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Abstract

This paper is devoted to time-global solutions of the Fisher-KPP equation in IR"
ug = Au+ f(u), 0<u(z,t)<1l, ze€RY, tcR

where f is a C? concave function on [0,1] such that f(0) = f(1) =0 and f > 0 on (0,1). Tt is
well-known that this equation admits a finite-dimensional manifold of planar travelling-fronts so-
lutions. By considering the mixing of any density of travelling fronts, we prove the existence of an
infinite-dimensional manifold of solutions. In particular, there are infinite-dimensional manifolds
of (nonplanar) travelling fronts and radial solutions. Furthermore, up to an additional assumption,
a given solution u can be represented in terms of such a mixing of travelling fronts.
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1 Introduction and main results

This paper is devoted to the question of the description of the set of the solutions u(z,t),
defined for all time, of the Fisher-KPP equation

w=Au+ f(u), 0<u(z,t)<1l, r€R" tciR (1.1)

We deal with the solutions that are defined for all time and for all point z € IR", and
which we call “entire”. We assume that the nonlinearity f satisfies: f(0) = f(1) = 0,
f'(0) >0, f'(1) < 0and f(u) > 0 for any 0 < u < 1. We also assume that f is a concave
function of class C? in [0, 1]. An example of such a function f is the quadratic nonlinearity
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f(u) = u(1—u) considered by Kolmogorov, Petrovsky and Piskunov in their pioneering paper
[20]. We refer to Aronson and Weinberger [2], Barenblatt and Zeldovich [3], Fife [9], Fisher
[11], Freidlin [12], Murray [28], Rothe [33] or Stokes [35] for a derivation of this equation in
models for population dynamics (like models for the spread of advantegeous genetic traits
in a population) and other biological models.

Because of the strong parabolic maximum principle, a solution u of u; = Au + f(u) that
is defined for all (z,t) € IR" x IR and satisfies 0 < u < 1, is either identically equal to 0, 1,
or 0 < u(z,t) <1 for all (z,t). We only deal here with the case 0 < u < 1.

Problem (1.1) clearly admits solutions u(¢) that depend on time only, namely, u solves
u'(t) = f(u), 0 <u < 1,t € IR. These solutions u(t) are increasing in ¢, they satisfy u(t) — 0
as t — —oo and u(t) — 1 as t — +o0o. Furthermore, they are unique up to translation in
time. It is convenient for what follows to note £(¢) the only solution of that type such that

E(t) ~ el O as t — —o0. (1.2)

The set of all the solutions w(¢) of (1.1) is equal to the one-dimensional manifold {¢ —
E(t+h), he R}.

It is well-known that problem (1.1) also has, in dimension N > 2, an N + 1-dimensional
manifold of entire solutions of planar travelling waves type, namely u, .,(x,t) = @.(z - v +
ct + h) where v varies in the unit sphere SV~ h varies in IR and ¢ varies in [¢*, +oo[ with

c¢* = 2,/f(0) > 0. In space dimension N = 1, there are two 2-dimensional manifolds of

travelling waves solutions: u/, (x,t) = pc(z+ct+h) and u_,(z,t) = @ (—z +ct+h) (see for
instance Aronson and Weinberger [2], Bramson [6], Fife [9], Freidlin [12], Hadeler and Rothe
[15], Kanel’ [18], Rothe [33], Stokes [35]). For any ¢ > ¢*, the function ¢, satisfies

o —cpl + f(pe) =0 in R, p.(—00) =0 and @.(+00) = 1.

The function ¢, is increasing, unique up to translation. For each ¢ > ¢*, let A, be the positive
real number defined by

c— C2—4 IO _ 2 %2
A, = \/ﬁ: ¢ 62 © <0 (A satisfies A2 — ¢\, + £(0) =0).  (1.3)

For any ¢ > ¢*, it is known that ¢.(s)e ?<* goes to a finite positive limit as s — —oo. Up to
translation, one can then assume that

A

Ve> ¢, pu(s) ~ e as s = —o0. (1.4)

For the minimal speed ¢ = ¢* = 2,/ f'(0), one has, up to translation,

O (5) ~ [5]eX* as s — —00, A* = A =1/f(0) = c*/2 (1.5)

(see Agmon and Nirenberg [1], Berestycki and Nirenberg [4], Bramson [6], Coddington and
Levinson [8], Hadeler and Rothe [15], Kametaka [17], Pazy [29], Uchiyama [37]).

Many works have been devoted to the question of the behavior for large time and the
convergence to the travelling waves for the solutions of the Cauchy problem for (1.1), es-
pecially in dimension 1, under a wide class of initial conditions (Aronson and Weinberger
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[2], Bramson [6], [7], Freidlin [12], Kametaka [17], Kanel’ [18], Kolmogorov, Petrovsky and
Piskunov [20], Larson [21], Lau [22], McKean [24], Moet [26], Rothe [34], Uchiyama [37], Van
Saarlos [38]). Other stability results have been obtained for the KPP equation in straight
infinite cylinders (Berestycki and Nirenberg [4], Mallordy and Roquejoffre [23], Roquejoffre
[32]) and for a larger class of KPP type equations (Biro and Kersner [5], Peletier and Troy
[30], [31], Van Saarlos [38], Zhao [40]) as well as under other restrictions of the function f
(see Rothe [33], Stokes [35], [36] if ¢* > 24/f7(0), or Aronson and Weinberger [2], Fife and
McLeod [10], Kanel’ [18], [19] if f is of the “bistable” type).

The entire solutions of (1.1) can be viewed as orbits {u(-,t), ¢ € IR} lying in the space of
the functions ¢ € C?(IRY) such that 0 < 1) < 1. The goal of this paper is then to describe
the set of the orbits for (1.1) and the qualitative properties of these orbits. The difficulty is
that one has to deal both with a direct well-posed Cauchy problem and an inverse ill-posed
Cauchy problem for a nonlinear heat equation.

The question of the existence of entire solutions of (1.1) other than the solutions inde-
pendent of x and than the travelling waves solutions has been answered in the case of planar
solutions (solutions which depend only on time and on one space variable) by the authors
in a first paper [16]. In dimension N = 1, 4 other manifolds of entire solutions of (1.1) have
been constructed: one of these manifolds is 5-dimensional, one is 4-dimensional and two are
3-dimensional. Furthermore, the 4- and the 3-dimensional manifolds, as well as the travelling
waves solutions and the solutions ¢ — &(¢ + h), are on the boundary of that 5-dimensional
manifold of entire solutions of (1.1) (see [16]).

One of the basic ideas in [16] for constructing new entire solutions of the KPP equation
(1.1) in dimension 1 consists in considering two travelling waves ¢pq(—x + ¢'t + h') and
©c(x + ct + h) with speeds ¢, ¢ > ¢*, coming the one from the left side and the other from
the right side of the real axis and mixing.

In section 1.1, we shall show how this mixing procedure can be extended, in any space
dimension IRY, by allowing both for the mixing of any finite number of travelling waves
(Theorem 1.1) and for the mixing of an integrable sum of travelling waves, each of them
being characterized by its direction and its speed. That leads to the existence of an infinite-
dimensional manifold of solutions of (1.1) (Theorem 1.2). In section 1.2, we state an “almost-
uniqueness” result (Theorem 1.4): namely, up to an additional assumption that is almost
generically satisfied, each entire solution of (1.1) belongs to the infinite-dimensional manifold
of solutions constructed in Theorem 1.2. Furthermore, we give an easy characterization of
the entire solutions of (1.1) that only depend on time (Theorem 1.5). Last, in section 1.3,
as a consequence of the results in sections 1.1 and 1.2, we get the existence of an infinite-

dimensional manifold of nonplanar travelling waves and of radial solutions of (1.1) (Theorems
1.7 and 1.8).

1.1 Existence of an infinite-dimensional manifold of entire solu-
tions
In [16], in the one-dimensional case, we showed how two travelling waves with speeds greater

than the minimal speed ¢* and coming from opposite sides of the real axis could mix together
and give rise to an entire solution of (1.1); moreover, the so-built entire solution behaves like



each of these two travelling waves on each side of the real axis as the time goes to —oo.

In the following Theorem, in any dimension N, we generalize that mixing procedure
by considering any finite number of travelling waves coming from directions v; with speeds
¢; > ¢ and mixing. We also allow both the mixing of travelling waves coming from the same
direction with different speeds and the mixing of travelling waves with solutions of the type
t+— &(t+ h). In statements (1.6)-(1.9) below, we show the relationship between the so-built
entire solutions u and the travelling waves which they are originated from. We shall see that
property (1.10) below characterizes each of these new entire solutions u:

Theorem 1.1 (Mixing a finite number of travelling waves) Let p be a positive integer. For
eachi=1,--+,p, let v; be in the unit sphere SN 1, let ¢; € [¢*, +00] and let h; € IR. Assume
that c¢; # c; as soon as v; = vj with i # j. Furthermore, assume that at most one c; takes
the value +o00.

Then there exists an entire solution u(x,t) = U, e hi; i=1,-p) (T, 1) of (1.1) such that

Vi uw(z,t) > e (x-vi+ct+h;)  if ¢ <¢ <400 (1.6)
b u(z, t) > &(t+ hy) if ¢; = +00, ’
w(z,t) < Y po(x-vi+et+h) + % E(t+ hy). (1.7)

2, ¢;<00 i, C;=00

For any (v,c) € SV71 x [¢*, +00],

if cv-v; < ¢ for all j, then u(—ct v+z,t) — 0
if 30, cvevp =, cvevp <o Vi # i, then u(—ct v+u,1) —= e (r-vit+hi) | (1.8)

if cv - v; > ¢; for some i, then u(—ct v+ x,t)t—> 1,
——00

if cv-v; > ¢; for all j, then u(—ct v+ Iat)t:) 0
if i, cv-vi=c¢;, cv-v; > Vi #i, then u(—ct v+ x’t)t—:) Peil@ - vi+ hi) (1.9)
o

if cv - v < ¢ for some i, then u(—ct v+ x,t) — 1.
t—+4o0
Moreover, one has as t — —oo:

u(x, t)e /'O — ' Ohi £ 3 ¢ = 400, ulz,t)e 'O =0 otherwise.

Vze RY, 0 < |z| < ¢ =2,/f(0),
{ w(—zt +x,t) e 1€ eslelhiesTr r g < oo, 2N 1 = 2

. 1.10
w(—zt 4+, t) e~ 5= 50 otherwise, (1.10)

Yy e gN-1 u(—c*'t v+ x,t) — oo (x - v+ hy) if i, (v, c*) = (vi, ;)
’ u(—c*t v+x,t) — 0 otherwise.

All the above convergences hold in C3 . (IRY).
Last, the set of the solutions u of that type contains the planar travelling waves, the
functions of the type t — &(t + h) and the planar solutions constructed in [16].
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In the second statement of (1.8), if one takes (v,¢) = (v,¢;), then the convergence
u(—cit v; + x,t) — @, (- v; + h;) as t — —oo holds at least for the smallest ¢;’s but
it does not hold in general for all the ¢;’s. Roughly speaking, that means that only some
fronts, those with small speeds can be “viewed” as ¢ — —o0, the other ones being “hidden”.
More restrictive conditions are required for some of the travelling fronts be seen as t — +oc:
indeed, for a given 4, the convergence u(—c;t v; + x,t) — ¢, (x - v; + h;) in (1.9) requires
especially that v; - v; > 0 for all j # ¢; the latter may not be satisfied in general.

The property (1.10) deals with the behavior of the function w along the rays ﬁ as
t — —oo with |z| < ¢*. Notice that, from (1.10), one has u(—zt,t) — 0 as t - —o0
if |z] < ¢* (the latter actually holds for each entire solution of (1.1), see (1.16) and more
comments after Theorem 1.2 below). Last, notice that, unlike properties (1.8) or (1.9), the
asymptotic behavior (1.10) easily implies that the so-built finite-mixing-type entire solutions
u are different from each other.

After the mixing of any finite number of travelling waves coming from any directions,
it is natural to wonder if a integrable sum of travelling waves (with respect to a measure
supported on SV! x [¢*, +00]) can mix. The answer is yes and it will be the subject of
Theorem 1.2 below. Before stating this theorem, let us set a few notations. Let B(0,c¢*) =

B (0, 2\/f’(0)) = {z € RY, |z| < ¢*} be the open ball of IRY with center 0 and radius c*.
Let us define the topological spaces

X =SV x[¢f,400) U {00} (resp. X =SV x (¢*,400) U {00} =X\ S¥ ! x{c})

as follows: we use on the set SV=! x[c*, +00) (resp. SV~!'x(c¢*, +00)) the topology induced by
the euclidean structure of IR and on the other hand, we say that a set A is a neighborhood
of 00 in X (and X) if and only if oo € A and if there exists a real number ¢y > ¢* such that
(v,c) € Afor all v € S¥1 and ¢ > ¢y. The set X is compact and it can also be viewed as
the set {x € RY, |z| > ¢*} to which we add a point at infinity, which can be thought of as
an infinite speed.

Let M be the set of all nonnegative and nonzero Radon-measures 2 on X (0 < p(X) <
+00), such that the restriction p* of 1 on the sphere SY~1 x {¢*} can be written as a finite
sum of Dirac distributions:

po= 8 Mg Oy, e
1<i<k
for some integer £ > 0, some directions v; € SV~! different from each other and some
positive real numbers m;. In particular, the set M contains all the nonnegative Radon-
measures whose support is compactly included in SV~ x (¢*, +00).
For any ;. € M, we denote /i the restriction of y on the set X and @,/ the image of i
by the continuous, one-to-one and onto map

d: X =8V1x (¢ +o0)Ufox} — B(0,¢")
(r,c) £o0 — z=2 \v=(c—Vc*—c?)v
oo — 0.

Let M be the set of measures 1 € M such that y* = 0 (i.e. k = 0). We say that a
sequence of measures ™ € M converges to a measure p € M if: 1) [¢ fdp™ — [ fdjs for
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each continuous function f on X such that f =0 on S¥! x (¢*,¢* 4 ¢) for some & > 0, 2)
p(X) = p(X) and 3) p"(c0) = p(co).

Let &€ be the set of all entire solutions of (1.1). We say that some functions u™ € &
approach a function u € £ in the sense of the topology 7T if the functions u" go to u in
Clloc(]Rt) and ClQOC(RQJUV)

The following Theorem provides the existence of an entire solution u, for each measure
@ € M and, generalizing the property (1.10) in Theorem 1.1, we give an interpretation, in
terms of the measure p, of the asymptotic behavior of u, as ¢ = —oo along the rays v if one

moves with speeds less than ¢*.

Theorem 1.2 (Main existence theorem) For any N > 1, there exists an infinite-dimensional
manifold of entire solutions of (1.1). Namely, there exists a one-to-one map, j — wu,, from
M to &£, which is continuous on M. Moreover, given a measure u € M, the entire solution
u,, satisfies the following properties:

(i) (behavior as t — —o0)

loc

uy(—c't v+ ,t) T P (x-v+cInmg) in C2 (RY) ifv=u; for somei

u,(—c*t v+ x,1) S0 otherwise (1.11)
and, for any sequence t, — —o0, one has:
1.\ V2 L
= Up(—tnz + @, t, + ) e 1€ =1D gy
Am (1.12)

L oo L s

in Co(B(0, ")), under the convention that the right-hand side is zero if M = 0; namely, for
any continuous function ¥ (z) with compact support on B(0,c*), then

1]\ e
/B(U ey \ 41 Up(—tnz + @, ty 1) €71 () dz
1

(f'(0)+23|2|2) (t+In M)+ Lz-2 N
— e 1 2 z) — ®,.u(dz
PR /B(O,c*) 77/)( ) i H( )

(1.13)

in the sense of the topology T .

(ii) (monotonicity in time) The function u, is increasing in time t.

(iii) (multiplication of u by positive constants) For each positive real number o, ug,(x,t) =
u,(z,t +1Ina) for all (z,t) € RN x IR; furthermore, us, — 1 (resp. 0) as o — +o0 (resp.
0% ) in the sense of T.

(iv) (case of absolutely continuous measures with respect to dv x de) If p € M (i.e.
p(SN x {c*}) =0, i.e. k =0) and if the restriction ji of u on the set SN=! x (¢*, +00) is
absolutely continuous with respect to the Lebesque-measure dv X dc, then

Vve SNt Ve> ', Vhe R, uu(—ctv+a,t) A gz -v+h) ast — +oo.  (1.14)

Last, the set of the solutions of the type u, contains the planar travelling waves, the
solutions t — &(t + h), as well as the other planar solutions constructed in [16] and the
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finite-mizing-type solutions of Theorem 1.1. The solutions in Theorem 1.1 correspond to
measures which can be written as finite sums of Dirac distributions.

