is a C1 function f : J → R such that

∆u+ f(u) = 0 in D.

(ii) If Ω = R2\ω1 and infΩ |v| > 0, then the same conclusion holds.

Proof. First of all, since v is of class C2(D), the stream function u given by Lemma 2.1 is now
of class C3(D). By continuity of u and connectedness of D, the range J of u is an interval.

(i) Assume here (2.5) and (2.15). It follows from Lemma 2.1 and its notations that the
interior of J is equal to (min(cin, cout),max(cin, cout)). Furthermore, J is open at cin if and
only if Ω is punctured, while J is open at cout if and only if Ω is unbounded (for instance,
if Ω = R2 \ ω1, then J = [cin, cout) or (cout, cin]). It then follows from Lemmas 2.1 and 2.4-(i)
that, with the same notations as there, the function g := u ◦σ : I → J is a C1 diffeomorphism
from I onto J . Let g−1 : J → I be its C1 reciprocal diffeomorphism, and define

f(τ) = −∆u(σ(g−1(τ))) for τ ∈ J. (2.24)

By the chain rule, the function f is of class C1(J) (remember that ∆u is now of class C1(D)).
The above formula means that the equation ∆u + f(u) = 0 is satisfied along the curve σ(I).
Let us now check it in the whole set D. Consider first any point x ∈ Ω. From Lemmas 2.4-(i)
and 2.6-(i), the streamline Ξx surrounds the origin and meets the curve σ(I). Hence, there
is s ∈ I such that σ(s) ∈ Ξx. On the one hand, the stream function u is constant along the
streamline Ξx. On the other hand, the C1(D) vorticity ∂v2

∂x1
− ∂v1

∂x2
= ∆u satisfies v · ∇(∆u) = 0

in D from the Euler equations (1.1), hence ∆u is constant along the streamline Ξx too. As a
consequence, (2.24) yields

∆u(x) + f(u(x)) = ∆u(σ(s)) + f(u(σ(s))) = ∆u(σ(s)) + f(g(s)) = 0.

Therefore, ∆u + f(u) = 0 in Ω. Finally, since both functions ∆u and f ◦ u are (at least)
continuous in D, one concludes that ∆u+ f(u) = 0 in D.

(ii) Assume now that Ω = R2 \ω1 and infΩ |v| > 0. From Lemmas 2.1-(i) and 2.6-(iii),
one then has J = [cin,+∞) or (−∞, cin]. Together with Lemma 2.4-(ii), there are then tout
in (0,+∞] and a C1 curve σ : [0, tout) → D = Ω such that the function g := u ◦ σ is a C1

diffeomorphism from [0, tout) onto J . Let g−1 : J → [0, tout) be its C1 reciprocal diffeomorphism,
and define f ∈ C1(J) as in (2.24). Since, by Lemma 2.6-(iii), each streamline Ξx (for each
x ∈ D = Ω) surrounds the origin, it then follows as in (i) above that the equation ∆u+f(u) = 0
holds, here directly in D. The proof of Lemma 2.8 is thereby complete. �
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3 Proof of the main results in fixed annular domains Ωa,b

This section is devoted to the proof of Theorems 1.1-1.5 and 1.8 on the Euler flows in the
fixed annular domains Ωa,b with 0 ≤ a < b ≤ ∞. The proofs rely on the common properties
proved in Section 2, as well as on various applications of Proposition 1.14 and further specific
arguments in the unbounded and punctured cases.

3.1 The case of bounded annuli Ωa,b: proof of Theorems 1.1 and 1.2

This section is devoted to the proof of Theorem 1.2 (we recall that Theorem 1.1 is a particular
case of Theorem 1.2). Throughout this section, we consider two positive real numbers a < b
and a C2(Ωa,b) solution v of (1.1)-(1.2) satisfying (1.3), namely{

x ∈ Ωa,b : |v(x)| = 0
}
( Ca or

{
x ∈ Ωa,b : |v(x)| = 0

}
( Cb.

This situation falls within the general framework of Section 2, with C1 = Ca, ω1 = Ba,
C2 = Cb, ω2 = Bb, Ω = ω2\ω1 = Ωa,b, and D = Ωa,b. Notice also that the conditions (2.2)-
(2.3), (2.5), and (2.15) are fulfilled by assumption. Therefore, the flow has a C3(Ωa,b) stream
function u and, by Lemmas 2.1 and 2.8-(i), there are two real numbers cin 6= cout and
a C1([min(cin, cout),max(cin, cout)]) function f such that

∆u+ f(u) = 0 in Ωa,b,

min(cin, cout) < u < max(cin, cout) in Ωa,b,

u = cin on Ca, u = cout on Cb.

(3.1)

It then follows from [27, Theorem 5]7 that u is radially symmetric and strictly monotone with
respect to |x| in Ωa,b. Therefore, there is a C3([a, b]) strictly monotone function U : [a, b]→ R
such that u(x) = U(|x|) for all x ∈ Ωa,b. The flow v = ∇⊥u is then given by

v(x) = V (|x|) eθ(x)

for all x ∈ Ωa,b, with V = U ′ ∈ C2([a, b]). Lastly, since |v| is continuous in Ωa,b and does not
vanish in Ωa,b nor in the whole circle Ca nor in the whole circle Cb, the function V then has a
constant strict sign in [a, b]. The proof of Theorem 1.2 is thereby complete. �

A related open question

For a C2(Ωa,b) flow v solving (1.1)-(1.2), could the assumption (1.3) be slightly relaxed for v
still to be necessarily a circular flow? As we mentioned in the introduction, the conclusion does
not hold in general if v has stagnation points in Ωa,b. So a natural question is the following
one:

if |v| > 0 in Ωa,b, then is v a circular flow ? (3.2)

7Notice that this result holds in any dimension n ≥ 2. It is similar to the classical radial symmetry property
proved in [11] in the case where u is a positive solution of the equation ∆u+ f(u) = 0 in a ball, with Dirichlet
condition u = 0 on the boundary.
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We first point out that Lemmas 2.1, 2.2 and 2.6-(i), with Ω = Ωa,b, still hold since they do
not use the whole assumption (2.15) (more precisely, they do not use (1.3)), but only |v| > 0
in Ωa,b. Consider then any point y ∈ Ωa,b. With the same notations as in Lemma 2.2, and
assuming without loss of generality that cin < cout (after possibly changing v into −v and u
into −u), there are some quantities t±y such that −∞ ≤ t−y < 0 < t+y ≤ +∞ and the solution σy
of (2.10) with y instead of x is of class C1((t−y , t

+
y )) and ranges in Ωa,b, with{

|σy(t)| → a and u(σy(t))→ cin as t→ t−y ,

|σy(t)| → b and u(σy(t))→ cout as t→ t+y .
(3.3)

The C1((t−y , t
+
y )) function g := u ◦ σy is increasing (we recall that (u ◦ σy)′(t) = |∇u(σy(t))|2 =

|v(σy(t))|2 > 0 for all t ∈ (t−y , t
+
y )), and g is then an increasing homeomorphism from (t−y , t

+
y )

onto (cin, cout). The function f : (cin, cout)→ R defined by

f(τ) = −∆u(σy(g
−1(τ))) for τ ∈ (cin, cout) (3.4)

is of class C1((cin, cout)) and, since for every x ∈ Ωa,b the streamline Ξx intersects σy((t
−
y , t

+
y ))

by Lemma 2.6-(i), the same arguments as in the proof of Lemma 2.8-(i) imply that

∆u+ f(u) = 0 in Ωa,b.

Furthermore, remembering from Lemma 2.6-(i) that, for each x ∈ Ωa,b, the C1 solution ξx
of (1.5) is periodic and ranges in Ωa,b, it then follows from the continuity of u in the compact
set Ωa,b and the facts that u = cin on Ca, u = cout on Cb and cin < u < cout in Ωa,b, that

max
t∈R
|ξx(t)| → a as |x| >→ a and min

t∈R
|ξx(t)| → b as |x| <→ b.

Since the function ∆u is constant along any streamline of the flow from the Euler equa-
tions (1.1) and since ∆u is uniformly continuous in Ωa,b, it then follows from the previous
observations that ∆u is constant on Ca and constant on Cb. Call d1 and d2 the values of ∆u
on Ca and Cb, respectively, and set f(cin) = −d1 and f(cout) = −d2. One then infers from (3.3)-
(3.4) that f : [cin, cout] → R is continuous in [cin, cout] and that the equation ∆u + f(u) = 0
holds in the closed annulus Ωa,b (u is then a classical C2(Ωa,b) solution of (3.1)). However,
since

f ′(τ) = −∇(∆u)(σy(g
−1(τ))) · ∇u(σy(g

−1(τ)))

|∇u(σy(g−1(τ)))|2
for all τ ∈ (cin, cout)

and since |∇u(σy(g
−1(τ)))| can converge to 0 as τ → cin or cout (this happens if |v| = 0 on Ca

or if |v| = 0 on Cb), the function f ′ can be unbounded in (cin, cout).
8 The argument used in

the proof of Theorem 1.2 to conclude that the solution u of (3.1) is radially symmetric relies
on [27, Theorem 5], which itself uses the Lipschitz-continuity of f over the range of u. Thus,

8For instance, the smooth flow v(x) = (|x|−a) eθ(x) solves (1.1)-(1.2) with pressure p(x) = |x|2/2− 2a|x|+
a2 ln |x| and stream function u(x) = (|x| − a)2/2 (up to additive constants), while |v| = 0 on Ca and |v| > 0
in Ωa,b. Here, cin = 0, cout = (b − a)2/2 and f(s) = −2 + a/(a +

√
2s) for s ∈ [cin, cout] = [0, (b − a)2/2],

hence f ′ is not bounded in (cin, cout). Notice that this example is a circular flow, which makes question (3.2)
still relevant.
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the same argument can not be applied as such in general in the case where v is just assumed
to have no stagnation point in Ωa,b, without the assumption (1.3). Other arguments should
then be used to prove that v is circular or to disprove this property in general. We leave this
question open for a further work.

3.2 The case of unbounded annuli Ωa,∞: proof of Theorems 1.3
and 1.4

This section is devoted to the proof of Theorems 1.3 and 1.4. Throughout this section, we fix
a positive real number a and we consider a C2(Ωa,∞) flow v solving (1.1)-(1.2) and such that{

x ∈ Ωa,∞ : |v(x)| = 0
}
( Ca and |v| ≥ η > 0 in Ωa+1,∞ (3.5)

for some positive real number η > 0 (these conditions are fulfilled in both Theorems 1.3
and 1.4). We also assume that either v(x) · er(x) = o(1/|x|) as |x| → +∞ (that is, (1.8), for
Theorem 1.3) or infΩa,∞ |v| > 0 (for Theorem 1.4). This situation fits into the framework of

Section 2, with C1 = Ca, ω1 = Ba, Ω = R2\ω1 = Ωa,∞, and D = Ωa,∞. Notice also that the
conditions (2.2)-(2.3) and (2.15) are fulfilled by assumption. So is (2.17), hence Lemma 2.4-
(ii) can be applied. Furthermore, either (2.5) is fulfilled (from (1.8), for Theorem 1.3) and
Lemmas 2.1-(ii) and 2.8-(i) can be applied, or the conditions of Lemmas 2.6-(iii) and 2.8-(ii)
are fulfilled. Therefore, from Lemmas 2.1, 2.4-(ii), 2.6-(iii) and 2.8, the flow has a C3(Ωa,∞)
stream function u, and there exist a real number cin (which can be taken to be 0 without
loss of generality, since u is unique up to additive constants) and cout = ±∞ (we can assume
that cout = +∞ without loss of generality, even if it means changing v into −v and u into −u),
together with a C1([0,+∞)) function f such that

∆u+ f(u) = 0 in Ωa,∞,

u > 0 in Ωa,∞,

u = 0 on Ca, u(x)→ +∞ as |x| → +∞.
(3.6)

3.2.1 Proof of Theorem 1.3

In addition to (3.5), we further assume that

v(x) · er(x) = o
( 1

|x|

)
as |x| → +∞. (3.7)

As a consequence, (2.5) holds, and there is R0 ≥ a+ 1 such that

|∇u · er| = |v · eθ| ≥
η

2
in ΩR0,∞. (3.8)

Hence, Lemma 2.6-(i)-(ii) can be applied and the streamlines Ξx = ξx(R) (with x ∈ Ωa,∞)
surround the origin and are such that

min
R
|ξx| → +∞ and max

R
|ξx| −min

R
|ξx| → 0 as |x| → +∞ (3.9)
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(actually, the second conclusion is stronger than the first one, since ξx(0) = x). Together
with the normalization of u (that is, u > 0 in Ωa,∞), properties (3.8)-(3.9) yield the existence
of R1 ≥ R0 ≥ a + 1 such that ∇u(x) · er(x) ≥ η/2 for all |x| ≥ R0 and minR |ξx| ≥ R0

for all |x| ≥ R1. For any x with |x| ≥ R1, it then follows that, for every θ ∈ R, there is a
unique %x(θ) ≥ R0 such that (%x(θ) cos θ, %x(θ) sin θ) ∈ Ξx, and moreover

Ξx =
{

(%x(θ) cos θ, %x(θ) sin θ) : θ ∈ R
}
. (3.10)

Notice also that the 2π-periodic function %x is of class C3(R) from the implicit function theo-
rem.

If some streamlines were true circles centered at the origin, then [27, Theorem 5] would
imply that the stream function u is radially symmetric in the bounded region between Ca and
these streamlines. To circumvent the fact that the streamlines are not known to be true circles
a priori, we use Lemma 3.1 below and Proposition 1.14 to compare the stream function u
with its reflection with respect to some lines approximating any line containing the origin.
We then proceed by passing to the limit as the approximation parameter goes to 0. With
Proposition 1.14, it then easily follows that u is radially symmetric and that all streamlines
are truly circular, thus completing the proof of Theorem 1.3.

To apply this strategy, let us now introduce some additional notations which will be used in
this section, as well as in the proof of Theorems 1.4, 1.5, 1.8 and 1.10 in the following sections.
For x ∈ Ωa,∞, let Ωx denote the bounded connected component of R2\Ξx. Notice that Ωx

is well defined and contains the origin, by Lemma 2.6-(i). Notice also that u is equal to the
positive constant u(x) along Ξx, while u vanishes along Ca and has no critical point in Ωa,∞.
Hence,

0 < u(y) < u(x) for all y ∈ Ωx ∩ Ωa,∞, (3.11)

where Ωx∩Ωa,∞ is the bounded domain located between Ξx and Ca. As a consequence, ∇u(z)
points outwards Ωx at each point z ∈ Ξx.

After recalling that the sets Te,λ and He,λ and the reflection Re,λ have been defined in (1.15)-
(1.16), the following lemma says that, for any ε > 0, the set Ωx∩He,λ will be an admissible set
for the method of moving planes for any e ∈ S1 and λ > ε > 0, provided |x| is large enough.

Lemma 3.1 For each ε > 0, there exists Rε > a such that

Re,λ

(
He,λ ∩ Ωx

)
⊂ Ωx

for all e ∈ S1, λ > ε and |x| ≥ Rε (see Fig. 2).

Proof. Fix ε > 0, and assume by way of contradiction that the conclusion of the lemma does
not hold. Then there are some sequences (xn)n∈N in Ωa,∞, (en)n∈N in S1, (λn)n∈N in (ε,+∞)
and (yn)n∈N such that

lim
n→+∞

|xn| = +∞, and yn ∈ Hen,λn ∩ Ωxn and zn := Ren,λn(yn) 6∈ Ωxn for all n ∈ N.