For each solution w, of (1.1), the asymptotic behavior (1.11)-(1.12) is a consequence of
the construction of suitable sub- and super-solutions for u,, (see the lower and upper bounds
(3.5) in section 3 below). Note that, unlike the asymptotic behavior of the function u, as
t — —oo along the rays zt with |z| > ¢*, the asymptotic behavior (1.11)-(1.12) along the
rays of the “inner” cone C = {(zt,t), t <0, 2 € R, |2] < ¢*} characterizes each entire
solution of the type u,, in the sense that if pu; # po, then u; # uy (that fact is proved in
Lemma 3.5, section 3.5). Let us now comment this formula (1.12) more thoroughly. First,
the following fact, known as the “hair-trigger” effect (see Aronson and Weinberger [2]), holds
for any solution u of (1.1):

VO <e<c, |rr|1£n u(z,t) > 1 ast — +oo. (1.15)
z|<ct

Notice here that this fact immediately implies that there are no stationnary or time-periodic
solutions of (1.1). Further on, it follows that

VOo<e<c, ‘rr‘1<a)‘<| u(z,t) — 0 as t — —o0 (1.16)
z|<c|t

for each solution u of (1.1) (see Lemma 4.1 for more details). It is then not surprising that,
in the left-hand side of (1.12) (as in the first two statements of (1.10) in Theorem 1.1, or
in (2.4) in section 2), the terms wu,(—zt, + z,t, +t), with |z| < ¢* and ¢, — —oo, have
to be renormalized by asymptotically small factors. These asymptotically small terms in
(1.12) are of the type (|t,|/4m)~N/2e1(¢)* =) On the other hand, in the right-hand side
of (1.12), each term el/'(O+lz*)(t+n MH%“% is a solution of the linearized heat equation
around u = 0:

a,U = AU + f'(0)U.

Putting that together, the asymptotic behavior (1.12) can then be thought of as a spectral
decomposition of the function u, as t — —oo along the rays |z| < ¢* in terms of pure
exponential solutions of the linearized heat equation balanced by the measure ®,/i(dz),
the function wu, being it-self suitably renormalized by the exponentially decaying weights
(=12t (|t /47)~N/2 which are less and less small as |z| approaches c*.

Property (1.14) implies that if the measure p is absolutely continuous with respect to
dv x dc on S¥71 x (¢*,4+00) and if the restriction u* of u on SN=! x {¢*} is zero, then the
function u, does not converge as t — —oo (nor as ¢t — +00) to any travelling front along any
ray v if the frame moves with any speed greater than or equal to the minimal speed (let us
also mention that some non-convergence results more general than property (iv) are proved
in section 3.8). On the contrary, for each entire solution obtained from the mixing of a finite
number of planar travelling waves (Theorem 1.1), there exists at least one direction v;, one
speed ¢; > ¢* and one real number h; € IR such that u(—c;it v; + ) — ¢, (x - v; + h;) as
t — —o0. Theorem 1.2 provides then the existence of entire solutions that are different from
those obtained from the finite mixing of travelling waves. But, by definition, the manifold of



the solutions u,, which is infinite-dimensional, is actually much bigger than the countably-
many finite-dimensional manifolds of solutions obtained from the mixing of a finite number
of travelling waves.

Lastly, property (iii) simply says that multiplying a measure p by a positive constant is
the same as shifting v, in time.

Remark 1.3 (Behavior when t — +00) As far as the asymptotic behavior of u, as t — 400

is concerned, it is known from [2] that ‘H‘lin uy(z,t) = 1 ast — 400, as soon as 0 < ¢ < ¢*.
z|<ct

One gives here a sufficient (and almost necessary) condition, which has an easy geometric
interpretation, for a solution u, converge uniformly to 1 as ¢ — +00. Namely, as proved in
section 3.4,

— if, for allvy € SN™!, there exists € > 0 such that p({c* < ¢ < oo, vy > e}U{oc}) > 0,
then infpy u, (-, t) > 0 for all t € R and inf gy u,(-,t) = 1 ast — +o0,

— if there exists vy € SV 1 such that pu({c* < ¢ < oo, v-1y > 0} U {oo}) = 0, then
inf v w,(-,t) =0 for allt € R.

As a consequence, in dimension N = 1, a solution u,(z, t) of (1.1) converges to 1 uniformly
inz € IRast— +oo if and only if u({c* < ¢ < +00, v =vL}U{o0}) > 0 for each v, = £1.
Otherwise, infru,(-,t) =0 for all t € IR.

Notice here that we shall see in Theorem 1.5 below that, when ¢ — —oo, a solution u of
(1.1) in IRYN cannot converge to 0 uniformly in x as t — —oo, unless u depends on ¢ only.

1.2 Two partial uniqueness results

As already mentionned in the previous section, each solution u(x,t) of (1.1) satisfies (1.16),
namely,
Vo<e<ce, max u(z,t) —0ast— —o0.
|z|<clt|
Further on, we shall see later (Lemma 4.7 and Remark 4.8) that if a measure € M is

such that u(SV=! x [¢*,¢]) = 0 for some ¢ € [¢*, +o0[, then max u,(x,t) = 0 as t — —oo.
z|<¢c

Conversely, we can actually characterize all the solutions w of (1.1) satisfying such a
property with ¢ > ¢*, that is to say that u satisfies a slightly stronger assumption than
(1.16):

Theorem 1.4 (Partial uniqueness result) Let u(x,t) be a solution of (1.1). If there exists
e > 0 such that
max  u(z,t) = 0 ast — —o0,
|| <(e*+e)lt|
then uw = u,, for some (unique) measure p € M. Therefore, u satisfies all properties (i)-(iv)
of Theorem 1.2. Moreover, i is concentrated on the set S¥~1 x [¢* + &, +00) U {00}

The next Theorem, whose proof can be done from that of Theorem 1.4, gives an easy
characterization of the functions depending only on time £ among all the entire solutions of
(1.1):



Theorem 1.5 (Uniqueness in the class of solutions bounded away from 1) Let u(x,t) be a
solution of (1.1). Then,

either Vte R, sup u(z,t)=1
x€IRN
or u(z, t) = u(t).
As a consequence, any solution wu, of (1.1) is such that sup w,(-,t) = 1 for all t €

IR as soon as p is not concentrated on the single point {0}, i.e. as soon as p Z 0 on
SN~ x [¢*, +00).

That means that if a solution u of (1.1) is such that the function u(-,ty) is bounded away
from 1 at some time ¢y, then u is independent of x for all time. In particular, there are no
“pulse-like” solutions of (1.1), i.e. solutions such that u(z,ty) — 0 as |z| — 400 at some
time o (see similar results for entire solutions of another class of parabolic equations in [25]).

Having (1.16) and Theorems 1.2 and 1.4 in mind, we now formulate the following

Conjecture 1.6 (Uniqueness) The set € of all entire solutions of (1.1), such that0 < u < 1,
is the closure, in the sense of the topology T, of the set of the solutions u,,.

If this conjecture were true, that would mean that all the solutions of (1.1) could be
described, in a certain sense, from the travelling waves and from the solutions ¢ — &(t +
h), which could also be thought as travelling waves with an infinite speed. By analogy,
the travelling waves, with finite or infinite speeds, would then play the role of a basis of
eigenfunctions for this nonlinear problem, as do some pure exponential functions for the
heat equation 9,v = Av in RY x IR (see Widder [39]).

1.3 Applications to travelling waves and radial solutions

As said earlier, there is a finite-dimensional manifold of planar travelling waves for equation
(1.1). Each planar travelling wave can be written as ¢.(z - v + ¢t + h) for some direction
v € SN=1 some speed ¢ > c¢* and some real number h € IR. Such a travelling wave
@e(z - v+ ¢t + h) propagates in the direction —v with the speed c.

One can now wonder if there are non-planar travelling waves for (1.1). By a travelling
wave for (1.1), we understand a solution u(x,t) such that

V(z,t) € RN x R, V7 € R, wu(z,t+7)=u(z + coT1,1) (1.17)

for some direction v, € SN~ and some speed ¢y > 0 (up to a change vy — —vp, one can
always assume ¢y > 0). Such a wave is propagating in the direction —vy with the speed ¢.
The function u can be written as

u(z,t) = v(x + cotry) (1.18)



where v is (uniquely) defined by v(y) = u(y, 0) for all y € IRN. The function v is such that
0 <wv(y) <1forall y € RY and it satisfies the elliptic equation

Av — ¢y0,,v+ f(v) =0 in RY (1.19)

where 0,,v = vy - Vu. Conversely, any solution 0 < v < 1 of (1.19) gives rise to a travelling
wave u(z,t) = v(x + cotry) for (1.1), which propagates in the direction —1 with the speed
Cop-

For each couple (14, cy) € SV 71 x [0, +00), set

Swoee) = 11, €) € SN=Ex [e*, +00), covy v =1c} (= S(cory/2,c0/2)\B(0,c*))

where S(cor/2,¢o/2) is the sphere with center cyry/2 and radius ¢y/2, and B(0, ¢*) is the
open ball centered at the origin and with radius ¢*. Note that S, ) is empty as soon as
0 < ¢y < ¢, and that, in dimension N = 1, S, reduces to the single point (vo, co) if
co > c*. Last, let My be the subset of M defined by

Mrw = {p € M, I(vo,c0) € SV x [0,+00), p is concentrated on Sy, o) }-

Theorem 1.7 (Travelling waves) (1) Let u be a travelling wave for (1.1) and assume that
u satisfies (1.17), namely, that u propagates in direction —vy with speed co. Then,

(1-a) ¢ > ¢*;

(1-b) the function v defined by (1.18) is increasing in each direction v € SN~ such that
Vv > cos(arcsin(%)), namely, v belongs to the open cone directed by vy with angle arcsin(%).
Furthermore, for each such v, one has lim;_,_v(a + sv) = 0 and lim,_,  v(a + sv) =1
for all vector a € IRN;

(1-c) if co = c*, then u is a planar travelling wave with speed c¢*, namely, u(z,t) =
Qe (T - vy + "t + h) for some h € IR. In other words, if 0 < v < 1 is a solution of (1.19) for
co = ¢* and for some vy € SN, then v(y) = pe-(y - vo + h) for some h € IR.

(2-a) In dimension N > 2, there exists an infinite-dimensional manifold of travelling
waves for (1.1). Namely, the restriction of the map pu — wu, on Mrw ranges in the set of

travelling waves for (1.1), and it is one-to-one on My and continuous on Mpy N M. If
k A
p= Emiden +i €M

is concentrated on Sy, ) for some (vy,co), then u, is a travelling wave satisfying (1.17).
Furthermore, v,(y) = u,(y,0) is the smallest solution of (1.19) such that

-1
> * . > * > - - ) .
vu(y) > max (FSI?S)%SOC (y-vite lnmz),/sN_lx(cwoo) we(y V+clnM)Mdu> (1.20)

for all y € RN, where M = u()A() (sz = 0, then the second term in the right-hand side of
the above inequality drops);

(2-b) In dimension N > 2, for each ¢y > ¢* and for each vy € SN~', there exists an
infinite-dimensional manifold of solutions v(y), 0 < v < 1, of the elliptic equation (1.19);

10



(2-c) Let u(x,t) be a travelling wave of (1.1) satisfying (1.17). If u is of the type u, for
some j1 € M, then p is concentrated on S(y,,c)-

(3) Let u be a travelling wave for (1.1) satisfying (1.17) and let v be defined by (1.18).
Then,

(3-a)

V0o <e< ¢, ‘r?:n'(‘v(coz/gs +y) =0 ass— —oo;
y|<cls

(3-b) if there exists € > 0 such that

max  v(cps +y) = 0 as s = —oo,
ly[<(c*+e)ls|

then u = u, for some measure ;1 € Mpw concentrated on Sy N {c > ¢ +¢e} and u
satisfies all properties 1-2 above.

Let us now consider the case of radial solutions of (1.1). We say that a solution u(x,t)
of (1.1) is radially symmetric, or radial, if there exists a point a € IRY such that u can be
written as

u(z,t) = v(lx — al,t)

for all z € RN and t € IR. The function v = v(r,t) satisfies

N -1
{Ut:Urr+ r vt f(v), r>0,teR (1.21)

v(r,t) is C? in r € [0, +o0[ and C' in ¢, and, Vt € R, v,(0,t) = 0.

Note that the set of the solutions of (1.1) which are radially symmetric with respect to a
point a € IR is the set of functions {(z,t) — u(r — a,t)} where u is radially symmetric
with respect to the origin.

We can now wonder if there are radial solutions of (1.1) and, if yes, what is the size of
the set of such solutions. Before answering this question in the next theorem, let us define
the set

Mp={pneM, Vpe SO(N), VA Borel subset of X, pu(p(A)) = u(A)}.

The set My is the set of the measures © € M that are rotationaly invariant. Since the
restriction of any measure g € M on the set SV=! x {¢*} is a finite sum of Dirac masses, it
follows that, for each measure y € Mg, one has p* = 0. In other words, Mz C M.

Theorem 1.8 (Radial solutions) (1-a) There exists an infinite-dimensional manifold of ra-
dial solutions of (1.1). Namely, the map

MR x RN — &
(Ma a) = Upoq = uu(' —a, )

ranges in the set of radial solutions of (1.1), this map is continuous and its restriction to the
set of measures u € Mg which are not concentrated on the single point {oo}, is one-to-one.
Furthermore, for each given (u,a) € Mp x RN, the function u,, is radially symmetric with
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respect to the point a and the function v defined by w,q(z,t) = v(|z — al,t) solves (1.21),
and it is such that v(r,t) — 1 as r — 400 for all t € IR, provided u is not concentrated on
{o0}.

(1-b) There exists an infinite-dimensional manifold of solutions v of (1.21).

(2) Each solution v of (1.21) is such that

VOo<c<c¢', max v(rt) =0 ast— —oo.
0<r<c|t|

Furthermore, if v is a solution of (1.21) such that

max  o(r,t) >0 ast— —o0
0<r<(c*+e)lt|

for some ¢ > 0, then there exists a measure p € Mg such that v(|z|,t) = u,(z,t) for all
(z,t) € RN x IR.

Structure of the paper. The rest of the paper is organized as follows : section 2 is devoted
to the construction of solutions that are obtained from the mixing of a finite number of
travelling waves (Theorem 1.1). These solutions are constructed from a sequence of Cauchy
problems starting at times —n — —oo. Section 3 deals with the proof of Theorem 1.2 about
the existence of an infinite-dimensional manifold of solutions of (1.1). Section 4 is devoted
to the proof of partial uniqueness results (Theorems 1.4 and 1.5). Lastly, section 5 deals
with the cases of (nonplanar) travelling waves and radial solutions of (1.1).

2 Construction of entire solutions from the mixing of
a finite number of travelling waves (Theorem 1.1)

This section is devoted to the proof of Theorem 1.1. Let p be a positive integer p > 1 and for
each i =1,---,p, let v;, ¢;, h; be such that v; € SVN~! ¢* < ¢; < +o00, h; € IR. Assume that
¢; # ¢; if v; = v; and assume that there exists at most one index ¢ such that ¢; = +-00. Our
goal is to prove that there exists an entire solution u of (1.1) satisfying properties (1.6)-(1.10)
stated in Theorem 1.1.

Consider the case where k := #{i, ¢; = ¢*} > 1 and #{i, ¢; = 400} = 1 (the cases
#{i, c; =c*} =0 or #{i, ¢; = +oc} = 0 are similar and even easier to deal with). Up to a
renumbering, one can then assume that

Cl:...:ckzc* <Ck+1 S"'Scpfl <—|—OO:Cp.
For each n € IN, let U,(z,t) be the solution of the Cauchy problem

(U,): =AU, + f(U,), € RN, t>-n

Up(z,—n) = max <1<m<ax Pe; (z-v;—en+h;), E(—n+ h,,)) , 0<Uy(z,—n) < 1.
SUSp—
This Cauchy problem is well-posed and the maximum principle yields

0 < max (lglgx oo vt et +h), Gt hp)) <Up(a,t) <1 (2.1)
SUSp—
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for all z € IRY and t > —n. Another application of the maximum principle yields that the
functions (U, (z,t)), are nondecreasing with respect to n. Indeed, for each (z,t) € R" x IR,
if n' > n > |[t|, then Uy(-,—n) > U,(-, —n), whence Uy (z,t) > U,(x,t). Eventually,
there exists a function u(z,t) such that 0 < u(z,t) < 1 and U,(z,t) — u(z,t) for each
(x,t) € RN x IR. Furthermore, from standard parabolic estimates and Sobolev’s injections,
the function w is an entire solution of (1.1). Let us now prove that u satisfies all properties
(1.6)-(1.10).

Proof of (1.6). Tt follows immediately from (2.1).

Proof of (1.7). Tt follows from the following result due to Bramson; this result resorts to
the concavity of the function f and to the maximum principle.