From (3.9), there is a sequence (rn)n∈N of positive real numbers converging to 0 such
that B|xn|−rn ⊂ Ωxn ⊂ B|xn|+rn for all n ∈ N, hence |yn| ≤ |xn| + rn. On the other hand,
since yn · en > λn > ε > 0, one has

|yn|2 − |zn|2 = |yn|2 − |Ren,λn(yn)|2 = 4λn(yn · en − λn) > 0,
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Figure 2: The sets Ωx, He,λ ∩ Ωx and Re,λ(He,λ ∩ Ωx)

hence |yn| > |zn| ≥ |xn| − rn since zn 6∈ Ωxn . As a consequence, |xn| − rn ≤ |zn| < |yn| ≤
|xn| + rn for all n ∈ N, and limn→+∞(|yn| − |xn|) = limn→+∞(|yn| − |zn|) = 0. The inequality
|yn|2 − |zn|2 = 4λn(yn · en − λn) > 4ε(yn · en − λn) > 0 then yields limn→+∞(yn · en − λn) = 0.
Hence,

dist(yn,Ξxn ∩ Ten,λn)→ 0 and |yn − zn| → 0 as n→ +∞.

For each n ∈ N, let ϕn ∈ R be such that en = (cosϕn, sinϕn). Since yn · en > λn > ε > 0,
there is a unique θn ∈ (−π/2, π/2) such that

yn
|yn|

= (cos(ϕn + θn), sin(ϕn + θn)).

Similarly, since (zn − yn) · en → 0 as n→ +∞, one has zn · en > ε/2 for all large n and there
is a unique θ′n ∈ (−π/2, π/2) such that

zn
|zn|

= (cos(ϕn + θ′n), sin(ϕn + θ′n)).

Since limn→+∞ |yn−zn| = 0 and limn→+∞ |yn| = limn→+∞ |zn| = limn→+∞ |xn| = +∞, one also
infers that θn − θ′n → 0 as n→ +∞. We also recall that (3.10) holds with xn instead of x, for
all n large enough. It then follows from Lemma 2.6-(i) and from the assumptions on yn and zn
that |yn| ≤ %xn(ϕn + θn) and |zn| ≥ %xn(ϕn + θ′n) for all n large enough. Denote, for n large
enough, {

y′n = (%xn(ϕn + θn) cos(ϕn + θn), %xn(ϕn + θn) sin(ϕn + θn)) ∈ Ξxn ,

z′n = (%xn(ϕn + θ′n) cos(ϕn + θ′n), %xn(ϕn + θ′n) sin(ϕn + θ′n)) ∈ Ξxn ,

and observe that yn ∈ (0, y′n] and z′n ∈ (0, zn].
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Figure 3: The points yn, y′n, zn, z′n, and ζn (with here en = (1, 0) and ϕn = 0)

We now claim that θ′n 6= θn for all n large enough. Indeed, otherwise, up to extraction of
a subsequence, y′n = z′n and the four points 0, yn, y′n = z′n and zn would be aligned in that
order. But since yn− zn = 2(yn · en− λn)en with yn · en− λn > 0, the vectors yn and zn would
be parallel to en. Hence, yn = (yn · en)en with yn · en > λn > ε > 0 and zn = (zn · en)en
with zn · en = 2λn − yn · en < λn < yn · en. This contradicts the fact that 0, yn and zn lie on
the half-line R+en in that order. Thus, θ′n 6= θn for all n large enough, thus for all n without
loss of generality. Notice that the same arguments also imply that θn 6= 0 and θ′n 6= 0 for all n
large enough (since otherwise in either case one would have θn = θ′n = 0 up to extraction of
a subsequence), thus for all n without loss of generality. In particular, either 0 < θn < π/2
or −π/2 < θn < 0.

Assume first that, up to extraction of a subsequence, 0 < θn < π/2 for all n. One then
infers from the definition of zn = Renλn(yn) and the previous paragraph that

0 < θn < θ′n <
π

2
.

Remember now that 0 < u(y) < u(xn) for every y in the domain Ωxn ∩ Ωa,∞ between Ξxn

and Ca, and ∇u(z) points outwards Ωxn at each point z ∈ Ξxn . For each n ∈ N, since
yn ∈ (0, y′n], z′n ∈ (0, zn] and since yn − zn = ςnen with ςn := 2(yn · en − λn) > 0, there is then
an angle φn ∈ [θn, θ

′
n] ⊂ (0, π/2) such that

ζn := (%xn(ϕn + φn) cos(ϕn + φn), %xn(ϕn + φn) sin(ϕn + φn)) ∈ Ξxn ∩ [yn, zn]

and ∇u(ζn) · en ≤ 0, see Fig. 3. The point ζn can be defined as the first point on Ξxn ∩ [yn, zn]
when going from y′n to z′n along Ξxn with increasing angle. Notice that |ζn| → +∞ since
|yn| → +∞ and |yn − zn| → 0 as n → +∞. Call v1,n = v(ζn) · en and v2,n = v(ζn) · e⊥n . The
inequality ∇u(ζn) · en ≤ 0 means that v2,n ≤ 0. Therefore,

v(ζn) · er(ζn) = v1,n cosφn + v2,n sinφn ≤ v1,n cosφn, (3.12)
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while 0 < η/2 ≤ |v(ζn) · eθ(ζn)| = | − v1,n sinφn + v2,n cosφn| for all n large enough, from (3.8)
and limn→+∞ |ζn| = +∞. But since the continuous function v · eθ = ∇u · er has a constant
strict positive sign at infinity, it follows that

η

2
≤ v(ζn) · eθ(ζn) = −v1,n sinφn + v2,n cosφn

for all n large enough. Since v2,n ≤ 0 and 0 < φn < π/2, one gets that −v1,n sinφn ≥ η/2,
hence v1,n ≤ −η/2. Together with (3.12), it follows that v(ζn) · er(ζn)≤−(η/2) cosφn for all n
large enough. On the other hand, since ζn∈ [yn, zn] and limn→+∞ |zn−yn|=limn→+∞(yn · en−
λn)=0, there holds ζn ·en−λn → 0, hence ζn ·en ≥ ε/2 for all n large enough (since λn > ε > 0
for all n). Finally,

cosφn =
ζn · en
|ζn|

≥ ε

2|ζn|
and v(ζn) · er(ζn) ≤ − η ε

4|ζn|

for all n large enough. That last inequality contradicts the assumption (3.7) and the limit
limn→+∞ |ζn| = +∞.

The second case, for which, up to extraction of a subsequence, −π/2 < θn < 0 for all n
(and then −π/2 < θ′n < θn < 0) can be handled similarly and leads to a contradiction as well.
The proof of Lemma 3.1 is thereby complete. �

Proof of Theorem 1.3. We shall show that the stream function u is radially symmetric
in Ωa,∞. Notice that we already know that u = 0 on Ca. Let then x 6= y ∈ Ωa,∞ be such that

|x| = |y| (> a).

Call

e =
y − x
|y − x|

∈ S1. (3.13)

Consider an arbitrary real number ε such that 0 < ε < a. Let Rε > a be as in Lemma 3.1.
From (3.9), there is a point xε ∈ Ωa,∞ such that |xε| ≥ Rε and minR |ξxε | > |x| = |y|.
Lemma 3.1 then yields

Re,λ(He,λ ∩ Ωxε) ⊂ Ωxε for all λ > ε. (3.14)

We are now going to apply Proposition 1.14 with
Ξ = Ξxε , Ω = Ωxε , Ξ′ = Ca, Ω′ = Ba, ω = Ωxε\Ba,

R′ = a, R = max
R
|ξxε| > a, λ = max

z∈Ξxε
z · e > a > ε > 0,

ϕ = −u ∈ C3(ω), c1 = −u(xε) = −u|Ξxε < 0, c2 = 0 = −u|Ca ,
F (r, s) = F (s) = −f(−s) for (r, s) ∈ [a,R]× [−u(xε), 0].

Notice immediately that assumption (1.19) is automatically satisfied. The function F clearly
satisfies the assumptions of Proposition 1.14 since f is of class C1([0,+∞)). The function ϕ
satisfies ∆ϕ+F (ϕ) = 0 in ω, with c1 < ϕ < c2 in ω (since 0 < u < u(xε) in Ωxε∩Ωa,∞ by (3.11)).
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Together with (3.14), all assumptions of Proposition 1.14 are satisfied. Proposition 1.14 applied
with λ = ε then implies that ϕ ≤ ϕe,ε, namely u ≥ ue,ε, in ωe,ε with

ωe,ε = (He,ε ∩ ω)\Re,ε(Ω′) =
(
He,ε ∩ (Ωxε\Ba)

)
\Re,ε(Ba).

Observe now that y · e = (|y|2 − x · y)/|y − x| > 0 since |x| = |y| and x 6= y, and remember
that a < |y| < minR |ξxε|, hence y ∈ ω. Therefore, y ∈ ωe,ε for all ε > 0 small enough, and

u(y) ≥ ue,ε(y) = u(ye,ε) = u(y − 2(y · e− ε)e)

for all ε > 0 small enough. By passing to the limit ε
>→ 0 and using the definition of e and the

assumption |x| = |y|, one infers that

u(y) ≥ u(y − 2(y · e)e) = u(x).

Since the last inequality holds for all x 6= y ∈ Ωa,∞ such that |x| = |y| (and also for all
x, y ∈ Ca), the C3(Ωa,∞) function u is radially symmetric in Ωa,∞. Together with (3.5)-
(3.6), there is then a C3([a,+∞)) function U such that U(a) = 0, U ′ > 0 in [a,+∞) and
u(x) = U(|x|) for all x ∈ Ωa,∞. This means that v(x) = V (|x|) eθ(x) for all x ∈ Ωa,∞ with
V = U ′ ∈ C2([a,+∞)) and V > 0 in [a,+∞). The proof of Theorem 1.3 is thereby complete. �

3.2.2 Proof of Theorem 1.4

This section is devoted to the proof of Theorem 1.4. In addition of (3.5), we actually assume
the stronger condition

|v| = |∇u| ≥ η > 0 in Ωa,∞ (3.15)

for some η > 0. Since from our normalization the function u is positive in Ωa,∞ and vanishes
on Ca, the conditions (1.2) and (3.15) imply that

v · eθ = ∇u · er ≥ η > 0 on Ca. (3.16)

To prove Theorem 1.4, we then have to show that the supremum of the vorticity is positive,
namely

sup
Ωa,∞

(∂v2

∂x1

− ∂v1

∂x2

)
> 0. (3.17)

To do so, let us assume by way of contradiction that

∆u =
∂v2

∂x1

− ∂v1

∂x2

≤ 0 in Ωa,∞. (3.18)

We will show that u is radially symmetric, and this will easily lead to a contradiction. To
prove the radially symmetry of u, let us use a Kelvin transform of the variables by setting

w(x) = u
( x

|x|2
)

for x ∈ Ω0,1/a\{0},
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and let us show that the C3(Ω0,1/a \ {0}) function w is radially symmetric in Ω0,1/a \ {0}.
From (3.6), one has

w = 0 on C1/a, w > 0 in Ω0,1/a and w(x)→ +∞ as |x| >→ 0,

and a straightforward calculation yields

∆w(x) +
1

|x|4
f(w(x)) = 0 for all x ∈ Ω0,1/a\{0},

that is, ∆w(x) + F (|x|, w(x)) = 0 in Ω0,1/a\{0} with

F : (0, 1/a]× [0,+∞) → R
(r, s) 7→ F (r, s) = r−4f(s).

The function F is of class C1((0, 1/a]× [0,+∞)). Furthermore, the range of u is equal to the
whole interval [0,+∞) by (3.6), and f ≥ 0 in [0,+∞) by (3.6) and (3.18). Therefore, the
function F is nonincreasing with respect to its first variable in (0, 1/a]× [0,+∞).

Consider now any two points x 6= y ∈ Ω0,1/a \{0} with |x| = |y|. As in the proof of
Theorem 1.3, denote

e =
y − x
|y − x|

∈ S1

and consider an arbitrary real number ε such that

0 < ε < |x| = |y| ≤ 1

a
.

By Lemma 2.6-(iii), there is a point xε ∈ Ωa,∞ such that minR |ξxε| > 1/ε > a. One knows
that the streamline Ξxε surrounds the origin and that u = u(xε) > 0 along Ξxε . Furthermore,
as in (3.11), one has 0 < u < u(xε) in the domain Ωxε ∩Ωa,∞ between Ξxε and Ca, since u = 0
on Ca and u has no critical point in Ωa,∞.

Denote Ξ = C1/a and

Ξ′ =
{
z ∈ R2 :

z

|z|2
∈ Ξxε

}
.

Notice that the Jordan curve Ξ′ surrounds the origin and Ξ′ ⊂ Bε (⊂ B1/a) by definition of xε.
Call Ω = B1/a, let Ω′ be the bounded connected component of R2\Ξ′, and let

ω = Ω\Ω′ = B1/a\Ω′ (⊃ Ωε,1/a).

Denote R = 1/a,

0 < R′ = min
z∈Ξ′
|z| = 1

max
R
|ξxε|

< ε < R,

and λ = maxz∈Ξ z · e = 1/a > 0. One has 0 < ε < 1/a, hence ε ∈ [0, λ). The function ϕ = w
is of class C3(ω) with

ϕ = c1 = 0 on Ξ = C1/a, ϕ = c2 = u(xε) > 0 on Ξ′, and 0 < ϕ < u(xε) in ω
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(since 0 < u < u(xε) in Ωxε ∩ Ωa,∞). Furthermore, ϕ satisfies ∆ϕ + F (|x|, ϕ) = 0 in ω,
with F (r, s) = r−4f(s) and, here, (r, s) ∈ [R′, 1/a] × [0, u(xε)]. The function F then satisfies
the conditions of Proposition 1.14. Lastly, the condition (1.18) is immediately satisfied since
Ω = B1/a and the condition (1.19) also holds since He,λ∩Ξ′ = ∅ for all λ > ε (because Ξ′ ⊂ Bε).
To sum up, all assumptions of Proposition 1.14 are fulfilled. Its conclusion with λ = ε yields
w ≤ we,ε in ωe,ε, with

ωe,ε =
(
He,ε ∩ (B1/a\Ω′)

)
\Re,ε(Ω′).

Since y · e > 0 and since Ω′ ⊂ Bε and Re,ε(Ω′) ⊂ B3ε, it follows that y ∈ ωe,ε for all ε > 0 small
enough. As a consequence, w(y) ≤ we,ε(y) = w(ye,ε) = w(y − 2(y · e− ε)e) for all ε > 0 small
enough and the passage to the limit as ε→ 0 yields

w(y) ≤ w(y − 2(y · e)e) = w(x)

by definition of e. Since this holds for all x 6= y ∈ Ω0,1/a \{0} with |x| = |y|, this means
that w is radially symmetric in Ω0,1/a\{0}, hence u is radially symmetric in Ωa,∞. Together
with (3.16), there is then a C3([a,+∞)) function U such that u(x) = U(|x|) and U ′ ≥ η > 0
in [a,+∞). But ∆u ≤ 0 in Ωa,∞ by (3.18). Hence U ′′(r) + r−1U ′(r) ≤ 0 in [a,+∞) and the
function r 7→ rU ′(r) is nonincreasing in [a,+∞), a contradiction with U ′ ≥ η > 0.

As a conclusion, (3.18) can not hold, that is, (3.17) holds and the proof of Theorem 1.4 is
thereby complete. �

3.3 The case of punctured disks Ω0,b: proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. Throughout this section, we fix a positive
real number b and we consider a C2(Ω0,b\{0}) flow v solving (1.1)-(1.2) and such that{

x ∈ Ω0,b\{0} : |v(x)| = 0
}
( Cb and

∫
Cε

|v · er| → 0 as ε
>→ 0. (3.19)

This situation falls within the framework of Section 2, with C2 = Cb, ω2 = Bb, Ω=ω2\{0}=Ω0,b,
and D = Ω0,b\{0}, and the conditions (2.2)-(2.3), (2.5), and (2.15) are fulfilled by assumption.
Therefore, from Lemmas 2.1 and 2.8-(i), the flow has a C3(Ω0,b\{0}) stream function u, and
there exist a real number cout (which can be taken to be 0 without loss of generality, since
u is unique up to additive constants) and 0 6= cin ∈ R (we can assume that 0 < cin ≤ +∞
without loss of generality, even if it means changing v into −v and u into −u), together with
a C1([0, cin)) function f such that

∆u+ f(u) = 0 in Ω0,b\{0},
u > 0 in Ω0,b,

u = 0 on Cb, u(x)→ cin as |x| >→ 0.