Lemma 2.1 (Bramson [6]) Let us extend the function f by 0 on the interval [1,+0c). Let
uio(z), © = 1,---m, be m given nonnegative and bounded functions. Let u; > 0 be the
solutions of the Cauchy problems:

(u)e = Au; + f(u;), t>0, z€ RN
u;(+,0) =1u;p

and let u > 0 be the solution of

w =Au+ f(u), t>0, ve RN
0<u(-,0) <wupg+--+Unppo.

Then u(x,t) < uy(z,t) + -+ + up(x,t) for all t > 0 and for all x € RY.

Property (1.7) follows then immediately from Lemma 2.1 because U, satisfies
p—1
Up(z,t) < T Pe; (z-vi+ct+hy) +E&(t+hy)

for each t > —n and z € IRVN.

From (1.6), it follows that u(x,t) > 0 for all (z,¢) € RN x IR. On the other hand,
u(0,t) — 0 as t — —oo because of (1.7). Therefore, the strong maximum principle implies
that u < 1 for all (z,t) € R x IR. The function u is then a solution of (1.1) such that
0<u<l

Proof of (1.8). Let (v,c) be in S¥7! x [¢*, 400[. Assume, say, that cv - v; < ¢; for all
1 <j<p-1. From (1.7), one has

-1
0 <wu(—ctv+x,t) < I_);lgoci((ci —cv-v)t+x-vi+h) +E(E+ hy).

Therefore, u(—ctv + x,t) — 0 locally in x as t — —oo. From standard parabolic estimates,
the convergence also takes place in C?_(IRY). The other two cases (cv - v; = ¢; for some i,
cv - v; < ¢; for all j #4; and cv - v; > ¢; for some i) can be treated similarly.

Proof of (1.9). It is similar to (1.8).

Proof of (1.10). From (1.6)-(1.7), one has

p—1

E(t+ hy)e O < u(z, t)e 7O <y e Oy (cit + - v + ;) + E(t+ hy)e IO
i=1
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Observe that &(t 4 hy,)e 'O — &' Ok a5 ¢ — —o00, since £(s) ~ ef' V% as s — —oc0. On the
other hand, because of (1.4)-(1.5), one has as t — —o0

(z-v; + cit + hy) = O([t}eX™") locallyinz if 1 <i<k
Pelt Vi Gt =0 O(racit))  locallyinz ifk+1<i<p-—L.

Since A.c = A2+ f'(0) > f'(0) for all ¢ > ¢*, it is found that
71 ,
pE e/ (O)tgoci(cit +xz-v;+h;)) =0 locally in z as t — —oc.
i=1

As a consequence, 7¢L(Jc,t)e_f'(0)lt — 'O Jocally in x as ¢ — —oo. Since u is a positive
and bounded solution of (1.1), the standard parabolic estimates and Harnack inequality (see
e.g. Friedman [13], Gruber [14], Moser [27]) yield the existence of a constant C' such that
(Vu(z,1)], g, (#,1)], [tgz,a,(@,1)] < Culz,t + 1) for all (z,t) € RN x IR. Hence, one
concludes that u(z,t)ef Ot — 'Ok in C2 (IRY) as t — —oc.

Take now 2 € IRY such that 0 < |z| < ¢* = 2,/f"(0). One has

0 < u(—zt+a, t)e 31 <5 o (i zv)ttavithy)e 1D pe(ppn,)e 1€
1

Since c¢* = 2,/f/(0), |z| > 0 and £(s) ~ /"% as s — —o0, it follows that §(t+hp)e_i(c*2_|z|2)t
approaches 0 as t — —o0, uniformly in .

Consider the case where there exists iy such that z = 2)\% v;,. Notice that there exists
at most one such i, since ¢; # ¢j, i.e. A, # Ac;, as soon as v; = vj. For each i < k, one
has A\, = \* = % Since |z| < ¢*, one gets that k + 1 < iy < p — 1. Furthermore, for each
i€ {l,---,k}, one has ¢; = ¢* > z - y; and

per((ci = 2+ )+ 3+ 13 + hy)eHEP I = O (gl (€ —2m = Oty

locally in z as ¢ — —oo. Since A*(¢* — z - 1) — f'(0) + 3|2 = X2 = X2y + L2 =
Tz = 2X*y;|? > 2, it follows that ¢, ((c; — 2z - )t + z - v; + by e i€ =Mt 50 Jocally in z
ast — —oo. For each i € {k+1,---,p — 1} such that i # iy, the latter also holds similarly.
On the other hand, since ¢;, > c¢* > z - v;,, it is found that

L(.%2 v ’ 1, 2
Pery ((Cio = 2+ Vig )+ 0 Vg + Ty ) e TP gheig (0o Hhio) gl =2Aeiy vio [
0

~ e)\cio (CU'Vio"‘hio) — 6%z-m+%|z|hi0

locally in z as ¢ = —oo. On the other hand, (1.6) implies that
Pery ((Cig = 2+ Vig )t + 2+ v + h,io)e_%(c”_"2‘2)lt < u(—zt + x, t)e_%(c*z_‘z‘2)t.
Eventually, one concludes that
u(—zt + x,t)e” (el gamatalelhio (2.2)

2)

as t — —o0, locally in z, and also, as usual, in CZ_(IRY).
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Consider now the case where z # 2\, v; forall: =1,--- p—1. With the same arguments
as above, it is found that
u(—zt + 35,75)6’%(0*2"”2)lt —0 in C? (RY) ast — —o0. (2.3)

Notice here that, from (2.2) and (2.3), it easily follows that, for any sequence ¢, — —oc
and for any z such that 0 < |z| < ¢*, one has

w(—zty + 3ty + 1) e 1@ Dy (IOl glelhi gy ze
if 3i, ¢; < 400, 2A\,v; =2 (2.4)
u(—zty 4+, ty + 1) e 1m0 otherwise,

n Clloc(]Rt) and C?OC(RCJEV)

Let us now prove the last formula in (1.10). Take v € SV¥='. If there exists i such that
(v,c*) = (vi,ci) (1 < i < k), then, for all j € {1,---,k}\{i}, c'v-v; < c* since v; # v;.
Moreover, for each j > k+ 1, then ¢*v - v; < ¢* < ¢;. Therefore, (1.8) gives

u(—c*tv + 2,t) = o (x - vy + hy) in C(IRY) as t — —oo if i, (v,c") = (v, ¢;).

Otherwise, if (v, ¢*) # (v, ¢;) for all i, then, for all j € {1,---,k}, ¢*v-v; < ¢* =¢;, and, for
all 7 > k+1, c'v-v; <c¢* <c¢j;. Finally, the asymptotic limit

u(—c*tv +x,t) = 0in C},(IRY) as t - —o0
follows from (1.8).

Let us now check that the set of the so-built entire solutions u of (1.1) contains the planar
travelling waves, the solutions that only depend on time and the solutions constructed in
[16].

Indeed, if (v,¢) € SNV~ ! x [¢*, 400l and h € IR, just take p = 1 and (v1, ¢y, hi) = (v, ¢, h);
the function u(z,t) is then equal to the planar travelling front ¢.(x - v + ¢t + h).

If h € R, take p =1 and (v, c1, ) = (v, +00, h) for some arbitrary vector vy € SV 1;
the function wu(z,t) is then equal to the function (¢ + h).

In dimension N = 1, under the notation of Theorem 1.1 in [16], if ¢,¢' € (¢*,+00),
h,h' € IR and K > 0, take p = 3 and (v1,¢1,h1) = (=1,,h'), (va,c0,h2) = (1,¢,h)
and (3, c3, hs) = (v, +00, %) for some arbitrary vy € {£1}; by definition, the function
u(x,t) is then equal to the solution u, p . x(x,t) constructed in Theorem 1.1 in [16] (other
properties of the function u are also stated in [16]). Similarly, the entire solutions constructed
in Theorems 1.3, 1.4, 1.5 in [16] can easily be obtained from the mixing of two travelling
fronts or from the mixing of a travelling front with a solution only depending on time.

That completes the proof of Theorem 1.1. L
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3 Construction of the infinite-dimensional manifold of
entire solutions (proof of Theorem 1.2)

Let p be a nonnegative and nonzero Radon measure on the set X and assume that the
restriction p* of y on the sphere SV=! x {¢*} can be written as:

pr= 8 Ml e
1<i<k
where k € IN and v; € SV, 0 < m; < 400 for each i = 1,---, k. Let us moreover assume
that v; # v; if i # j. Let us call i the restriction of p on S¥=! x (¢*,+00) and i the
restriction of ;1 on X := SV=1 x (¢*,400) U {oo} = X \ {(v,¢*), v € SN~'}. Let M be the
set, defined by
M:/Adﬂ:u(X)— S omi, 0< M < 4o
X 1<i<k

Given p, we want to define an entire solution of (1.1) which should come from the mixing
of a integrable sum, weighted by the measure p, of planar travelling waves of the type
¢.(r - v+ ct). The construction is divided into several steps: we first define a sequence
of Cauchy problems starting at times —n (section 3.1), we find lower and upper bounds
independent of n (section 3.2), we pass to the limit n — +oo (section 3.3), we show in section
3.5 that the limit function wu, satisfies the asymptotic behavior (1.11)-(1.12) as ¢t — —o0
(property (i) in Theorem 1.2). We then prove the monotonicity of u,, with respect to ¢ and
we study under what condition the function u, goes to 1 as ¢ — +oo uniformly in x (section
3.4). Section 3.6 is devoted to the proof of property (iii) in Theorem 1.2. We prove in section
3.7 that the functions w, are continuous with respect to p on the set M. In section 3.8,
we deal with the case of a measure p which is absolutely continuous with respect to the
Lebesgue measure dv X de (property (iv) of Theorem 1.2). In section 3.9, we prove that the
set of the functions u, contains the solutions described in Theorem 1.1, which are obtained
from the mixing of a finite number of travelling waves.

3.1 Definition of a sequence of Cauchy problems
Let us first state the following lemma:
Lemma 3.1 (a) If M > 0, then, for each (z,t) € RN x IR, the function

X — (0,1)
(v,¢) 00 — @o(x-v+ct+clnM)
00 — E(t+In M),

is measurable with respect to i (the reason why we add the extra-term cln M and In M will
become clear in the sequel).
(b) Similarly, if M > 0, the function

(0, +00)
eA,;(:vu-i—ct—l—cln M)

X —
(v,c) o0
00 s /' (0)(t+n M))
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where \, = 077”;70*2, 15 measurable with respect to the measure fi.

Note that in the definition of the map in (b), one has e*en(T¥ntenttenln ) _y of'(0)(t+1n M)
for any sequence ¢, — +o00 and v, € S¥7! because \. — 0 and \.c — f'(0) as ¢ — +o0.
Proof of Lemma 3.1. Proof of (b). Because of the definition of X and f, it is sufficient
to show that the function (v, ¢) — A\o(z - v + ¢t + ¢In M) is continuous on SN 1 x (¢*, +00).
Since A, is continuous with respect to ¢, the conclusion follows.

Proof of (a). From what precedes, and since each function s — ¢.(s) is continuous, we
only have to prove that the functions s — ¢, (s) converge locally to the function s — ¢.(s)
as soon as ¢, — ¢ € (¢, +00). But the latter follows from Proposition 5.5 in the paper by
Mallordy and Roquejoffre [23] (see also [16], section 2). L

In the case M > 0, let us now define, for each n € IV, the solution u,(z, t) of the following
Cauchy problem:

(un); = Aty + f(uy), € RN, t>-n

un(x,—n) = max Iax (pe- (2 - vy — *'n+ " lnmy)), 1
(- v—cn+cnM)—ji(dv x d
/S'le(c*,—i—oo) Ye(r-v—cn+cln )Mu( v X dc)
- 1
+€(—n + In NT) “5\?) (3:1)

= max ( max (P (2 - vi — c*'n + ¢ Inmy)),

A1
(o = en+ cln M) —dj )
/Xgo(xu cn+cln )M,u

\

by setting p.(z - v+ ct + cln ]\7[) =&(t+1n ]\7[) if (¢,v) = 0.

In the case M = 0, we simply take

up(x, —n) = Iax (pe- (2 - vy — *n+ " lnmy)).

In the case M = 0, the function u,(—n,z) is well-defined, continuous with respect to
x and satisfies 0 < wu,(x,—n) < 1. These properties carry over in the case M > 0 from
Lemma 3.1 and from Lebesgue’s dominated convergence theorem. As a consequence, in each
case M > 0 or M = 0, the above Cauchy problem is it-self well-defined and the maximum
principle yields that

Vt> —n, Vo € RN, 0<u,(z,t) <1,

Remark 3.2 Before going further on, let us consider the case p = Myd,, ., where, say,
co > ¢*, My > 0 and 0(,, ¢, is the Dirac distribution at the point (1, cy), and let us explain
the role played by the total mass M. In this case, one has u, (z,t) = ¢¢,(z-vo+cot+co In My)
and In M, can be viewed as a shift in time for the travelling wave ¢.(z - vy + ¢ot).

In the general case, given a measure p on X, each function u, can be thought of as a
superposition of travelling waves p.(z - v + ¢t) (with finite or infinite speeds), with some
weights given by the density of the measure p at the point (v, ¢).
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3.2 Lower and upper bounds

We first claim that, for all ¢ > —n and for all z € IRY,

un(z,t) > max ( max ¢ (x - v + 't + " lnmy), /X

A1
oo v+t + cln M) —dji ) (3.2)
M
under the convention that the integral with respect to i drops as soon as M= 0, and that
e -v4+ct+clnM):=E(t+1InM)if (v,c) = oco.

Proof of (3.2). Let us first observe that u,(xz,—n) > @« (x - v; — ¢*n + ¢*Inm;) for each
i=1,---,k. Since the function ¢.(z - v; + ¢*t + ¢*Inm;) is an entire solution of (1.1), the
maximum principle yields that u,(z,t) > @e (2 - v; + ¢*t + ¢ Inm;) for all £ > —n and for

all z € IRY. That provides (3.2) in the case M = 0.
In the case M > 0, let v(z,t) be the function defined by

Ao 1
v(x,t) ::/X goc(x-l/+ct+clnM)ﬁd/l.

From standard parabolic estimates and since the function f is smooth, there exists a constant
Cy such that, if 0 < u(t,z) < 1 is an entire solution of (1.1), then |u|, |ug,|, |[Au| < Cy
globally in (z,t) € IRY x IR. Any travelling wave o.(z - v+ ct) is an entire solution of (1.1),
whence |c(s)], |£'(s)], |¢"(s)] < Cp for all ¢ > ¢* and s € IR. As far as the function &(t)
is concerned, we also have [¢'(t)] < Cj for all ¢ € IR. As a consequence of the Lebesgue’s
dominated convergence theorem, the function v(¢, ) is of class C'! with respect to ¢ and of
class C? with respect to x and it satisfies:

N 1
vy — Av :/Xf(goc(xw%—ct—i-clnM))ﬁdﬂ

~ 1
< v+t lM—AdA>
_f(/f((p(x v+ct+cln )Mu

since f is concave on [0, 1]. The claim (3.2) follows then from the maximum principle.

The inequality (3.2) provides a lower bound independent of n for the functions u,. We
shall now get upper bounds for the functions u,. To this end, let us first state an auxiliary
lemma:

Lemma 3.3 (a) For each ¢ > c*, one has p.(s) ~ e** as s — —oo from (1.4). Furthermore,

©e(s) < €r* for all s € IR and the function v(s) = e** solves the linear equation v" — cv' +
f'(0)v=0in R.
(b) &(s) < ef'Os for all s € IR.

Proof. Let us start with the proof of (a). It is rather standard but we give it for the sake of
completeness. Choose ¢ > ¢*. Owing to the definition of A, in (1.3), the function v(s) = e*+*
satisfies v"" — cv’ + f/(0)v = 0. For each t € IR, call v'(s) = v(s +t) = e’ Since ¢,
is bounded and satisfies (1.4), it follows that there exists a real ¢, such that, for all t > ¢,
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v > . in R. Let us now define 7 = inf {t € IR, v' > ¢. in IR}. From (1.4), one gets 7 > 0
and by continuity, one has v7(s) > ¢.(s) for all s € IR.

Assume now that 7 > 0 and consider a sequence "7 as n — +o0o. There exists then a
sequence of points s, € IR such that v’ (s,) < ¢.(s,). Since ¢, is bounded, the sequence (s,,)
is bounded from above. Up to extraction of some subsequence, two cases may occur: s, —
800 € IR Or 8, — —00 as n — +o00. Assume first that s, — so, € IR as n — +oo. It follows
that v"(55) = @e(Sx). Define 2 = v™ — .. This function z is nonnegative and vanishes at
the point s... Furthermore, the function ¢, satisfies @2 —cpl+ f'(0)p. > @ —c'.+ f(p:) =0
since f(u) < f'(0)u for all u € [0,1]. As a consequence, 2" — ¢z’ + f'(0)z < 0. The strong
maximum principle then yields that z = 0. This is impossible because ¢, is bounded, unlike
v. We deduce then that s, — —oo as n — +0o. Now, ¢.(s,) ~ e**" as s, — —oo whereas
©e(5n) > v7(s,) = e*(»+7) This is ruled out because 7 > 0. Eventually, we conclude that
7 = 0, which is the desired result.

Because f(s) < f'(0)s and &(s) ~ e/ (0% as s — —o0, the assertion (b) is also straight-
forward. L

Let us now turn to the main upper bound for the functions wu,,.

Lemma 3.4 For all (z,t) € R X IR, one has:

on 1
limsup u,(z,t) < ¥ e (1 v; +ct+c Inm;) + /X he(wvtetteln M) I div  (3.3)

n—+00 1<i<k

under the convention that the second term disappears if M = 0, and Ae(zvretteln M)
ef’(o)(t+1nM) Zf (y, C) = XX0.

Proof. Because of its definition, the function u, (x, —n) satisfies

Vr € ]RNa 0< Un(ﬂfa —n) < Ul,o(af) +e+ Uk+2(55)

where
Uio(r) =@ (v, —c'n+c*lnm;) for 1 <i<k if k>0
1 N
= . +ct+eln M)= fi(dv x d if M >0
Up+1,0(T) /N 1XC*+OO gp(x v+ct+cln )M f(dv x de) i (3.4)

Foreach i =1,---,k+2, let u;,(x,t) be the (nonnegative) solution of the Cauchy problem:
(win)t = Aty + f(uin), t > —n and u;,(r, —n) = u;o(z) (actually, ugio,(z,t) is only a
function of ¢). From Lemma 2.1, it follows that

Vt > —n, Vo € RY, 0 < up(2,t) < uppn(@,t) + -+ + uppin(, 1) + tpron(t).

If 1 <i<k,then un(x,t) = @ (- vy + ¢t + " Inm,).
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Let us now find an upper bound for w4, ,(z,t) (in the case M > 0). Choose any
(z0,t9) € RN x IR. Let us first observe that the function ug1 () satisfies:

~ 1
Upt10(z) = /Sle(c* oo ez v—cn+cln M)M f(dr x de)

< e (@v—cn+eln M) dv x dc) =: v, oz
T JSN-1x(c*,400) M ( ) ’0( )

(from Lemmas 3.1 and 3.3). The ji-measurability of the function (v, c) s ehe(zv—entelnd)
on SV x (¢*,4+00) is guaranteed from Lemma 3.1 and, on the other hand, the integral
/N - : ehe@v—entelnM) 5y, 5 de) converges because the functions ¢ +— A, and ¢ —
S c*,+o0o
Aec = A2+ f/(0) are globally bounded on (c¢*, +00) and because p is finite.

Let us now consider the function

’U(I’,t) ::/ e/\ c(@v+ctteln M) i (dl/ % dC)
SN=1x(e*,+00) M

As for v, (), this function v(x,t) is well-defined and one has v(z, —n) = v, o(x). Further-
more, from Lebesgue’s dominated convergence theorem, and because A.c = A2 + f'(0), the
function v solves the following Cauchy problem

v =Av+ f'(0)v
v(z,—n) = v,0(x).

On the other hand, one has f(s) < f'(0)s for all s > 0 (remember that f is extended by
0 outside the interval [0, 1]). The maximum principle yields then that, for any n > |to],

o 1
Uk+1,n(Z0, to) < v(Zo,to) = /SN N he(@o-vtetoteln M) ik a(dv x dc).
,+oo

Let us now find an upper bound for uj.s, (%) This function solves the Cauchy problem
Upron(t) = [(Upion) and ugyo,(—n) = {(—n +In M) . Since f(s) < f'(0)s, we deduce
that, for any n > ||,

Uk+2,n(to) < &(-n+1In M)% el (0)(to+n)

From Lemma 3.3 (b), it follows then that

U120 (to) < M(?O)ef’(O)(toHnM).
ST M

That completes the proof of Lemma 3.4. C

3.3 Passage to the limit n — +o0

From (3.2) and from the maximum principle, it follows that, for each (z,t) € RN x IR, the
sequence (up(x,t))n>y is nondecreasing and satisfies 0 < u,(z,t) < 1. Hence, there exists a
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function u,(z,t) such that w,(z,t) — u,(x,t) for each (z,t) € RN x IR. Furthermore, from
standard parabolic estimates, the functions u,(z,t) approach the function w, in the spaces
CE.(RY) and C (IR;). As a consequence, the function u, is an entire solution of (1.1), such
that 0 < w,(z,t) <1 for all (z,t) € RN x IR.

Moreover, from the lower and upper bounds (3.2) and (3.3), the function u, satisfies

V(z,t) € RN x R,
max <1f£13«<X (@c*(x Vz+Ct+C lnml)) / @C(I Z/+Ct+ClnM N ﬂ) (35)
d

1
< uy(z,t) < 1<ZZ]< Qe (T - v + L+ lnm;) + /X ehe(@vet-eln M) =

i

(under the convention that the integrals over X disappear as soon as M = 0, and remember
that

~ 1 1
x-v+ct+ceclnM)—di = T-v+ct+cln M)—j(dv x dc
[ ol I = Lo )iy x do)
- 00
+ g(t+1nM)“M)
/ ez\c(x-u—l—ct-i—clnM) iA dﬂ _ ez\c(x-z/—l—ct-i—clnM) i (dl/ > dC)
X M SN =1y (c*,+00) M
1 ef'(o)(t+1nz\2r)ﬂ(?o) ).

\ M

From (3.5), it follows that u,(z,t) > 0 for all (z,t). Furthermore, each of the two terms
in the upper bound of (3.5) goes to 0 as t — —oo for each given z € IRN (the convergence of

1
the second term / Ae(wtetteln M) Vi f(dv x de) as t — —oo is a consequence of Lebesgue’s

dominated convergence theorem). Hence,
Vo € RN, w,(v,t) =0 ast— —oo, (3.6)

whence the function u, cannot be identically equal to 1. The strong maximum principle
yields then wu,(z,t) < 1 for all (z,t) € R x IR. Eventually, u, is an entire solution of (1.1)
such that 0 < u < 1.

Last, since f is of class C? on [0, 1] and from standard parabolic estimates, the functions
(Uu)ts Vs (U)aiz;s (Un)ziz;a, are globally bounded in RN x IR.

3.4 Monotonicity in time and behavior of u, as ¢ — +ooc.

Let us prove property (ii) in Theorem 1.2, saying that u, is increasing in time. Under the
notations in (3.4), one has u,(x, —n) = max (maxj<;<x ©io(r), Ugt1,0(T) + Ukto0(x)) for
all z € IRN. Let us check that Auy,(z,—n) + f(uy(z,—n)) > 0 in D'(IRY). To do it, it
is sufficient to show that Au;p + f(uip) > 0 in RN for each i = 1,---,k and A(ugi10 +
Up12,0) + [ (Ups1,0 + Ukg2,0) > 0 in RY.

First, one has, for each i = 1,---,k (provided k > 0),

Augo + f(uig) = @e(@-vi —c'n+cInmg) + f(@e (3 v — ¢'n + " lnm;))
= ol(z -y —cn+ctlnm;) >0
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since ¢* > 0 and .. > 0. Next, with the same arguments as in the beginning of section 3.2,
the function 2(z) := ug110(x) + ugr20(x) is of class C* and one has (provided M > 0)

1 A1
Az + f(z) :/ o'z v—cn+clnM)= dﬂ—i—f(/Agpc(x-Z/—cn—i-clnM)—A dﬂ)
M X M

—/ col(z-v—cn+clnM)= dj

€

M

—/A (@e(x - v — cn + cln M))— du—i—f(/
X

>0 in RY

~ 1
r-v—cn-+clnM —AdA>
e )M i

X

since f is concave and ¢!, > 0 for each (v, ¢) € X, under the convention that, for (v, ¢) = oo,
cp(x-v—cn+eclnM)=0and co(z v —cn+cln M) = f(€(—n + In M)) (> 0).

Therefore, Au,(z,—n) + f(u,(z,—n)) > 0 in D'(IRY), whence the function u,(x,t) is
nondecreasing with respect to ¢ for all x € IRY and ¢+ > —n. As a consequence, by passage
to the limit n — 400, the function u,(x,t) is nondecreasing with respect to ¢ in RY x IR.
Since the nonnegative function d,u,, satisfies a linear parabolic equation, it follows from the
strong maximum principle that either d,u, = 0 or dyu, > 0 in IRY x IR. The first case is
impossible since 0 < u,(z,t) < 1 for all (z,t) € RN x R and u,(z,t) — 0 as t — —oo for
each x € RN, from (3.6). Eventually, one concludes that the function u,, is increasing in
time .

Let us now study the behavior of u, when ¢ — +o00 and prove the properties that are
stated in Remark 1.3. Let us first consider the case where there exists a direction v, € SN1
such that

p({c" <ec< 400, v-yy >0} U{oo}) =0

and let us prove that g(t) := infzny u,(-,t) = 0 for all ¢t € IR. Indeed, the above assumption
and the upper bound in (3.5) yield, for all & > 0,

.

u,(avg,t) < % (avg-vi+ct+clnm;) + eelovovtettelni) g
H( 0 )_ 1<i<k QOC( 0" Z) {c*<e<+00, vpv<0} M a

I/O'Ui<0
The limit @ — 400 implies that g(¢) = 0 for each time t € IR.
Let us now consider the case where

Vg € SN 3 >0, pu({c* <c < +oo, vy > et U{oo}) >0

Suppose by contradiction that g(¢y) = 0 for some ¢y € IR. From the lower bound in (3.5), one
immediately gets that p(co) = 0. Furthermore, there exists a sequence of points z,, = a, Vg,
with a;, > 0 and vy, € SV such that u(a,von,ty) — 0 as n — +o0o. Up to extraction of
some subsequence, one can assume that vy, — Vs € SV~ as n — +o0o. Since a,, > 0 and
since each function ¢, is increasing, the lower bound in (3.5) yields

1
max | max (@ (c"ty + ¢ Inmy)), / @olcto + cln M)— a(dv x de) | =0
22, (20, o<1 T
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as n — +oo. Take any € > 0. By passing to the limit n — 400 in the above formula, it
follows that {1 < i <k, vy -v; > €} = (). Furthermore, since {vg,-v >0, ¢* < ¢ < 400} D
{Voo -V > £, ¢* < ¢ < +oo} for n large enough, one finds that
/ (cto + cIn M)~ jidv x dc) =0
cto +cln M)— [(dv x dc) = 0.
{Voov>e, c*<c<+o0} Perto M H
Hence, u({ve - v > ¢, ¢* < ¢ < +o0}) = 0. Eventually, one has u({c* < ¢ < 400, v vy >
e} U{o0}) = 0 for all € and one has then reached a contradiction. Therefore, g(t) > 0 for all
time ¢t € IR.
Since ¢(0) > 0, the maximum principle implies that u(z,t) > n(t) for all z € IRY and
t >0, where 0 < 7(t) < 1 is the solution of the Cauchy problem 7' = f(n) with n(0) = ¢(0).
Since 7(t) — 1 as t = +o00, one concludes that ¢(t) = infpy u,(-,t) = 1 as t = +o0. C

3.5 Asymptotic behavior of u, as t - —o0

In this section, we prove the formulas (1.11)-(1.12) about the asymptotic behavior of the
function u, as t — —o0.

Proof of (1.11). Assume that k£ > 1 and choose iy € {1,---,k}. From (3.5), it follows that

Qe (2 - Vi + " Inmyy) < uy(—c'tvy +2,t) < e (T - vy + ¢ Inm;,) +v(x, t) + w(z, t) + 2(t)

where
17%10
w(I t) = / ekc(_c*yio~U+C)t+)\cx.y+ACclnM i/\ ﬂ(dlj « dc)
’ SN71><(C*,+oo) . M
2(t) = %ef'(ﬂ)(t-l-ln nr).

Since v;, - v; < 1 for each i # ig, the function v(x,t) goes to 0 locally in z as t — —o0. As far
as the function w is concerned, we have —c*v;, - v+ ¢ > 0 for each (v,¢) € S¥~1 x (¢*, +00).
Furthermore, for each compact subset K of IR", there exists a constant C(K) such that for
all z € K and for all (,¢) € SN x (¢*, +00), one has 0 < edwvdelnd < O(K) (because
Ae and A.c are bounded uniformly with respect to ¢). Hence, from Lebesgue’s dominated
convergence theorem, w(z,t) — 0 as t — —oo, locally in z. Last, 2(t) — 0 as t - —o0,
uniformly in x.

We finally get that w,(—c*tv;, + z,t) = @ (v - vj, + " Inm;,) locally in = as t — —oo.
Furthermore, this convergence also holds in the spaces CZ (IRY) since the first, second and
third derivatives of u, with respect to 2 are globally bounded.

If v is such that v # v; for all 1 < ¢ < k, then the same reasoning implies that
u,(—c*t v+ax,t) = 0 as t = —oo in CF (RY). -

loc

Proof of (1.12). Consider first the case M > 0. Let us set
10,2 -1
ay = (/ e~ 1Yl dy) = (4m) N2,
RN
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Take a continuous function ¢(z) with compact support, included in B(0,¢*). Let 0 < a < ¢*
be such that the support of # is included in the open ball B(0,a). Let t, be a sequence such
that ¢, - —oo. We aim here at proving that

Un(x,t) ::/ Ozm/ u# —2ty, + T, b, +t)e” 3(e =zt Y(z) dz
1 (3.7)
0)+3 Pk )(t+1nM)+ z-z - ~
T / o U(2) = Dui(d2)

in O} (IR,) and C2,(IRY), under the convention that the right-hand side is zero if M = 0.

By additivity, it is sufficient to consider the case where ¢ is nonnegative.

From standard parabolic regularity theory and since the function f is of class C?, the
function wu,, is at least of class C? with respect to ¢ and of class C® with respect to .
As a consequence, the functions U, (z,t) are of class C? with respect to t and of class C®
with respect to x. In order to show the above formula (3.7), it is enough to prove that
the functions U, (x,t) converge pointwise to /B(O )e(f,(o)ﬁ'z'z)(tﬂn M)Jr%x'z??(z)%@*ﬂ(dz) as

,c*
t, — —oo and that U, and their twice-order (resp. third-order) derivatives with respect to
t (resp x) are locally bounded.
First, from (3.5) and since 1) is nonnegative, one has:

Up(x,t) > wl (z,1) (3.8)
where
N 1
w! (z,t) = / any/|ta (/ (c—z-v)t, +ct+ux- 1/+clnM)Md>
) x e HE 1 () dz.

Let us now prove that

1
(2,) — / O+ D e ) G ji(dz)
Uc M

as t, — —oo, pointwise in (z,t). From Fubini’s theorem, one has

/ / oy [tn| <Pc c—z2-Vt, +ct+z-v+cln M)
(c*H | Jin N
1 1/)(2’) dz Md/jJ A
- any/[t (v, ¢, 2, tn, @, ) ((e2V)tntettmvteln M)
/ / B(0,a) N , )
et I
il 7/)(2’) dz +dji,

where .
oc((c=z- )ty +ct+x-v+clnM) <1
ere((c—zv)tnt+ct+av+cln M) -

0 S g(l/,C,Z,tn,Z‘,t) -

(the inequality g < 1 follows from Lemma 3.3). Because of (1.3), one has
)\c—)\zq/———f—u—)\Q AeZ - 1/+u:1|2)\1/—z|2
¢ ¢ 4 4 4 4=
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(notice that these equalities are also true in the case (v, ¢) = oo with the convention that, in
this case, A\. = 0 and A\.c = f'(0)). As a consequence, it follows that

_ |
' (z,t _/ h(v, e, t,, x,t)erecttreevieen M 2 gy 5.9
w, (z,t) h(v, ety x,t)e - (3.9)

where N
h(v,e, tn,x,t :/ any/|ts v,y 2y tn, 2,1 e PAev—2ltn 4y (2) gz,
( )= o VIl o ) e
For each compact subset K of RN x IR, there exists a constant C(K) such that
. g1
V(v,c) € X, Y(z,t) € K, electervidecnM v < C(K).