(3.20)

One goal is to show that u is radially symmetric in Ω0,b \{0}. Consider any two points
x 6= y ∈ Ω0,b\{0} with |x| = |y|. As in the proof of Theorems 1.3 and 1.4, denote

e =
y − x
|y − x|

∈ S1
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and consider an arbitrary real number ε such that

0 < ε < |x| = |y| ≤ b.

By Lemma 2.6-(i), there is a point xε ∈ Ω0,b such that maxR |ξxε| < ε < b, and the stream-
line Ξxε surrounds the origin with u = u(xε) > 0 along Ξxε . Since u = 0 on Cb and u has no
critical point in Ω0,b, one infers that 0 < u < u(xε) in the domain ω between Ξxε and Cb. De-
note Ξ = Cb, Ξ′ = Ξxε , Ω = Bb, let Ω′ = Ωxε be the bounded connected component of R2\Ξxε ,
and notice that

ω = Ω\Ω′.

Set
R = b, 0 < R′ = min

z∈Ξ′
|z| < ε < R and λ = max

z∈Ξ
z · e = b > 0.

One has ε ∈ (0, λ). The function ϕ = u is of class C3(ω) with

ϕ = c1 = 0 on Ξ = Cb, ϕ = c2 = u(xε) > 0 on Ξ′, and 0 < ϕ < u(xε) in ω.

Furthermore, ϕ satisfies ∆ϕ + F (ϕ) = 0 in ω, with F : [R′, b]× [0, u(xε)] 3 (r, s) 7→ F (r, s) =
f(s) satisfying all conditions of Proposition 1.14. Lastly, the condition (1.18) is immediately
satisfied since Ω = Bb and the condition (1.19) also holds since He,λ ∩ Ξ′ = ∅ for all λ > ε
(because Ξ′ ⊂ Bε). To sum up, all assumptions of Proposition 1.14 are fulfilled. Its conclusion
with λ = ε yields u ≤ ue,ε in ωe,ε, with

ωe,ε =
(
He,ε ∩ (Bb\Ω′)

)
\Re,ε(Ω′).

Since y · e > 0 and since Ω′ ⊂ Bε and Re,ε(Ω′) ⊂ B3ε, it follows that y ∈ ωe,ε for all ε > 0 small
enough. As a consequence, u(y) ≤ u(ye,ε) = u(y− 2(y · e− ε)e) for all ε > 0 small enough and

the passage to the limit as ε
>→ 0 yields

u(y) ≤ u(y − 2(y · e)e) = u(x)

by definition of e. Since this holds for all x 6= y ∈ Ω0,b\{0} with |x| = |y|, this means that
u is radially symmetric in Ω0,b \{0}. Together with (3.19)-(3.20), there is then a C3((0, b])
function U such that u(x) = U(|x|) and U ′ < 0 in (0, b]. Hence, v(x) = U ′(|x|)eθ(x) for
all x ∈ Ω0,b\{0}, and the proof of Theorem 1.5 is thereby complete. �

3.4 The case of the punctured plane Ω0,∞ = R2\{0}: proof of Theo-
rem 1.8

This section is devoted to the proof of Theorem 1.8. Let v be a C2(Ω0,∞) flow solving (1.1) and
such that |v| > 0 in Ω0,∞, lim inf |x|→+∞ |v(x)| > 0, and (1.14) holds. This situation fits into the
framework of Section 2, with Ω = D = R2\{0} = Ω0,∞, and the conditions (2.2)-(2.3), (2.5),
and (2.15) are fulfilled by assumption. Therefore, from Lemmas 2.1 and 2.8-(i), the flow has
a C3(Ω0,∞) stream function u, and there exist cin 6= cout ∈ R (we can assume that cin > cout
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without loss of generality, even if it means changing v into −v and u into −u), together with
a C1((cout, cin)) function f such that

∆u+ f(u) = 0 in Ω0,∞,

cout < u < cin in Ω0,∞,

u(x)→ cin as |x| >→ 0, u(x)→ cout as |x| → +∞.
(3.21)

Moreover, the conditions (1.14) and lim inf |x|→+∞ |v(x)|>0 yield lim inf |x|→+∞ |v(x) ·eθ(x)|>0.
It then follows from Lemma 2.6-(i)-(ii) that each streamline Ξx = ξx(R) is a C1 Jordan curve
surrounding the origin, with

max
R
|ξx| −min

R
|ξx| → 0 as |x| → +∞ and max

R
|ξx| → 0 as |x| >→ 0.

Since u is unique up to additive constants, one can also assume without loss of generality that
cin > 0 > cout. Pick then a point X ∈ Ω0,∞ such that u(X) = 0, and let ΩX be the bounded
connected component of R2\ΞX (then 0 ∈ ΩX). Together with the inequalities cin > 0 > cout
and the assumption |∇u| > 0 in Ω0,∞, it follows that u > 0 in ΩX \{0} and u < 0 in R2\ΩX .
Furthermore, by definition of u, v is orthogonal to the normal vector to ΩX . As a consequence,
Lemma 2.6-(iii) can also be applied with ω1 = ΩX , hence cout = −∞ in (3.21).

Now, still using the notations (1.15)-(1.16), it then follows as in Lemma 3.1, from the
assumptions lim inf |x|→+∞ |v(x)| > 0 and v(x) · er(x) = o(1/|x|) as |x| → +∞, that, for
every ε > 0, there is Rε > 0 such that

Re,λ(He,λ ∩ Ωx) ⊂ Ωx

for all e ∈ S1, λ > ε and |x| > Rε.
Lastly, consider two points x 6= y ∈ Ω0,∞ such that |x| = |y|. Let e ∈ S1 be defined

as in (3.13). Consider an arbitrary real number ε such that 0 < ε < |x| = |y|. As in
the proofs of Theorems 1.3 and 1.5, there are two points xε ∈ R2 \ΩX and x′ε ∈ ΩX such
that minR |ξxε| > |x| = |y| > ε,

Re,λ(He,λ ∩ Ωxε) ⊂ Ωxε for all λ > ε, (3.22)

and maxR |ξx′ε| < ε < |x| = |y|. The streamlines Ξ = Ξxε and Ξ′ = Ξx′ε surround the origin,
and u is equal to c1 = u(xε) < 0 along Ξ and to c2 = u(x′ε) > 0 along Ξ′. Furthermore,
u(xε) < u < u(x′ε) in the domain

ω = Ωxε\Ωx′ε

located between Ξxε and Ξx′ε . Denote R′ = minz∈Ξ′ |z| = minR |ξx′ε| ∈ (0, ε), R = maxz∈Ξ |z| =
maxR |ξxε| > |x| = |y| > ε > R′, and λ = maxz∈Ξ z · e > minR |ξxε| > |x| = |y| > ε > 0.
The C3(ω) function ϕ = u satisfies (1.17) with [R′, R] × [c1, c2] 3 (r, s) 7→ F (r, s) = f(s)
satisfying the assumptions of Proposition 1.14 since f is of class C1((−∞, cin)). Together
with (3.22) and the fact that He,λ∩Ξ′ = ∅ for all λ > ε (since Ξ′ ⊂ Bε), the assumptions (1.18)-
(1.19) are satisfied. All assumptions of Proposition 1.14 are therefore fulfilled. Proposition 1.14
applied with λ = ε then implies that u ≤ ue,ε in ωe,ε with

ωe,ε =
(
He,ε ∩ (Ωxε\Ωx′ε)

)
\Re,ε(Ωx′ε).
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As in the proof of Theorem 1.5, one has y ∈ ωe,ε for all ε > 0 small enough, hence

u(y) ≤ ue,ε(y) = u(ye,ε) = u(y − 2(y · e− ε)e)

for all ε > 0 small enough. By passing to the limit as ε
>→ 0 and using the definition of e

and the assumption |x| = |y|, one infers that u(y) ≤ u(y − 2(y · e)e) = u(x). Since the last
inequality holds for any x 6= y ∈ Ω0,∞ such that |x| = |y|, the C3(Ω0,∞) function u is radially
symmetric in Ω0,∞. Together with the fact that |∇u| = |v| > 0 in Ω0,∞ and cin > cout = −∞,
there is then a C3((0,+∞)) function U such that U ′ < 0 in (0,+∞) and u(x) = U(|x|) for
all x ∈ Ω0,∞. This means that v(x) = V (|x|) eθ(x) for all x ∈ Ω0,∞ with V = U ′ ∈ C2((0,+∞))
and V < 0 in (0,+∞). The proof of Theorem 1.8 is thereby complete. �

4 Proof of the Serrin-type Theorems 1.10 and 1.13

We start in Section 4.1 with the proof of Theorem 1.13 dealing with the case of doubly con-
nected bounded domains, since the proof follows easily from the arguments used in the proof
of Theorems 1.1-1.2 and on some known results of Reichel [21] and Sirakov [27] on elliptic
overdetermined boundary value problems. Section 4.2 is then devoted to the proof of Theo-
rem 1.10.

4.1 Proof of Theorem 1.13

Let ω1, ω2, Ω = ω2 \ω1 and v be as in Theorem 1.13. Up to translation, one can assume
without loss of generality that 0 ∈ ω1, and the assumptions of Theorem 1.13 then fall within
the framework of Section 2, with C1 = ∂ω1, C2 = ∂ω2, Ω = ω2\ω1, D = Ω = ω2\ω1, and the
conditions (2.2)-(2.3), (2.5), and (2.15) are fulfilled by assumption. Therefore, the flow has
a C3(Ω) stream function u and, by Lemmas 2.1 and 2.8-(i), there are two real numbers cin 6= cout
(without loss of generality, one can assume that cin > cout, even if it means changing v into −v
and u into −u) and a C1([cout, cin]) function f such that

∆u+ f(u) = 0 in Ω,

cout < u < cin in Ω,

u = cin on ∂ω1, u = cout on ∂ω2.

(4.1)

Since |∂u
∂n
| = |∇u| = |v| > 0 along ∂Ω, where n denotes the outward unit normal on ∂Ω, and

since |v| is constant along ∂ω1 and along ∂ω2, it follows that ∂u
∂n

is constant too along ∂ω1 and
along ∂ω2 (and ∂u

∂n
> 0 on ∂ω1 and ∂u

∂n
< 0 on ∂ω2). One concludes from [21, 27] (see also [2, 28])

that, up to translation, Ω = Ωa,b for some 0 < a < b < ∞ and u is radially symmetric and
decreasing with respect to |x| in Ω = Ωa,b. The assumptions and the conclusion of Theorem 1.1
are then satisfied and the proof of Theorem 1.13 is thereby complete. �

4.2 Proof of Theorem 1.10

Let ω be a C2 non-empty simply connected bounded domain of R2 (we here call this domain ω
instead of Ω to differentiate it from the notations of Section 2, which are used below). Let
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v ∈ C2(ω) satisfy the Euler equations (1.1) in ω. We assume that v · n = 0 and |v| is constant
on ∂ω, where n denotes the outward unit normal on ∂ω, and that v has a unique stagnation
point in ω. Since ω is simply connected and v is divergence free, there is a C3(ω) stream
function u satisfying (1.4). Furthermore, u is constant along ∂ω since v · n = 0 on ∂ω. Up to
normalization, one can assume without loss of generality that

u = 0 on ∂ω. (4.2)

By assumption, the function u has a unique critical point in ω, and |∇u| = |v| is constant
along ∂ω. Then |∂u

∂n
| = |∇u| = |v| > 0 on ∂ω. Up to changing v into −v and u into −u, one

can assume without loss of generality that

∂u

∂n
= γ < 0 on ∂ω (4.3)

for some negative constant γ. Hence, u has a unique maximum point in ω (which is actually
in ω) and this point is the unique critical point of u in ω. Up to translation, one can assume
without loss of generality that this critical point is the origin 0. One also infers from the
uniqueness of the critical point of u that

0 < u < u(0) for all x ∈ ω\{0}. (4.4)

This situation then falls within the framework of Section 2, with C2 = ∂ω, ω2 = ω, Ω = ω\{0},
and D = ω\{0}, and the conditions (2.2)-(2.3), (2.5), and (2.15) are fulfilled by assumption (in
particular, the integral condition (2.3) in the present punctured case is satisfied since here v
is continuous at 0 and |v(0)| = 0). Therefore, from Lemma 2.8-(i) and the previous notations,
there exists a C1([0, u(0))) function f such that ∆u + f(u) = 0 in ω \{0}. Furthermore,
by setting f(u(0)) = −∆u(0), it follows from (4.2), (4.4) and the continuity of u and ∆u
in ω, that f is continuous at u(0), and then in the whole interval [0, u(0)]. Together with the
continuity of u and ∆u at 0, the equation

∆u+ f(u) = 0

holds in ω. Our goal is to show that ω is then a ball centered at the origin and that u is
radially symmetric and decreasing with respect to |x| in ω.

Remembering that u satisfies (4.2)-(4.4), it would then follow from [25] that ω = BR

for some R > 0 and u is radially symmetric and decreasing with respect to |x| in ω, if the
function f were known to be Lipschitz continuous in [0, u(0)]. However, f ′ is not bounded in
a neighborhood of u(0) in general (see the comments after Theorem 1.10 in Section 1.2). We
will nevertheless still be able to show the desired symmetry of ω and of u by taking off from ω
small neighborhoods of 0 and applying Serrin’s strategy and the method of moving planes in
punctured domains. The images by u of the closure of these punctured domains are intervals
of the type [0, L], with 0 < L < u(0), and thus f is Lipschitz continuous in [0, L].

More precisely, let first ρ > 0 be such that

Bρ ⊂ ω
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and let e be any unit vector. Let η be any real number in (0, ρ), and denote

λe = max
x∈∂ω

x · e > ρ > η.

Using the same notations Te,λ, He,λ and Re,λ as in (1.15)-(1.16), it follows from [4] that there

is λ̃ ∈ (ρ, λe) such that

Re,λ(He,λ ∩ ω) ⊂ ω for all λ ∈ (λ̃, λe). (4.5)

Since maxR |ξx| → 0 as |x| >→ 0 by Lemma 2.6-(i) (or here, more simply, because of (4.2), (4.4)
and the continuity of u in ω), there is xη ∈ ω\{0} such that Ξxη ⊂ Bη. Let then Ω′ be the

bounded connected component of R2\Ξxη (notice that Ω′ ⊂ Bη ⊂ ω) and let

ω̃ = ω\Ω′

be the doubly connected bounded domain located between Ξxη and ∂ω. Notice that ∂ω̃ =

Ξxη ∪ ∂ω, that 0 6∈ ω̃ and that
0 < u < u(xη) in ω̃ (4.6)

since u has no critical point in ω̃.
From (4.5), two cases can occur: either

• (case a)
Re,λ(He,λ ∩ ω) ⊂ ω for all λ ∈ [η, λe), (4.7)

• or (case b) there is λ∗ ∈ [η, λ̃] such that Re,λ(He,λ∩ω) ⊂ ω for all λ ∈ (λ∗, λe), and either

– (internal tangency) there is a point x∗ ∈ He,λ∗∩∂ω such that x∗e,λ∗ = Re,λ∗(x
∗) ∈ ∂ω,

– or (orthogonality) Te,λ∗ meets ∂ω orthogonally, at some point p∗.