Furthermore, after the change of variables z = 2\.v + y|t,|~'/2, one finds that
V(z,t) € RN*Y Y(v,¢) € X, Vi, <0, |h(v, ¢ ty, z,1)] < ||@Z)||oo/ NaNe_ﬂy‘Qdy = ||Y]|
R

because of the definition of ay and because |g| is bounded by 1. Putting together the above
estimates into (3.9), it is found that

1

V(z,t) € K, Y(v,¢) € X, Vt, <0, |h(v,c,tn,x,t)]|ercrtrervircindl = < Wl O(K).
Let us now prove that
V(z,t) € RN x R, Y(v,¢) € X, h(v,c,tp,x,t) = p(2\er) as t, — —o0. (3.10)

Take (,t) € RN x IR and (v,¢) € X. With the change of variables z = 2\.v +y|t,|~"/? and
because of the definition of a;y, one has

h(v, e, tp, x,t) — Y2\ v ay g(v,c, 2 v + y|tn|_1/2, tn, x,zf)e_%'y‘2

) _/w/tn(B(O,a)—Z/\cu) |
X Y(2Ae + ylt,| V) dy — /N ay e T p(2A0) dy
R

_ 1.2
= /IRN an kl/,c,tn,x,t(y) e 11yl dy

where

reanant8) = (Xm0 or @) 90620 + gl 2, b, 2,) HAD + yltal )
—(2\.v))

and where, for any subset A of IRY, x4 denotes the characteristic function of the set A. The
function y — k&, .1, ».+(y) is globally bounded by 2||¢||«, independently of ¢,, (remember that
lg| is bounded by 1).

Two cases may now occur: 2\.v ¢ B(0,a) or 2\.v € B(0,a).

If 2\.v ¢ B(0,a), then ¢(2\.r) = 0 and one immediately observes that k, ., 2.+(y) — 0
as t, — —oo for each y € RN since ¢¥(2\.v + y|t,|7'/?) = ¥(2Av) = 0 as t, — —oo.
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On the other hand, if 2\.v € B(0,a), then X, /It (B(0.0)-2Acr (y) —» 1 as t, — —oo for

)
each y € RN (remember that B(0, a) is open). Furthermore, for each y € IR",

©e ((c — 2 v + Yl TV )ty At F 3 ov+ cln]\7[)

- — 1
e/\c ((C*(2ACV+y‘tn |=1/2).v)ty +ct+z-v+cln M)

9(v, ¢, 20 v +yltn] P, 2, t) =

as t, — —oo because of (1.4) and because ¢ — 2\, > 0 (notice that the convergence
g(v, ¢, 20\ + ylt,| V%, t,, 2,t) — 1 holds both in the case (v,¢) # oo and in the case
(v,¢) = 00). Eventually, we conclude that k, ., ».(y) = 0 as t, — —oo for each y € R".
The claim (3.10) follows then from Lesbesgue’s dominated convergence theorem.

As a consequence, in each case 2\.v € B(0,a) or 2A.v € B(0,a), a second application of
Lesbesgue’s dominated convergence theorem yields then that

’ 1
whlat), oo fo et @) 1 d
— /A e(f,(0)+)‘g)t+)\cw.y+(f,(0)+)\g)lnM ¢(2)\Cy) % dﬂ
X
_ /‘ e (O)+5121)(t+In M)+ a-2 ¢(z)_£-¢>ﬂ(dz)
B(0,c*) M

by definition of the map ®. Therefore, remembering (3.8), it is found that

N L.x 2
liminf U, (x,t) = liminf B0e) any/|tn|  uu(—zty + 2, t, +1)e71C 1P (2)d

tp,—>—00 n——00

i

> / e(f’(0)+§\zP)(tHnM)Jr%m-zw(z) iA D, fi(dz).
0,c* M

Similarly, by using the upper bound in (3.5), we claim that

lim sup aN\/ n| u# 2ty A+ @ty 4 ) 1T (2) dz
th——00 JB(0,c*) (3.11)

, 1 N
< / f( )+ z)2 )(t+1n M) +3 Izw( ) - @*u(dz)
Oc* M

Indeed, we have U, (z,t) < U;{(:L‘,t) + w]!(z,t) with

up(x,t) :/ any/|t (" —z-v)t,+ct+x-v,+ ¢ lnm;))
<

X e~ 4( \T)t w( ) dz
1
’U];Z(Z',t) :/ - an / < (e— zutn+ct+$u+clnM)Mdﬂ)
x AT ()

Let us first prove that v”(z,t) — 0 as ¢, — —oo. Choose a compact subset K of R" x IR.
Because ¢* — z-v; > ¢ —a > 0 for all z € B(0,a) and for all 1 < i < k, and because
@ (5) ~ |s]e}s as s — —oo, it follows that there exists a constant C' = C'(K) and a real
number 7" such that, for all (z,¢) € K and for all ¢, < —T,

V1<i<k, @u((c¢"—z vi)ty+ct+a- v+ Inm) <C(|tn]+1)er vt
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Since A*¢* = (A*)? + f'(0) = (\*)® + ) " we have

Net = Nz - S % = ()2 = Xzoy+

for all z € B(0,a) and for all 1 < i < k. Hence, even if it means changing the constant C,
one gets:

N 1. 2
V(z,t) € K, Yt, < =T, |[0"(z,t)] < Cy/|ta] (|tn] +1)erl& =0t

Hence, v)!(z,t) — 0 as t, — —oo, uniformly for (z,t) € K.
On the other hand, as we did for w],(z,t), we have

! p Y 1
wg(x,t) RN /B(O C*)e(f (0)+%|Z|2)(t+lnM)+%:D-Zw(z) ﬁ ®*,[:L(dz) as tn -0

(here, on the opposite of the case of w!, (z, t), we do not have to use the function g(v, ¢, z, t,, z, t)).
Hence, that gives (3.11).
As a conclusion,
7 2 Y ]_
Ualot) = [ erotimemindes y) L g s
@ [ VE) T Bl

as t, — —oo, for each (x,t) € RN x IR.

Furthermore, from the arguments above, the functions U, (z,t) are uniformly (with re-
spect to t,) bounded in each compact subset K of IRY x IR. On the other hand, since the
function w, is a positive entire and globally bounded solution of (1.1), it follows from stan-
dard parabolic estimates and Harnack inequality that there exists a constant C' such that,
for all (z,t) € RN x IR, one has: [|[Vu,(z,t)||, [(up)eia, (€, 8)], |(Up)zsa;0, (%, 1)] < Culz,t+1).
As a consequence, the derivatives of the functions U,, (at least up to the second order in ¢
and the third order in z) are locally bounded in (z,t), uniformly with respect to t,. This
implies that the convergence

N *2 2
U t)= [ ol (st by + )02

- / /O 1z (EHn M) 52y, ) L P, fi(dz)
B(0,c*) M

actually takes place in Cyp, (IR;) and C7, (IRY).

loc loc
Consider now the case M = 0. Under the same notation as above, the term w! (z,1t)

disappears and one has 0 < U, (z,t) < vll(x,t), whence U, (z,t) — 0in T as n — +oc.
This completes the proof of (3.7), which gives (1.12). r
From (1.11)-(1.12), one deduces the following

Lemma 3.5 The map p+— u,, is one-to-one.
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Proof. Consider two measures j; and g in M and assume that u,, = u,,. From (1.11), it
follows that the v;’s and the m,’s are identical for 1, and p9, that is to say, that pj = 3.

Formula (1.12) especially implies that either M, = Mg, or both M; and M, are positive.
In the first case, then ji; = 1o = 0 and, eventually, p; = po. Consider now the case where
both M; and M, are positive. Formula (1.12) applied to x =0 and t = — In M gives

1 ! 1 2 Y Y 1
- 2) @, (dz :/ el O+ 52 (In Ma=In M) o)y () — & fin(dz
T Sy V) Bl = [ V(e) 5 Pehald)

for each function ¢ € C.(B(0, ¢*)). Take a sequence of functions v, € C.(B(0, ¢*)) such that
0 <4, <1land 1, =1in B(0,c* —1/n), and pass to the limit n — +oo. It follows that

1 7 1,2 Y Y 1
— @, 11(B(0, ¢ :/ eSO+ 12P)InMo=In M)~ 1 (dz).
o emBeey=[ T ol

By definition of M, and of the map ®, the left-hand side is equal to 1. By applying the
mean value theorem to the right-hand side, one gets 1 = e O+ 5lz0/)(In Mz—In M) £ gome 2,
such that |zy| < ¢*. That yields M, = M,. From (1.12), one concludes that @,/ = P, /iy
on B(0,¢*), whence i, = ji, on X from the definition of the map ®. Eventually, one gets

H1 = H2. L

Before ending this section, let us make more precise the behavior of u,(x,t) when ¢ —
—00, locally in & € IRN. This corresponds to the case z = 0 in (1.12). One claims that

Uy (7, 4 t)e™ O %J(oxtﬁn ) (3.12)

in the sense of 7 for each sequence ¢, — —oo (under the convention that the right-hand side
is zero if M = 0). X
Let us first consider the case M > 0. The inequalities (3.5) yield

Eltn + 1+ I M)ME eSO <y (a8, + t)e O

~ 3.13)
m m 1(00) £/ (0)(t+1In M (
<oy (x,t) +wy (z, 1) + e (0X )
where
vy (3,t) = 1<Xi]<k Qor (@ - Vi + Ely + ¢t + ¢ lnmy)e™ Ot
w"'(x,t) :/ e(Acc—f'(0))tn+/\cct+/\cx-u+/\cclnM iA ﬂ(dl/ % dC)
" SN=1x(c*,+0c0) M

Since £(s) ~ 0% as 5 — —oo, the left-hand side of (3.13) goes to %ef'(o)(“rlnm as
tn, — —oo. Let us now investigate the term v!”(xz,t) of the right-hand side. Let K be a
compact subset of IRN x IR. Since p.(s) ~ |s|e*™® as s — —o0, there exists then a positive
constant C'(K') and a real T such that

V(r,t) € K, Vt, < =T, 0<v(x,t) < C(K)(|t,| +1)eX =IO,
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Because \c* — f/(0) = A** = f/(0) > 0, we get that v"'(x,t) — 0 as t, — —oo locally in
(x,t).

As far as the term w!”(z, ) is concerned, since A\.c— f'(0) = A\? > 0 for each ¢ € (c¢*, +00),
we conclude from Lebesgue’s dominated convergence theorem that w!”(z,t) — 0 as t,, — —oo
locally in (z,1).

Eventually, u,(z,t, + t)e 7Ok — %eﬂ(o)(t“nm locally in (z,t) as ¢, — —oc. On
the other hand, since ||Vu, (2, )|, [(up)ze; (7, )], |(Un)ziz;a, (2, 1)] < Cuy(z,t + 1) for some
constant C' and for all (z,t) € RYN x IR, the functions (z,t) — u,(z,t, +t)e™ @ and their
derivatives in ¢ (resp. in x) up to the second-order (resp. third-order) are locally bounded
in (z,t), uniformly with respect to #,. We finally conclude that u,(z,t, + t)e /O —
%eﬂ(o)(t“n M) a8 t, — —oo in the sense of the topology 7.

If M = 0, then p(oo) = 0, the term w)'(x,t) disappears and the convergence u,(x,t, +

n

t)e= 'Ot 5 0 in T follows. -

Remark 3.6 For each entire solution u of (1.1), one has nax u(z,t) — 0 as t — —oo for
z|<ce

each ¢ € [0,c¢*[ (see Lemma 4.1 in section 4) and one has given in (1.12) the asymptotic

behavior of the function z € B(0, ¢*) — u,(2t,t) as t — —oo, for each entire solution of (1.1)

of the type u, with ;o € M. Similarly, one knows that ‘rr‘lint u(z,t) — 1 as t — +oo for each
AR

¢ € [0,¢*[. One could wonder if one could make more precise the behavior of the function
z € B(0,¢*) — 1 — u,(zt,t) when ¢t — 4o00. But that seems intricate because of the lack of
a suitable upper bound of u, for large time.

3.6 Multiplication of y by positive constants

The puropose of this section is to prove property (iii) in Theorem 1.2.
Take a measure y € M and write p as

where k is a nonnegative integer and m; > 0.

Choose any positive real number a. The measure au belongs to M. By definition,
one has ug,(z,t) = lim,, o U,(z,t) where U, is the solution of the Cauchy problem
(U, = AU, + f(U,), t > —n, z € IRV, with initial condition at time t = —n

Up(x,—n) = max (lrgagc(gpc* (x - v; — " n+ " In(am;))),
o ~ 1
/Agoc(x-l/—cn+cln(a]\/[)) — d(af1)
X aM

= unflna(xa —n +In Oé),

where u,_1n is defined as in (3.1) with n replaced with n —In oe. By uniqueness of the above
Cauchy problem, it follows that U, (x,t) = tp_1na(z, t+1Ina) for any n and t > —n, x € IRY.

As done in section 3.3, it is true that the sequence (u,(x,t)), is nondecreasing for
any nondecreasing sequence of positive numbers n/, the n’ being not necessarily integers.

29



Therefore, u,, 1o (2, t+In ) — u, (2, t+In @) as n — +oo. Eventually, that yields uq,(z,t) =
u,(z,t +Ina) for all (z,t) € RN x IR, which is the desired result.

In addition, as a consequence of the general asymptotic properties (1.15) and (1.16) that
are satisfied by any solution « of (1.1), it immediately follows that, for each measure y € M,
U, — 1 in the sense of the topology 7, as o — 400, and u,, — 0 as a — 07.

3.7 Continuity with respect to u

Let u™ be a sequence of M such that U™ converges to p € M in the sense that: 1) [x fdp™ —
Jx fdji for any continuous function f on X such that f =0 on SV x (¢*, ¢) for some ¢ > c¢*,
2) M" = p"(X) = M = u(X), 3) u"(c0) = p(co) as n — +oc.

The functions w,n(x,t) are entire solutions of (1.1). From standard parabolic estimates,
they converge in the sense of the topology 7, up to extraction of some subsequence, to a
solution U(x,t) of (1.1). One then has to prove that U = w,,.

The formula (3.5) applied to w,, yields

™ “rny 1 (20)
cz-v+et+eln M) —=—dp" + t+InM")———= < uyn(z,t
/Sle(c*,-q-oo)SO (:L’ vre cm )Mn H f( n ) Mr Up (:L’ )

" (o) A (3.14)
< 6/\C(ac-u—l—ct-i-clnM") - dﬂn + \ €f (0)(t+1n M™)

T JSN-1x(c*,400) y

for all (x,t) € RN x IR. From assumptions 2) and 3), it immediately follows that
E(t+ lnM”)% — &(t+ lnM)% as n — +00.

Choose now any €, A > 0 such that ¢* +¢ < A and let x(c) be a continuous function
defined on IR and such that 0 < y < 1, x(¢) = 1if ¢* +e < ¢ < A and x(¢) = 0 if
c ¢ [c"+¢/2,2A]. One has

~ 1
x-v+cet+eln M) —dn"
/9N1x(c*,+oo)(p ( )Mn a

- 1
>In::/ ¢) plx-v+ect+cln M™)—dp".
> SMX(C*,M)X( ) e( ) S i
The term I,, also reads I,, = I1,, + 111, where

N 1 ~o 1
Hn:/ c (cx-z/%—ct—i—clnM”A—— Cx-u%—ct—l—clnM—A) dp™
SN—1><(C*,+OO)X() (,0( )Mn 90( )M a

a1
11, = | ¢) po(z - v +ct+cln M) — dji".
SN—1><(c*,+oo)X( ) @l ) 7 A
From the assumption 1) and from the choice of ¥,

~o 1
I1r, — x(¢) gpc(x-l/+ct+clnM)ﬁdﬂ as n — +00.

SN =1y (c*,+00)
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On the other hand,

11 . 1 .
L] < = = |+ ellelllel I 7 = 0| ) (o) "

SN=1x(e*,+00) < M
Since the functions wu, .(z,t) = @.(x - v+ ct) are bounded solutions of the parabolic equation
(1.1), there exists a constant K, independent of (v,¢) such that ||0u,.(z,t)|] < K for all
(z,t) € RN, Therefore, c||g06||00 < K for all ¢ € (¢*,4+00). Since the sequence (u"(X)) is
bounded one finally concludes that Il,, — 0 as n — 4o0.