We will prove that only case a occurs.
Assume by way of contradiction that case b occurs. Denote{
Ξ = ∂Ω, Ξ′ = Ξxη , R

′ = min
x∈Ξ′
|x| ∈ (0, ρ), R = max

x∈Ξ
|x| > ρ > R′, ε = λ∗ ∈ [η, λ̃] ⊂ [0, λe),

c1 = 0 = u|∂ω, c2 = u(xη) = u|Ξxη ∈ (0, u(0)).

The C3(ω̃) function ϕ = u satisfies c1 < ϕ < c2 in ω̃ by (4.6) and ∆ϕ + F (ϕ) = 0 in ω̃,
where F (s) = f(s) for s ∈ [c1, c2] ⊂ [0, u(0)). The function F is therefore C1 in [c1, c2]. The
condition (1.18) holds by definition of ε, λ∗ and λe, and the condition (1.19) is automatically
fulfilled since Ξ′ ⊂ Bη and ε = λ∗ ≥ η. Therefore, all assumptions of Proposition 1.14 are
satisfied and it follows from the conclusion applied with λ = ε = λ∗ that

u ≤ ue,λ∗ in ωe,λ∗ ,

with
ωe,λ∗ = (He,λ∗ ∩ ω̃) \Re,λ∗(Ω′).
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Denote
w = ue,λ∗ − u.

Since F = f is of class C1 in [c1, c2] ⊂ [0, u(0)), the nonnegative C3(ωe,λ∗) function w satisfies
an equation of the type ∆w+cw = 0 in ωe,λ∗ , for some function c ∈ C(ωe,λ∗). Thus, the strong
maximum principle implies that, for each connected component ω′ of ωe,λ∗ , either w > 0
in ω′, or w ≡ 0 in ω′. We shall now consider separately the internal tangency case and the
orthogonality case.

Consider first the case of internal tangency: there is a point x∗ ∈ He,λ∗ ∩ ∂ω such that
x∗e,λ∗ = Re,λ∗(x

∗) ∈ ∂ω, hence

u(x∗) = u(x∗e,λ∗) = 0 and w(x∗) = 0.

Since Ω′ ∩ ∂ω = ∅, one has x∗ 6∈ Ω′ ∪ Re,λ∗(Ω′). There is a connected component ω∗ of ωe,λ∗
such that x∗ ∈ ∂ω∗, and B(x∗, r)∩ω = B(x∗, r)∩ω∗ for all r > 0 small enough (in particular,
the interior sphere condition in ω∗ is satisfied at the point x∗ ∈ ∂ω∗). Let n(ζ) be the generic
notation for the outward normal to ω at a point ζ ∈ ∂ω. Owing to the definitions of λ∗ and x∗,
one has Re,λ∗(n(x∗)) = n(x∗e,λ∗), while ∇ue,λ∗(x∗) = Re,λ∗(∇u(x∗e,λ∗)) owing to the definition
of ue,λ∗ . Hence,

∇w(x∗) · n(x∗) = ∇ue,λ∗(x∗) · n(x∗)−∇u(x∗) · n(x∗)

= Re,λ∗(∇u(x∗e,λ∗)) ·Re,λ∗(n(x∗e,λ∗))−∇u(x∗) · n(x∗)

= ∇u(x∗e,λ∗) · n(x∗e,λ∗)−∇u(x∗) · n(x∗) = 0

since ∇u ·n is equal to the constant γ on ∂ω by (4.3). It then follows from Hopf lemma applied
to the function w at the point x∗, together with the strong maximum principle, that

w ≡ 0 in ω∗, that is, u ≡ ue,λ∗ in ω∗.

On the other hand, as for formula (5.3) in the proof of Proposition 1.14, one has

∂ω∗ ⊂ ∂ωe,λ∗ ⊂
(
(Te,λ∗∩ ω̃)\Re,λ∗(Ω

′)
)︸ ︷︷ ︸

=:∂1ωe,λ∗

∪
(
(He,λ∗∩ ∂ω)\Re,λ∗(Ω

′)
)︸ ︷︷ ︸

=:∂2ωe,λ∗

∪
(
He,λ∗∩ ω̃ ∩Re,λ∗(Ξxη)

)︸ ︷︷ ︸
=:∂3ωe,λ∗

.

Since ue,λ∗ = u(xη) on Re,λ∗(Ξxη) and u < u(xη) in ω̃, one has w = ue,λ∗ − u > 0 on ∂3ωe,λ∗ ,
hence ∂3ωe,λ∗ ∩ ∂ω∗ = ∅ and

∂ω∗ ⊂
(
(Te,λ∗∩ ω̃)\Re,λ∗(Ω

′)
)
∪
(
(He,λ∗∩ ∂ω)\Re,λ∗(Ω

′)
)
⊂ (Te,λ∗∩ ω) ∪ (He,λ∗∩ ∂ω).

Therefore, ω∗ is a connected component of He,λ∗ ∩ ω. Since w ≡ 0 in ω∗, the arguments of

Reichel [22] (see also [1, 27]) imply that ω = ω∗ ∪Re,λ∗(ω∗). Hence ω symmetric with respect
to the line Te,λ∗ and, moreover, u is itself symmetric with respect to Te,λ∗ , which is impossible
since 0 6∈ Te,λ∗ and 0 is the only maximum point of u. As a consequence, the case of internal
tangency is ruled out.

Consider now the case of orthogonality, that is, Te,λ∗ meets ∂ω orthogonally, at some
point p∗. By definition of ue,λ∗ , one has u(p∗) = ue,λ∗(p

∗), thus w(p∗) = 0. Notice also, as in
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the case of internal tangency, that p∗ 6∈ Ω′ ∪ Re,λ∗(Ω′). There is a connected component ω∗

of ωe,λ∗ such that p∗ ∈ ∂ω∗, and B(p∗, r)∩ω∩He,λ∗ = B(p∗, r)∩ω∗ for all r > 0 small enough.
Since u and ∂u

∂n
are constant on ∂ω and since Te,λ∗ meets ∂ω orthogonally at p∗, it follows as

in [22] that all first and second order derivatives of w vanish at p∗. Serrin’s corner lemma [25]
and the strong maximum principle then yield w ≡ 0 in ω∗. One is then led to a contradiction
as in the previous paragraph.

As a consequence, only case a occurs. Thus, (4.7) holds. By arguing as in the beginning of
the study of case b and applying Proposition 1.14 with this time ε = η, one infers that

u ≤ ue,λ in ωe,λ for all λ ∈ [η, λe), (4.8)

with ωe,λ = (He,λ ∩ ω̃) \Re,λ(Ω′). Since (4.7) and (4.8) hold for every direction e ∈ S1 and for
every η ∈ (0, ρ), one finally concludes that

ω = BR

for some R > 0 and, as in the proof of Theorem 1.5, that u is radially symmetric in ω = BR.
Since 0 is the unique critical point of the C3(BR) function u and since u = 0 on ∂BR with u > 0
in BR, there is then a C3([0, R]) function U : [0, R] → R such that u(x) = U(|x|) in BR,
with U ′(0) = 0 and U ′ < 0 in (0, R]. Therefore,

v(x) = ∇⊥u(x) = U ′(|x|)eθ(x) for all x ∈ BR\{0}

and the C2([0, R]) function V = U ′ satisfies the desired conclusion. The proof of Theorem 1.10
is thereby complete. �

5 Proof of Proposition 1.14

It is based on the method of moving planes developed in [3, 6, 11, 25], though it has to be
adapted here to our geometrical configuration. The idea is to compare the function ϕ to its
reflection ϕe,λ in ωe,λ by moving the lines Te,λ and decreasing λ from the value λ to the value ε.
We recall that

ωe,λ = (He,λ ∩ ω) \Re,λ(Ω′).