Thus,

I, — / Sz v+ct+cln M) — dji
SN*lX(C*%O)X()(P(x v+ct+cln )M ]

n—-+0o

> T v+ctt+eln M d
- SN—1><(C*+E,A)(p ( )M H-

The passages to the limit ¢ — 0 and A — 400 eventually imply, thanks to the monotone
convergence theorem, that

~ 1
lim inf e(z-v+et+cln M™)—

n—+00  JIN—1x(c* 400) M SN (et 400)

~o 1
lz-v+cet+celn M)—df.
e ( )M fi

Similarly, one can prove that

v 1 . .
eA,;(x-V—l—ct-i—cln M™) - dﬂn < Ae(z-v+et+cln M)

1
lim sup < e — dji.
n—+oo JSN—1x(c*,400) Mn SN=1x(c*,+00) M
Putting all the above results into (3.14) leads to:
/ <p(a;~u+cz&+clnM)i dii + §(t+lnM)“(OO)
SN—=1x(c*,+00) ¢ M M
< U(x,t) < eA,;(:vu-l—ct—I—clnM) iA dii + ef’(O)(t-i—lnM) M(?O)
SN=1x(c*,+00) M M
for all (z,t) € IRN*L. In other words, for all (x,t) € RY x IR,
/ Yol 1/4—ct—|—clnM)i dip < U(z,t) < / e(wvtetteln M) iA di. (3.15)
M M

Remember that, by definition, the function u, is the pointwise limit of the functions
un(x,t), which are solutions of the Cauchy problems d,u,, = Au, + f(uy), t > —n,

1
up(x, —n) = / @(x - v —en+cln M)— dji.
X M
From the maximum principle, it follows then that w,(z,t) <
z € RY.
Let v, be the function defined by v,(z,t) = U(z,t) — u,(z,t) > 0. The function v,

satisfies 0yv,, = Av, + f(U) — f(uy) < Av, + f'(0)v, for all ¢ > —n, z € IRYN. Fix a couple

U(z,t) for all t > —n and
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(z,t) € RN*L. For n > |t|, one has

o O)(t4n)

ly—e|
0 <wvp(z,t) < —N/ vn(y, —n)e 1D dy
Am(t+n) 7BV
F1(0)(t+n) . . 1
S 6— A (ez\c(z-yfanrclnM) _ SOC('I. By + Cln M)) — d/’l
N RN X M
VAT (t+n)

_ly==|?
Xe At dy

because of (3.15). Moreover, from Lemma 3.3, one has rel@v—entelnd) _ o (3.1 — cn +
clnM) > 0 for all (v,¢) € X (the case (v,c¢) also works because of our conventions and
because £(s) < e/ (0% for all s € IR). One gets then

0 < vy, 1) < /X wn(v, ¢)dil (3.16)
where
wy (v, c) = —ef,(O)(Hn) & / (e’\c(y'”_C"J’cmM) — ¢ (y-v—en+cln M)) iA e_%dy.
Ar(t+n) BV M
On the one hand, one has
ef (Ot weentelnnry 1 el
0 < wy(v,c) < oplz,t) = —N/IR helyv—enteln M) o € 1@ dy.

47 (t + n)

By definition, the function ¢, is a solution of the linear Cauchy problem 0,0, = A¢,+ f'(0) Py,

for t > —n and ¢,(z,—n) = re(@v—entelnd) - By ypiqueness of this Cauchy problem
and since A\.c = A2 + f’(0), one concludes that ¢, (z,t) = ﬁeAc(“""’*Ct*Cl“M). Therefore,

0 < wy(v,e) < ﬁe’\c(’”"“’““lnm and this function (v,¢) = +; he(@vret+en M) io quch that
1

<M
Choose now any couple (v,¢) € S¥~! x (¢*,4+00). By making the change of variables

y=21a+2\(t +n)v+ 1/4(t + n)z and by using (1.3), a straightforward calculation gives

ekc(:v~u+ct+clnM)dﬂ< +00.

1 A<-+t+1M>/ ~N/2 - lel?
w(v,c) = — e z-v+ct+cln AP = . d
wy (v, c) ¢ LT e (1 —nn(2)) dz
where
nn(z) :6—)\6(:1:~u+ct+clnM)-i—f’(O)(t-i—n)—/\f(t-i-n)—/\c 4(t+n)z-v

X o (2 v+ 20 (t+n) + /At + 1)z v —cn+cln ).

Lemma 3.3 implies that 0 < 7,(2) < 1 and n,(2) — 1 for all 2 € RN as n — +o0. Therefore,
Lebesgue’s dominated convergence theorem implies that wy,(v,c) — 0 as n — +o0.
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Similarly, one can prove that w,(occ) — 0 as n — +oo. Eventually, another application
of Lebesgue’s dominated convergence theorem in (3.16) leads to v, (z,t) — 0 as n — +o0.

As a conclusion, U(z,t) — uy(x,t) — 0 as n — +oo, whence U(x,t) = u,(z,t). Since
the couple (z,t) € IRN*! is arbitrary, one concludes that U = wu,. Last, since the limit
u,, is uniquely determined by the sequence (x") and does not depend on its subsequences,
it follows that the whole sequence (u,n) converges to u, in the sense of the topology 7T as
n — +00. r

3.8 Case where i is absolutely continuous with respect to dv x dc

This section is devoted to the proof of the non-convergence property (1.14) in the case of
a measure g € M such that p* = 0 and g is absolutely continuous with respect to the
Lebesgue measure du X dc.

The formula (1.14) is actually a consequence of more general results that we state below.
Consider a measure p € M such that y* = 0 and

p({(v,c) € SN x (¢, +00), corp-v=1c}) =0

for some ¢y > ¢* and vy € SV 1. Note that the set E = {(v,¢) € SV 1x(c*, +00), covp'v = ¢}

can also be written as £ = S(covn/2,¢0/2) \ B(0,c¢*) where S(covy/2,¢9/2) is the sphere
centered at the point cory/2 with radius ¢y/2. Then we claim that

Vh € R, wu,(—cot vo+x,t) / @eo(x- 19+ h) ast — too. (3.17)

Postponing the proof, we see that property (1.14) immediately follows from (3.17). In-
deed, if a measure p € M is such that u* = 0 and i << dv xde, then u(E) = 0 for all (co, ).

Let us now turn to the
Proof of (3.17). Choose a measure p € M such that p* = 0 and such that p({(v,c) €
SN=Lx (¢*, +00), corg - v = c}) = 0 for some ¢y > ¢* and vy € SV L.
Let us first study the limit £ — —oo. Assume that there exists a real number hy € IR
such that
uu(—cot vy +x,t) = @eo(x -9+ hy) ast — —oo (3.18)

for each = € IRY (this implies that the convergence actually takes place in Cf,.(IRY)).
Let us first consider the case where (SV™! x (¢*,+00)) = 0 (which implies that M =
p(oo) > 0, since p* = 0). From (3.5), one has

uu(—cot vp +x,t) < MES[O) of (0)(t+n M)

The passage to the limit ¢ — —oo leads to ¢, (z -9+ hg) < 0 for all z € IRN. That is clearly
impossible.

We now have to consider the case where ji(SV~! x (¢*,+00)) > 0 (that implies in partic-
ular that M > 0). Let F be the set

F={(v,e) € SV x (¢*,+0), ¢ < corp - V}.
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The set F' can also be written as F' = B(cyvy/2,¢/2) \ B(0, ¢*) where B(covy/2, ¢o/2) is the
open ball centered at the point cyr/2 with radius ¢y/2. Suppose that p(F) > 0. Take now
any point x € IR"N. From the lower bound of (3.5), it follows that

NN |
uu(—cot vo +x,t) > /ngc ((c—coyo-u)t+x~1/+clnM) v dji.

For any couple (v, ¢) in F, one has ¢c—cory-v < 0, whence ¢ ((¢—covy-v)t+2z-v+cln M) — 1
as t — —oo. Hence, from Lebesgue’s dominated convergence theorem, the right-hand side

1 F
— dp = MJ(\Z) > 0 as t — —oo. Therefore,

of the previous inequality goes to [ := / i
F
©eo (T - Vo + ho) > B> 0 for each x € IRY, where 3 is independent of z. This is impossible.

We deduce then that

u(F) =0.

From the upper bound of (3.5), and since u(E) = u(F) = 0, it follows then that
u,(—cot vo +x,t) < w(z,t) + 2(t) (3.19)
where
’U)(,T t) — / 6)\¢(cfcollo-u)t+/\cz-1/+)\cclnM iA d/]
) G M
At) = M(?O) of'(0)(t-+1n 17)
and

G ={(v,c) € SN x (", +0), ¢ > cop - V}.

Choose any z € IRN. For each (v,¢) € G, one has ¢ — cyrg - v > 0. Furthermore, 0 < ),
¢*/2 and 0 < Ac = A2+ f'(0) < 2f'(0). Hence, for t < 0, erelc=corow)ttdezvirccin M
eC'lal/ 242/ O M| gp ghele—covo)itdervideen My () a5 ¢ — —oo. One concludes from
Lebesgue’s dominated convergence theorem that w(z,t) — 0 as t — —oo for each x € RY.
The passage to the limit ¢ — —oco in (3.19) leads to @, (z - 9 + ho) < 0 for all x € RY.

Eventually, the assumption (3.18) is impossible. That gives the formula (3.17) when
t — —o0.

<
<

Let us now turn to the proof of (3.17) for the limit ¢ — +o00. We just outline it because
it is very similar to the previous case t — —oco. Assume then that

uy,(—cotvg + @, t) = @ (@ - 19 + hy) as t — 400

for some hy € IR. From (3.5), one has:

o -y 1(00)
(x-v+(c— v)t+clnM)— dj, £(t+InM)—=
max </SN1X(C*’+OO)<;) (x-v+(c—covp-v)t+cln )M i, £(t+1n M) i )

_— —_ Y ].
< u cololt + .Z‘,t < eAc(I'lH‘(C covo-v)t+eln M) .
N #( o ) SN =1y (c*,+0c0) M

L 100 o)
M

dp
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Assume first that p(oo) > 0. Then, M > 0, and, the passage to the limit ¢ — +oc yields
oo (T - Vg + hg) > % (> 0) for all z € IRY. That is impossible. Hence, p(co) = 0.

Second, as it was done above, one has u(G) = 0, otherwise ¢, (z-vy+hy) > ' := % >0
for all z € RY.

o1
Third, it follows then that u,(z — comt, t) < / (@ vt(e—covow)t+eln M) = dfi. The limit
F

t — +oo yields @, (7 - vo + hy) < 0 for all x € IRY, which is clearly impossible. Hence, the
claim (3.17) also holds when ¢ — +oc. L

Let us now prove an additional property that also shows that when i is absolutely
continuous with respect to the Lebesgue-measure dv x de, then u, does not behave, along
the rays 2t with |2| < ¢* and t — —o0, as a solution obtained from the mixing of a finite
number of travelling waves does. More precisely, if © € M is such that g is absolutely
continuous with respect to dv X dc, then

Ve RN, 0< 2] <c*, wuu(—z2tt)= 0(65(0*2"”2”) as t — —oo. (3.20)

Note that, from (1.10), for each function u in Theorem 1.1, there exists z € B(0,c¢*)\{0}
such that u(—zt,t) # o(e1(©*~1#1)1) as ¢ — —o0.

Let ;1 € M be such that u* = 0 and dji = g(v,c)dv X dec form some L' function g on
SN=1 x (¢*,+00). Choose z € B(0,c*)\{0}. From (3.5), it follows that

wy(—zt, e TP <) 4w (t) + 2(1)

where
t) = (" =2 )t + " Inm;
v(t) 1%}9@ ((¢" = z-v)t+ ¢ Inm;) 1
U}(t) — /SNlX(c* . e[/\c(fz-u+c)7%(c*)2+i‘Z‘Q]t+/\cclnM ﬁ g(l/, C) dv x de
Z(t) = u(]F;) e1l2Pt+f(0)In M

As it was done in the course of the proof of (1.10), v(t) — 0 as t — —oo, since |z] < ¢*.
On the other hand, the term z(t) clearly goes to 0 as ¢ — —oo. Last, let us observe that,
because of (1.3),

Ae(—z-v+c)— i(c*)2 + i|z|2 =N - Az-v+ i|z|2
= 12X\ — 22 > 0.

Furthermore, the Lebesgue measure of the set {(v, ¢) € SY~"x (¢*, +00), 2A.v = 2} (which is

a single point) is equal to 0. Since the function - e*¢!"™ is uniformly bounded, Lebesgue’s

dominated convergence theorem then implies that w(t) — 0 as ¢ — —oo. That completes
the proof of (3.20). L

3.9 The set {u,} contains the solutions obtained from the mixing
of a finite number of travelling waves

This section is devoted to proving that the entire solutions of (1.1) that are obtained from
the mixing of a finite number of travelling waves (see Theorem 1.1) are actually of the type
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u,. In other words, the set of the entire solutions of the type w, contains the solutions
obtained from the mixing of a finite number of travelling waves.

In order to do that, let p be a positive integer p > 1 and, for each ¢ = 1,---,p, choose
(Vi, ciy hi) € SN1 x [¢*, 400] x IR. Assume that ¢; # ¢; if v; = v; and assume that there is
at most one index i such that ¢; = +00. One wants to prove that the entire solution u(z, t)
of (1.1) constructed in Theorem 1.1 is of the type u, for some p € M.

As in section 2, let us consider the case where k := #{i, ¢; = ¢*} > 1 and #{i, ¢; =
+oo} =1 (the other cases being easier). Up to a renumbering, one can assume that

c=-=c=¢ <1 << <H00 =0y
The function u(z,t) is the limit of the solutions U, (x,t) of the Cauchy problems
(Un)e = AUn + f(Un), z€RY, t>—n

where Uy, (xz, —n) is a maximum of travelling waves (with finite or infinite speeds):

Un(x,—n) = max ( max (@, (x-v; —en+ hy)), &(—n + hp)> :
1<i<p—1
Notice that 0 < U, (z,—n) < 1.
Let us now consider the following measure ;1 € M, which is the sum of a finite number

of Dirac distributions:

k . * pfl

H = E ehz/c 5(ui,c*) + X O‘ié(ui,ci) + Oép(sooa

i=1 i=k+1
where the o; are defined as follows: first, elementary arguments give the existence of a unique
positive real number M such that

pil ohe; (hi—ci In M) + ef’(O)(hpflnM) —1;
i—=k+1

then, set c; = Merei(himeind) 5 0 for each i = k+1,---,p— 1 and oy = Me!l' O(p—In D),
definition, one has X}_, . a; = M.
The function w,(x,t) is the limit of the solutions u,(x,t) of the Cauchy problems

(Un): = Aup + f(up), € RN, t>-n

where, owing to the definition given in (3.1), u,(z, —n) is the maximum of some travelling
waves with the minimal speed ¢* and of an average of travelling waves with speeds greater
than c*:

up(r,—n) = max (ma (e (z - v; — ¢*n + hy)),

X
1<i<k

p—1 ~ Y ~ ’ Y
Y o, (z v — ein + ciIn M)ereihimeimM) e 1n M)e! (0)(h1’_lnM)> :
i=k+1
One has 0 < u,(z,—n) <1 for all z € RY.

The key-point consists in proving that, by considering these above two sequences of
Cauchy problems with different initial data, one actually gets the same function at the limit.
This is done in the following
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Lemma 3.7 For all (z,t) € RN x R, u(x,t) = u,(z,1).

Postponing the proof of this lemma, one then sees that the manifold of the solutions of
(1.1) of the type u, contains all the solutions u constructed in Theorem 1.1. From Theorem
1.1, it then follows that the manifold {u,} then contains the finite-dimensional manifold of
the planar travelling waves, the manifold {¢ — &(t + h), h € IR} and the finite-dimensional
manifolds of the planar solutions that have been constructed in [16].

Before doing the proof of Lemma 3.7, let us state an auxiliary result. In what follows,
we call (S(t))>o the semi-group generated by the Laplace operator in IR". In particular, for
each bounded measurable function g on IRV and for each t > 0 and z € IR", one has

1 lyep?
(S(0)-9)0) = = [, o) ¢ T d.

Lemma 3.8 (a) For each v > ¢* and (z,t) € RN x IR,
an(,t) o= /O (St + 1) - Lysom) (¥) =0

as n — +oo (with t +n > 0), where 1. j>yn(y) =1 if |[y| > yn and 0 otherwise.
(b) For each v > c¢*, 7 < 0 and x € RN, the integral

hy (2, 7) ::/ eSO (S(T = 5) - Ljy510) () ds
converges.
Proof. Proof of (a). For n > |t|, one has
6f’(O)n ly—=?
0 < zp(x,t) < —N/ e 1T dy.
Ac(t +n) ly|>yn

The change of variables y = ynz + x leads to

el AP

Since v > ¢* = 2,/f(0), there exists n > 0 and ny € IV such that, if n > ng and |Z+7Ln| > 1,
then

nz

0 < z,(x,t) < )d

2 2
ven|z
roy— 2R e

4(t +n)
Therefore, for n > ny, it follows that
N, N
0< Zn(I,t) < NfY n e—nn/ —nn\z‘gdz
Ar (t+n)N/2 |2+ |>1

< - Tn e nn/ \ylzdy
A (qn(t +n))N/2 RY
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after the change of variables \/nnz = y. Therefore, z,(z,t) — 0 as n — +o0.
Proof of (b). Take 7 < 0 and z € IR™. Since 0 < (S(7 —5) - 15415/ (z) < 1 for all s < 7,
one only has to prove that the integral

ly—=z|?

e 1= dy ds

b= [ oron

T—3) 1 /
o0 [am(r —s) W=

converges. With the changes of variables y = |s|z (possible because s < 7 < 0) and t = 7—3s,
it is found

I = /00(47rt)7N/2(t - T)N/ ef,(o)tf‘(t_r‘)lf_m dz dt
1 21>y 2

= /00(47Tt)7N/2(t — T)N/H e(f'(o)*i|z|2)t+%z'$+%T\Z\2flmtft dz dt.
1 z|>ny

\z+7‘z\2

In the above integral, one has e~ ~ < 1. Furthermore, since ¢* = 2/f'(0) and v > ¢*,
there exists 0 > 0 such that f'(0) — 1]z|> < —d as soon as |z| > 7. Hence,

0=Tl< ( / (47rt)‘N/2(t—r)Ne—6tdt> x ( / e%mﬁw?dz)
1 RN

The integral in ¢ converges because § > 0. So does the integral in z, because 7 < 0. That
completes the proof of Lemma 3.8-(b). C

Note that since 0 < (S(7 — ) - 1j>q5)(x) < 1forall 7 € R, s < 7 and x € R", it
follows that the integral h.(z,7) converges for all (z,7) € RN x IR.

Let us now turn to the
Proof of Lemma 3.7. Remember the definitions of the sequences of the functions u, and
U, at the beginning of this section 3.9. Since 0 < u,, < U, < 1 and f'(s) < f'(0) (> 0) on
[0, 1], it follows that, for each n, the function w,, = |u, — U,| satisfies

(wn); < Aw, + f(0)w,, t>-n, xRN,
Therefore,
0 < wp(z,t) < O (St 4 n) - w,(-, —n))(z).

Choose a couple (z,t) € IRY x IR. Let £ be an arbitrary positive real number. Last, let v
be such that ¢* < v < ¢xy1 (< ¢ for all i > k+1). From Lemma 3.8-(a) and since |w,| < 2,
one has
ef'(o)(tJ“”)(S(t +n) - (Wn(-, —n) 1 340))(x) = 0 as n — +oo.

Therefore,

limsup w, (2, £) < limsup e O (St 4 n) - (wn (-, ~1) 1<) (2).

n—-+00 n—-+00
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Let us now find an upper bound for the function w,(y, —

definitions of u,(-,—n) and U, (-, —n), one has (for all y € RY),

max
k+1<i<p—1

0 <w(y,—n) < ‘ max (

p—1

-

=k+1

n) for |y| < yn. Owing to the

(Pely - vi = cin+ b)), E(-n+hy) )

Y @, (y-vi—cen+¢ IIIM) Ac; (hi—c;In M) + g(_n+lnM)ef'(0)(hp—lnM)) ‘

Since v < ¢; foreach i > k+1, y-v; —¢;n — —o0 as n — +oo, uniformly for |y| < yn. From

(1.2) and (1.4), one has, for n large enough and for all |y| < yn,

; (yvi—cinthy)

|¢Cz(y VZ_CZn+h,)

|gpcz(y Vl_czn+cllnM) )‘Cl( 7 CilnM)
E(=n+hy) -

|§(_n+lnM)€f,(0)(hp M) _ , f

(y vi—cinth;) |
0)n+f'(0

where the first two inequalities hold for ¢« = k£ + 1,---
Ae, (Y - Vp + cpt + hy) 1=

,p— 1.

) 1
0 < limsup wy,(z,t) < limsup e’ (0)(””)/ -
n——+o0o n—-+o0o |y‘<7n 47T(t + 77/)
P .
+2¢ limsup ¥ =z (z,t)
n—+oo i=k+1
where ,
I — Xe; (yvi—cinthy)y Ae; (yvi
<o B =, e I
and 1 ly—=|®
Z;L (:E, t) — ef’(O)(t+n) / Ne)‘ci(y"/i*cin)*4(t+n)
wl<om Sz (t + n)
Let us first estimate the terms z¢ (x, ). One has

oI (0)(t+n)

ly—z|?

(@, 1) < g, 1) = v /e

47 (t + n)

As already observed in section 3.7, and since )\zi
the above inequality is equal to

— 6/\Ci (z-vi+eit)

On(2, 1)

(in both cases k+1 <i<p—1,ie ¢ <oo,and i =p, i.e. ¢; = +00).

Let us find an upper bound for I,,(y) for all |y| < yn. For each i = k+1,---

}’

be the set

Ac; (yvi—cinth;) _ max e’ %

@, = {lyl <, e Jmax
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<ce
<e eAci(y-Vi—cm)
h’p| S £ e_f,(o)n
O+ Oy | < ¢ =IO

Aci (yvi—cin) o~ d@Fny

Ae; (y-vj—cin+h;)

Xe; (y-vi—cin)

In what follows, one sets
f'(0)t + f'(0)hy, and A, (y - vp + cpt) := f'(0)¢ for all t € IR. Thus,

ly—

z|2
N [I(y)| e " dy

(3.21)

—cin+h;)

dy.

dy.

— ¢\, + f'(0) = 0, the right hand side of

,p, let QF



and, foreach t =k +1,---,p and j # i, let us define

Al ={y el Ine< Ae,(y-vj —cin+hyj) = A, (y - v; — cin + hy) < 0}
B9 ={yeQ, Ae;(y vy —en+hy) = A (y- vy —cin+ h;) <Ine}

(with & small enough so that Ine < 0). Due to the definition of the sets €2, one has

— i i
Uyl <onp= O _ 0 ATUB].

As a consequence,

b j —Cj 1 ‘Vi—Cin i ne
il <om, LIS B8 (Lyeay) @00 4 1 gy erlmmenhom)

i=k+1 j#i
and
ef’(o)(t+n) _ \y—z\2 p .. ..
lim sup ——————x L] e dy <limsup ¥ 5 (a) (x,1) + b (2,1))
n—+oo Jl|y|<yn 47r(t+n) n—+4oo i=k+1 j#i
where #(0)(tm)
n _x 2
YeAl  [am(t +n)
f10)(t+n) —o?
0< bﬁ{(x,t) — / e—nN c ekci(y.ui—cm+hi)——Ly(t+,‘L) dy.
veBil Jan(t + n)

The change of variables y = © + 2(t + n)A;,v; + \/4(t +n) ¢ in aff (x,t) leads to, after a
straightforward calculation,

ai (2, t :excj(uj.m+cjt+hj)/ N2 g
2o {(wH2(tHm)re; v /440 ) €A ‘

But it is found that

|
oy + nig S ()\c]-l/j - )\ciyi) ) C S 7%
4(t+n)

(z + 2t + n)Ag, 5 + /4t + 1) C) eAﬂ =

where a, = (Ae;¢j— A, Ci) N+ hi— Ao, hj— (A, v — Ay i) - (242(t+n) A, ;). By assumption,

one has (c;, v;) # (cj,v;) as soon as i # j. Therefore, for each i # j, the vector A, v; — A, v;
)\Cj Vj—Ac,; Vi

is not zero. Set e; = and complete e; into an orthonormal basis (eq,es,- -, ex).

\)\Cj ij)\ciui\

By making the change of variables z; =¢,-( (I =1,---, N), one gets

O < (lg(f,t) < 6/\61'(’/] T+t h])ﬂ' N/Q/ e Zldzl
an+ c-l/j* c: Vil Z1SQn
{ \/41(nt+E n)<|/\ J A i | < }

(22 g?
></ et T2 doy - dzy.
RN—l
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Eventually, a (z,t) — 0 as n — ~+oo.
On the other hand, one has

.. fI(O)(t+n) | 7w|2
0 S b:bj (.Z',t) S 5/ Ne—N e/\ci(y-m*chrhi)*f(Hn) dy
B\ JAw(t +n)

_ Ac; (x-vi+cit+h;
=ce cz( T i 1)7

as already observed in section 3.7.
Puting together all the previous estimates leads to

p
0 < limsup wy(z,t) <& ¥ (p—k+ 1) ere@vitetthi
n—+00 i=k+1

Since ¢ > 0 was arbitrary, it follows that w,(z,t) — 0 as n — 4o0o0. In other words,
u(x,t) = u,(z,t) and the proof of Lemma 3.7 is done. L

For each (v,c,h) € SN~ x [¢*, +00] X IR, let us set

¢(u,c,h) =@z -v+ect+h) ifec<+oo,
¢(V,c,h) = g(t + h) if c=+o0

and let us call TW the set of such functions ¢, ), namely, the set of all planar travelling
waves for (1.1), with finite speed (¢ < +00) or infinite speed (¢ = 4+00).
We can define a law from 7W to the set £ of all entire solutions of (1.1) as follows:

Definition 3.9 For any integer p > 1 and any p-uple (v;, c;, h;) € (SV~! x [¢*, +00] X R])?P,
one denotes by é1¢(,,i,ci,hi)(:v,t) the function defined by
1=

p
.®1¢(Viyci,hi)(xat) = lim Un(x,t)
1=

n—-+00

where Uy, is the solution of the Cauchy problem

Un(x? —77/) = 1H<1la<)§) ¢(Ui,ci,hi) (',L.? —77/)

{ (Up): =AU, + f(U,), t>-n, € RV

As it was done in section 2, the function élqﬁ(,,i,ci,hi)(x,t) 1s well-defined and it belongs to £.
1=

p
The law @ is commutative and associative. Furthermore, each function @ ¢, ¢, n,) (@, 1)
i=1

is a solution of (1.1) of the type described in Theorem 1.1. Indeed, given a p-uple (v;, ¢;, h;),
there exists a subset I C {1,---,p} such that (v;,¢;) # (v;,¢;) for i # j, i,j € I, and such
that, for all k € {1,---,p}, there exists i € I such that (v, c,) = (v, ¢;) and hy, < h;. Then,
one immediately has

Un(xv _n) = HzleaIX d)(uiaciahi)(I? _n)'

41



p
Therefore, by definition, the function @ ¢, ¢, n,)(x,t) is an entire solution of the type de-
i=1

scribed in Theorem 1.1. .
Conversely, each solution u constructed as in Theorem 1.1 is of the type @ ¢, ¢, p) (@, 1)
i=1

for some m—uple (l/i, Ci, hi)1<i<m~

Finally, one formulates the following

Conjecture 3.10 The set £ of all entire solutions u of (1.1), such that 0 < u < 1, is the

closure, in the sense of the topology T of all the solutions of the type élqﬁ(,,i,ci,hi)(x,t), when
1=

p varies in IN* and (v;, ¢;, h;) € SN! X [¢*, +00] X IR.

4 Partial uniqueness results

Our goal in this section is to prove Theorem 1.4 and 1.5. First of all, we need a preliminary
lemma, whose result has already been mentionned in section 1.

4.1 A preliminary lemma
Lemma 4.1 For any solution u(z,t) of (1.1), we have:

lim max u(z,t) =0
t=—00 [z]<cl{
lim min u(x,t) =1
t—=+oo |z|<ct

Vo <e<c,

Proof. Let u(z,t) be a solution of (1.1). Since u is positive, there exists a function p(x)
which is positive in the open ball of radius 1 and center 0 € IR", which vanishes outside this
open ball and which is such that p(z) < u(z,0) in R".

Let v(z,t) be the solution of the Cauchy problem

{ v, =Av+ f(v), z€RY, t>0
v(z,0) = p(z)

The maximum principle implies then that v(z,t) < u(x,t) for all z € RN and t > 0. Since
lim iglf u”UF2/N) £ (4) > 0, the results of Aronson and Weinberger (see [2]) imply that, for all
u—>

(4.1)

0 <c¢<c* wehave lim min v(z,t) = 1. The same assertion holds then well for u.
=00 Ja|<ct

Fix now a speed ¢ € [0, ¢*[ and assume that lim sup nax u(z,t) > 0. There exist then a
t——oo |T|<c|t

real ¢ > 0 and two sequences z,, € IRY and t,, — —oo such that |z,| < c|t,| and u(z,, t,) > €.
By the standard parabolic estimates, V, u(z,t) is uniformly bounded in IRY x IR. Hence,
there exists a real r > 0 such that u(x,t,) > ¢/2 for any x such that |z — x,| < r. Let p(z)
be a continuous nonnegative function such that 0 < p(x) < ¢/2 if |z| < r and p(x) = 0 if
|z| > r. Let v be the solution of the Cauchy problem (4.1). On the one hand, the maximum
principle implies that v(x,t) < u(x + x,,t + t,) for all z € IRY and ¢t > 0. In particular,
v(—2y, —t,) < u(0,0) < 1. On the other hand, since —t,, — 400, |z,| < ¢|t,| and ¢ < ¢*,
the above result of Aronson and Weinberger yields that v(—z,, —t,) — 1 as —t, — +o0.
This eventually leads to a contradiction and Lemma 4.1 is proved. r
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4.2 Partial uniqueness (proof of Theorem 1.4)

This section is devoted to the proof of Theorem 1.4. Before entering into the proof, let us
first state a few general lemmas.

The following lemma states that an entire solution U of (1.1) can be approximated by a
suitable sequence of solutions of Cauchy problems.

Lemma 4.2 Let U(z,t) be an entire solution of (1.1) and let v > ¢*. For each n € IN, let
Un(x,t) be the solution of the Cauchy problem

(Un)e =AU, + f(U,), z€RN, t>-n

oy _ S Ulx,=n) iflz|<yn
Un(z,—n) = { 0 otherwise.

Then Un(:zr,t)éU(x, t) as n — 4o0.

Proof. From the maximum principle, one has 0 < U,(z,t) < U(z,t) < 1 for each n € IN
and for all x € RY, t > —n.
The nonnegative function v, (z,t) = U(x,t) — U,(z,t) satisfies

Opvn = Av, + f(U) - f(Un)
< Avp + f'(0)vn
because f’(s) < f'(0) for all s € [0,1].
Choose now any (z,t) € RN x IR. For any n > |t|, one has
6f’(0)(t+n) y==z/?
0 S Un(:lf,t) S —N/ ’Un(y, —n)e 4(t+n) dy
RN

47 (t + n)
ef,(o)(t+n) \yfz\z

= —N/ efmdy
Amc(t +n) TW>m
by definition of U, (-, —n). In other words,
0 < v (1) < e O (S(t +n)- 1|.|>7n) (z).

From Lemma 3.8-(a), it follows that v,(z,t) — 0 as n — +oo, that is to say, U,(x,t) —
Ulx,t). L

The following lemma states that if an entire solution of (1.1) converges to 0 in a cone
{|z| < ¢|t|} when t — —o0, then it has exponential decay in strict subcones.

Lemma 4.3 Let U(x,t) be an entire solution of (1.1) and assume that ‘rr‘1<a)‘<|U(x, t) =0 as
z|<c|t

t — —o0, for some ¢ > 0. Then, for each v € [0, c|, there exists ag > 0 such that

Va € [0, apl, ‘r‘n<a}|c‘U(x,t) =o(e™) ast — —co.
z|<vy|t
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Proof. Let ¢ and 7 be as in Lemma 4.3. Take o > 0 (to be chosen later) and assume that
the conclusion does not hold, namely, that there exists § > 0 and a sequence ¢/, — —oo such
that U(z,,t) > de® for some |z,| < 7|t |.

Since U is a positive entire solution of (1.1), the Harnack inequality yields the existence
of a positive constant Cj such that

Uz, t) +1) > Code®™s for all z such that |z — z,| < 1.
Therefore, even if it means changing J, one has, by setting ¢, = t, + 1,
U(x,t,) > de* for all x such that |z — x,| < 1.

Let us fix > 0 such that n < min(f’(0), 3(¢—7)?) and p > 0 such that f(u) > (f'(0)—n)u
for all w € [0, u]. There exists then a real number 7" < 0 such that

Vi <T, V|z| <cl|t|, 0<U(z,t) <p.
Let v be the function defined by
v(z,t) = Uz, t)e”F Ot
It satisfies 0 < v(z,t) < e~ (O=Mt and

0 ift <T, |z| <clt|

v Av > { —(f'(0) =)o it < T, |z > dt].

On the other hand, for n large enough such that ¢,, <T', one has

Selo 1 OFmtnif |4 — | < 1
> n| =
o, t) 2 { 0 if |z —xz,| > 1.

The maximum principle gives
v(xn, T) > I, + 11,

where
Selo=1"(0)+n)tn ly|2

I, = v ey
A (T —t,) WISt
ly=2zn|?