Notice in particular that R′ ≤ |x| ≤ R for all λ ∈ [ε, λ) and x ∈ ωe,λ, since ωe,λ ⊂ ω = Ω\Ω′.
Consider first any λ ∈ (ε, λ). For each x ∈ ωe,λ, there holds

xe,λ = Re,λ(x) ∈ Re,λ(He,λ ∩ ω) ⊂ Re,λ(He,λ ∩ Ω) ⊂ Ω

by (1.18), and xe,λ 6∈ Ω′, hence, xe,λ ∈ ω. Thus

Re,λ(ωe,λ) ⊂ ω

and the function ϕe,λ given in (1.20) is well defined and of class C2 in ωe,λ. Furthermore,
∆ϕe,λ +F (|xe,λ|, ϕe,λ) = 0 in ωe,λ. Since |x| ≥ |xe,λ| for all x ∈ ωe,λ (remember that λ > ε ≥ 0)
and since F is nonincreasing with respect to its first variable, it follows that

∆ϕe,λ + F (|x|, ϕe,λ) ≤ 0 in ωe,λ.
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Let
Φe,λ = ϕe,λ − ϕ,

which is well defined and of class C2 in ωe,λ. There holds

∆Φe,λ + ce,λΦe,λ ≤ 0 in ωe,λ, (5.1)

where, say,

ce,λ(x) =


F (|x|, ϕe,λ(x))− F (|x|, ϕ(x))

ϕe,λ(x)− ϕ(x)
if ϕe,λ(x) 6= ϕ(x),

0 if ϕe,λ(x) = ϕ(x).

Since the function F is assumed to be Lipschitz continuous with respect to its second variable,
uniformly with respect to the first one, the function ce,λ is in L∞(ωe,λ) and, moreover, there is
a constant M ≥ 0 such that

|ce,λ(x)| ≤M for all λ ∈ (ε, λ) and for all x ∈ ωe,λ. (5.2)

Consider again any λ ∈ (ε, λ) and let us decompose the boundary of ωe,λ into three parts.
More precisely, since

∂(A ∩B ∩ C) ⊂
(
∂A ∩B ∩ C

)
∪
(
A ∩ ∂B ∩ C

)
∪
(
A ∩B ∩ ∂C

)
for any three sets A, B and C, since ∂ω = Ξ ∪ Ξ′ and since (He,λ ∩ Ξ′) \ Re,λ(Ω

′) = ∅ by
assumption (1.19), one has (with A = He,λ, B = ω and C = R2 \Re,λ(Ω′))

∂ωe,λ ⊂
(
(Te,λ ∩ ω)\Re,λ(Ω

′)
)︸ ︷︷ ︸

=:∂1ωe,λ

∪
(
(He,λ ∩ Ξ)\Re,λ(Ω

′)
)︸ ︷︷ ︸

=:∂2ωe,λ

∪
(
He,λ ∩ ω ∩Re,λ(Ξ

′)
)︸ ︷︷ ︸

=:∂3ωe,λ

, (5.3)

see Fig. 4. Notice that, since Te,λ ∩ Ξ = Te,λ ∩ ∂Ω is not empty (because λ ∈ (ε, λ) ⊂ [0, λ)),
both sets ∂1ωe,λ and ∂2ωe,λ are not empty (however, ∂3ωe,λ may be empty). Furthermore, even
if ωe,λ may not be connected (as in Fig. 4), the boundary of each connected component of ωe,λ
intersects ∂2ωe,λ ∪ ∂3ωe,λ.

Let us now study the sign of Φe,λ on ∂ωe,λ, for any λ ∈ (ε, λ). Firstly, on ∂1ωe,λ (⊂ Te,λ),
one has ϕe,λ = ϕ, hence Φe,λ = 0. Secondly, for each x ∈ ∂2ωe,λ, one has

xe,λ ∈ Re,λ(He,λ ∩ Ξ) ⊂ Re,λ(He,λ ∩ Ω) ⊂ Ω

by (1.18), hence xe,λ ∈ ω∪Ξ′ and ϕe,λ(x) = ϕ(xe,λ) > c1 by (1.17), while x ∈ Ξ and ϕ(x) = c1.
Thus, Φe,λ(x) = ϕe,λ(x) − ϕ(x) > 0 for each x ∈ ∂2ωe,λ. Thirdly, for each x ∈ ∂3ωe,λ, one
has xe,λ ∈ Ξ′ and ϕe,λ(x) = ϕ(xe,λ) = c2, while x ∈ ω and ϕ(x) < c2, by (1.17). Thus,
Φe,λ(x) = ϕe,λ(x) − ϕ(x) > 0 for each x ∈ ∂3ωe,λ. As a consequence, Φe,λ ≥ 0 on ∂ωe,λ and
even Φe,λ > 0 on ∂2ωe,λ ∪ ∂3ωe,λ (6= ∅), hence

Φe,λ ≥6≡ 0 on the boundary of each connected component of ωe,λ. (5.4)

Let us now consider λ ' λ with λ < λ. Since the functions Φe,λ satisfy (5.1)-(5.4), since
the sets ωe,λ are all included in the given bounded domain Ω and since the Lebesgue measure
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Figure 4: The three parts ∂1ωe,λ, ∂2ωe,λ and ∂3ωe,λ of the boundary of the set ωe,λ (dashed red)

|ωe,λ| of ωe,λ goes to 0 as λ
<→λ owing to the definition of λ, it follows for instance from the

maximum principle in sets with bounded diameter and small Lebesgue measure and from the
strong maximum principle [7], that there is λ0 ∈ (ε, λ) such that Φe,λ > 0 in ωe,λ for all
λ ∈ (λ0, λ).

Let us finally define

λ∗ = inf
{
λ ∈ (ε, λ) : Φe,λ′ > 0 in ωe,λ′ for all λ′ ∈ (λ, λ)

}
,

and notice that ε ≤ λ∗ ≤ λ0 < λ. Our goal is to show that λ∗ = ε. Assume by way of
contradiction that λ∗ > ε. Notice that Φe,λ∗ ≥ 0 in ωe,λ∗ by continuity (indeed, for each
x ∈ ωe,λ∗ , there holds x ∈ ωe,λ for λ−λ∗ > 0 small, hence ϕ(x) < ϕe,λ(x) for λ−λ∗ > 0 small,

and ϕ(x) ≤ ϕe,λ∗(x) by passing to the limit λ
>→λ∗ and by continuity of ϕ; therefore, ϕ ≤ ϕe,λ∗

in ωe,λ∗ again by continuity of ϕ). On the other hand, Φe,λ∗ ≥6≡ 0 on the boundary of each
connected component of ωe,λ∗ , because λ∗ ∈ (ε, λ). Hence, Φe,λ∗ > 0 in ωe,λ∗ from the strong
maximum principle. As in the previous paragraph, from [7], there exists δ > 0 such that the
weak maximum principle holds in any open set ω′ ⊂ ω for the solutions Φ ∈ C2(ω′)∩C(ω′) of
∆Φ + cΦ ≤ 0 in ω′ with Φ ≥ 0 on ∂ω′ and ‖c‖L∞(ω′) ≤M , as soon as |ω′| ≤ δ. Let then K be
a compact subset of ωe,λ∗ such that

|ωe,λ∗\K| <
δ

2
.

Since minK Φe,λ∗ > 0, it follows from the continuity of ϕ in ω that there exists λ ∈ (ε, λ∗) such
that, for all λ ∈ [λ, λ∗],

min
K

Φe,λ > 0, ∂(ωe,λ\K) = ∂ωe,λ ∪ ∂K and |ωe,λ\K| < δ.

For any such λ ∈ [λ, λ∗], one then has Φe,λ ≥6≡ 0 on the boundary of each connected component
of ωe,λ\K and one then infers from the choice of δ and from the strong maximum principle
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that Φe,λ > 0 in ωe,λ \K, and finally Φe,λ > 0 in ωe,λ. This last property contradicts the
definition of λ∗.

As a conclusion, λ∗ = ε. Therefore, for every λ ∈ (ε, λ), one has Φe,λ > 0 in ωe,λ,
namely ϕ < ϕe,λ in ωe,λ and ϕ ≤ ϕe,λ in ωe,λ by continuity of ϕ. As in the previous paragraph,
it also follows by continuity that ϕ ≤ ϕe,ε in ωe,ε. The proof of Proposition 1.14 is thereby
complete. �
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