T 1
IT, = —(f'(0)— n)/ —N/ v(y,s)e” 1T dy ds.
tn ly[>ls|

/AT (T — s)

I, ~ Cl|tn|fN/2e(aff’(0)+n)tn

When n — +o00, one has

where C) = §(47)~/2|B(0,1)| > 0 and |B(0,1)| is the Lebesgue-measure of the unit ball.
Let us now find an upper bound for |I1,|. Remember first that 0 < v(y,s) < e~ (/'(0)=ms
for all (y,s). Make the change of variables y = z,, + 2|s| (possible because s < 7 < 0). If
|n]

ly| > c|s|, then |z| > max(0,c — 7). Therefore,

s

s

\/T—SN

T $21212
11| < C! / / o~ O-s =S 1 s
tn |z|>max(0,c—

|’ﬂn|)
[s]
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where C! = (f'(0) —n)(4n)~N/2. After a straightforward calculation, the change of variables
t =T — s leads to

_ N
L < Ci/T tnﬂ/ oSl =L (S (0) -0
0 tN/2 > max(0,c— 22l

< CMtn|N 11T,

2 dy dt

where O = Cle=('(0O=nT and
T—ty ) -
I[In :/ t*N/Q/ ez‘z‘ 74)& ‘Z‘ +(f(0)— 7772|Z| )t dz dt.
0 |2|>max(0, cfltnl)

Since v < ¢ and 1 > 0, it is possible to fix a real number £ such that
Y

—<p<1
c
1 v ’ / n 1 2
, j— _ —_ —_ — — — j—
rO-n-1(e-3) <ro-1-je-2
From now on, n is taken large enough so that 1 < 7" — jt,. Let us divide I1], into three
parts:
1 T—Btn T—ty,
][]1:/..., ]]]2:/ .o+ and ]][3:/
0 1 T—ptn

Since T'< 0 and n < f'(0), the term I1I; can be bounded by
1 2 2 I 2
ITT, < / t’N/Q/ e wl e/ O gy gt = o 2T HY / e W dy.
0 RN RN

Therefore, 111, is bounded independently of n.
When ¢ > 1, one has /2 < 1. The second term IT1, can then be bounded by

T—ptn 2 /
1, < [ [ HR O g ay
IRN
= (2|T| LN/ (/ ylzdy> (f'(0) —n)~* (e(f’(U)*n)(Tfﬁtn) — ef’(U)*n)
RN
= O(ePS' Oty a5 n — +oo0.

Let us now estimate the third term

T—tn |
1113 = / t—N/2/ 6%‘2‘2_%|z|2+(f'(0)—77—%
T—Btn |2|>max(0,c— 2zl

Remember that |z,| < 7|t | = v|t, — 1|. Therefore, since 5 > T, one has, for all ¢ such that
T_ﬁtn StST_tna

AN 4y dt.

|24 S o 1|tn_1|

>0
t—T=" B |t

C —

2 .
for n large enough. Hence, by dropping the term e~ 7l < 1in 1113, one gets, for n large

enough,
1L < [ O gy [ ¥
T—Bty, RN
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From our choice of 3, one has

1oyl —1] U
10_ = N L A W 10____ o 2
FO) == o= FEEE < F0) = § = 4le =)
for n large enough. As a consequence,
I3 < C o e (O=3—3(e=)t gy
- T—Bty

for some constant C' = C(T'). Whatever the sign of f'(0) — Z — 1(c — v)? may be, it is easily
found that
ITT; = O(|t,|eV' @850 lnly a5 — 400

Eventually, one obtains
1] = O (jta N7 (PO DIl 4 O350y} a5 1 — o0,
On the other hand, one had
I, ~ Cy[t,| N2V ==t a5 p 5 400

Since 8 < 1 and 1 < min(f’(0), 3(c —~)?), it is possible to fix ap > 0 such that

0 <B(f'(0) =n) < f'(0) =1 —a
(f'(0) = 3 = 3(c - ))+ J'(0) =n —a

Take now « € [0, ap]. It follows that |I1,| = o(I,) as n — +oo. Therefore,

Va € [0, ag), {

v(x,, T) > %|tn|—N/26(f'(0)—n—a)|tn|

for n large enough. Since f'(0) —n — a > 0, one concludes that
Uz, T) = v(2, T)eV" O 5 400 asn — 400.

This is impossible because U < 1.
As a conclusion, it follows that if a € [0, ay], then

max U(x,t) = o(e*) as t — —oo.
|| <~ylt]

The proof of Lemma 4.3 is complete. r

Let us now turn to the
Proof of Theorem 1.4. Let u be an entire solution of (1.1) such that there exists ¢ > 0
such that

max u(x,t) -0 ast— —oo.
|z|<(c*+e)]t]
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For each n € IN, let u,, and v,, be the solutions of the following Cauchy problems:

(un)e = Aup + f(up), =€ RN, t>-n

oy Jule, ) if o] < (¢f4¢/2)n
n(, —n) = { 0 otherwise

and
(0n): = Av, + f'(0)v,, z€ RN, t>-n
vn(z, —n) = uy(z, —n).

Since ¢* + ¢/2 > ¢*, one knows from Lemma 4.2 that un(x,t)éu(x,t) as n — +00.
One is now going to compare u, with the function v,, which is a solution of a linear (more
tractable) parabolic equation.

From the maximum principle, it immediately follows that 0 < w, < 1 and v, > 0.
Furthermore, since f(s) < f'(0)s for all s € [0, 1], one gets

Un(7,1) < vy(z,t) forallz € RN, t > —n,

Let us now find an upper bound for v,. Since f is of class C? and f'(0) > 0, there exist
two positive real numbers 1 and « such that f is increasing in [0, 7] and f(s) > f'(0)s — ks>
for all s € [0,7n]. Since ¢* +¢/2 < ¢* 4+ ¢, Lemma 4.3 provides the existence of a real number
a € (0, f/(0)) and a, say, negative time T, such that

0 <u(z,t)<e<n forallt <T and |z| < (¢* +¢/2)[t]. (4.2)

Lemma 4.4 There ezists a constant Cy = Co(f,a,k,T) such that, for each t < T and
x € RN, one has

Vn > t|,  up(x,t) <wvp(z,t) < ug(z, t)egeat + Cohes e po(w, t)
under the notation of Lemma 3.8-(b).

Proof. First of all, one has already observed that u, < v,.
Let us now prove the upper bound for v,. Remember that 0 < u,(z,t) < u(z,t) from
the maximum principle. From (4.2) and from our choice of  and &, one has

Vi <T, |z| < (c"+e/2)|t], n>|t|, [l(u(x,t))

Set

at

Up(,1) = up(z,t)ea" (> uy(x,t)) and wy(z,t) = Un(z,t) — vn(z,1).

Take n > |T'|. The function w, satisfies

(wn)e — Awy, — f1(0)w, = (f(un) — f'(0)u, + ke u,) e
S 10 forall —n <t <T, |z| < (c"+¢/2)|t
— | —Cy forall —n<t<T, |z|>(c"+¢/2)|t.
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where
aT

Co = (Ifllso + £(0) + ke e

On the other hand, w,(z, —n) = u,(z, —n)(ea® “" — 1) > 0. From the maximum principle,
it follows that, for all —n <t < T and for all x € IR,

t !
wy(z,t) > —02/ el =) (S(t — ) - 1> (e yes2)ps ) () ds.

—n

Since ¢* +¢/2 > ¢*, Lemma 3.8-(b) implies that, for all —-n < ¢ < T and z € R",

wn(@,1) 2 =Caheyepp(a,t) = —Co /too el O (S(t = 5) - oyl (2) ds.
By definition of w,, it follows that
V—n<t<T, VeeRN, uv,(x,t)<up(c,t)ea + Cohes e pa(,t)
and the proof of Lemma 4.4 is complete. r

Lemma 4.5 Up to extraction of some subsequence, the functions v, locally converge in
RN x (—o0,T) to a positive function v, which is a C* solution of

ov=~7Av+ f(0)w, z€ RN, t<T.
Furthermore, under the notation of Lemma 4.4, one has
Vi < T, Vo e R, ulw,t) <uv(z,t) < vz, t)es™ + Cohpyopo(z,1). (4.3)
Proof. From Lemma 4.4, one has
U (0,T) < v, (0, T) < (0, T)e&™" 4 Cohgr 42 /2(0,T).

Lemma 4.2 implies that u,(0,7) — u(0,7) as n — +oo. Therefore, the sequence (v, (0,7)),,
is bounded. On the other hand, each function wv,(x,t) is positive for ¢ > —n and for all
x € IRY, from the strong maximum principle. One finally gets from Harnack inequality that
the sequence of functions (v,(z,t)), is locally bounded in RY x (—o0,T). From standard
parabolic estimates, it is also bounded in each C*(K) for each compact subset K C RN x
(—o0,T). Up to extraction of some subsequence, the functions v,(z,t) locall converge to a
nonnegative C'* function v(z,t), which is a solution of

ov=Av+f (0w, R t<T.

The estimates (4.3) follow from Lemmas 4.2 and 4.4. Furthermore, from (4.3), one de-
duces that v is not identically equal to 0. Hence, v(z,t) > 0 for all (z,t) € R x (—o0,T),
from the strong maximum principle. L

Since the functions v, are solutions of linear heat equation, it resorts that one can find
an explicit formula for the limit function v:
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Lemma 4.6 Up to extraction of some subsequence, the functions v,(z,t) actually converge
for each (z,t) € RN x IR to a C* function v(z,t) solving v, = Av+ f'(0 )v and there exists
a non-zero and nonnegative Radon-measure p on the open ball B = B(0, ¢* +¢/2) such that

V(z,t) € RN x R, wv(z,t)= ef,(o)t/ e7= 112 p(dz). (4.4)
B

Furthermore, there is a real number B € (0, c*) such that the support of p belongs to B(0, 3).

Proof. By definition of the functions v,, one has, for n large enough,

el (0)(T=1+n) lyl?
/ u(y, —n)e” TT-TFm dy
\/47T 1+7’L ly|<(c*+e/2)n

N/2
:ef()(—)<7n )/
T—14+n Tty

X 47T)_N/2nN/2U(nZ, —n)€(f,(0)_%|z|2) e HT= 1+n)|z|2 dz.
|z|<c*+e/2

v, (0, T —1) =

Since v, (0,7 — 1) converges (to v(0,7 — 1)) as n — 400 and since the positive functions
(T—1)n 2
||

enT- = are uniformly bounded away from 0 in B as n — +00, it follows that the positive

functions 1
! 2
fn(z) := (47)7N/2nN/2 u(nz, —n) (01"

are bounded in L' (B). Up to extraction of some subsequence, there exists then a nonnegative
Radon-measure p on B such that

fn(2)dz — p(dz) in (C.(B(0,¢" +¢/2))) as n — +oo.

Remember that o € (0, f'(0)) has been chosen so that (4.2) be satisfied. Set

B =24/1(0)—a € (0,c).

Take any continuous function 1 whose support is compactly included in {z, 5 < |z] <
c* + ¢/2}. In particular, there exists a real number 6 > 0 such that supp ¢» C {2, B+ <
|z| < ¢* 4+ ¢/2}. By definition of p, one has

/B fn(2)(2)dz — /Bw(z)p(dz) as n — +00.

Let us prove that this limit is equal to 0. By definition, one has

‘ /B Fu(2)0(2)dz

(4m) ™2 N2y (nz, —n)e(f’(o)_%‘z‘2)” W(z) dz

/B+5<z<c*+5/2

< (4) NN 2z, —n) el O=5 I [(2)| .
B+<|z]<c*+e/2

Since « satisfies (4.2), one has 0 < u(nz, —n) < e~ *" in B for n large enough. Due to our
choice of 3, f'(0) — (8 + 0)* — a < 0. Therefore,

/fn 2)dz = 0 as n — +o0.
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As a consequence, [g1(2)p(dz) = 0 for any continuous function @ whose support is
compact and included in {z, 8 < |2| < ¢" 4+ ¢/2}. In other words, the support of p is
included in B(0, 3).

Note that the above arguments also imply that

V5 e (B, ¢ +¢/2), fo(z)dz — 0 asn — 4o0. (4.5)

/z, B'<|z|<ec*+e/2
Choose now any couple (z,t) € IRY x IR. For all n > |¢|, it is found that

1

ly—=z|?

u(y, —n) e 1 dy

vp(x,t) = el On)

[am(t + n)N/B(o,(c*+e/z)n)

N/2
_ (L) " orong

where
‘27 |tz+z| 2
4(t+n) dz

B(0,c*+¢/2)

Let x(z) be a fixed smooth function such that 0 < y < 1, x = 1 in B(0,¢*) and xy = 0

outside B(0,c¢* + ¢/4). Let &' be an arbitrary positive real number. For n large enough,
\tz+z|2

e T <14 ¢ forall z € B(0,c¢" +¢/2), whence

I, < (1+€) (A + Ay)

where

A=) fae) A
B(0,c*+£/2)

Ay = (1= x(2)) fulz) ex=7+812F gz,
B(0,c*+¢/2)

Since x is a continuous function whose support is compactly included in B(0, ¢* 4+£/2), and
due to the definition of the measure p, one has

A —>/ 2) e3@ o+l 5(d2) as n — +oo.
o g X pld)

Furthermore, since the support of p is included in B(0, §) with 8 < ¢* and x = 1 on B(0, ¢*),
it follows that . .y
Al — / e2* 1l p(dz) as n — 400.
B(0,c*+¢/2)

On the other hand, since x =1 on B(0,¢*) and 0 < x <1 on B(0,c¢* +£/2), one has
45 < C(t,) | Ju(2)dz

z, c*<|z|<c*+e/2

for some constant C'(¢,z) € IR. From (4.5), one gets Ay — 0 as n — +o0.
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n—-+0o

Therefore, limsup I,, < (1 + 6')/ géz'flﬂr%lzlzp(dz). Similarly, one can show that
B(0,c*+£/2)

liminf I,, > (1 — 6')/ e+ p(dz). Since €' is arbitrary, one gets
B(0,c*+2/2)

n——+00
I 370+l o
n = 0wt /2)6 p(dz) as n — +o0.
,c*+e

Since vn(x,1) = (7&)N/2e/" O L, it follows that v,(z,t) converges to a function v(z, 1),
for each (z,t) € R™ x IR, and that the function v is given by the formula (4.4).

Lastly, it follows from

el OT=1) 5 B)

IN

v(0,T —1) = &/ OT-1 /BG%MZ p(dz)
< SOT-DHE /D ()

and 0 < v(0,7 —1) < +oo that p(B) = p(B(0,¢* +¢/2)) = p(B(0,c*)) € (0,+00). From the
formula (4.4), it follows then that the function v is actually a positive and locally bounded
C™ solution of v; = Av + f'(0)v in RN x IR. C

So far, one has proven the existence of a nonnegative finite Radon-measure p on B(0, ¢* +
£/2), the support of which is included in B(0, 3) for some 5 < ¢*. For the sake of simplicity,
we also call p the restriction of the measure p to the ball B(0, c*).

Since p is nonnegative and nonzero on B(0, c*), elementary arguments provide the exis-
tence of a unique positive real number M > 0 such that

/ e~ O+ gy — 1, (4.6)
B(0,c*)

Let us now call i the unique nonzero, nonnegative and finite Radon-measure on X = §N-1x
(¢*, 400) U {oo} such that

P, p(dz) = Me’(f,(o)ﬁ'z'z)lnMp(dz). (4.7)

By definition of M, one has /( )@*ﬂ(dz) = M, that is to say, 4(X) = M. By extending
B(0,c*

p by 0 on SV=1 x {¢*}, one gets y € M. Furthermore, due to the definition of the map ®,
the support of 4 is included in SN x [¢g, +00[ U {00} where ¢y > ¢* is such that 8 = 2)\,,.
The remaining part of this section consists in proving that u = w,,.
In order to do that, let us first prove the following

Lemma 4.7 For each 0 € [0, ¢y, one has

max u,(x,t) >0 ast— —oo.
|| <0]t|

Proof. Choose 0 € [0, ¢o[. From the upper bound in (3.5), it follows that

L
’LLﬂ(.I',t) < /Xe/\c(m.y+ct+clnM) ﬁ d/l,

Ae(@-v+ct+cin N) iA dp + f1(00) of (O)(t+In M)

= e —_—

{resN-1, c>co} M M
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For each t < 0 and |z| < |t|, one has
Vv e SN Ve > ¢y, Ae(z v+ ct) < A (O]t — colt]) = Ae(0 — o)t

On the other hand, 0 < A.c < 2f(0) for all ¢ > ¢*. Therefore, for t <0,

i ekc(x-u—l—ct-i—cln]\;[) d,u < iA€2f’(0)\ln]\;f\ ez\c(ﬂ—co)m dM 0

M {veSN-1, c¢>co} M {veSN-1, c¢>co}
as t — —oo, from Lesbesgue’s dominated convergence theorem. Eventually, the conclusion
of Lemma 4.6 follows. r

Remark 4.8 By slightly modifying the proof of the above Lemma 4.7, one gets the following
more general result: if m € M is such that m(SY ! x [¢*,¢]) = 0 for some ¢ > ¢*, then

|n|rla}|c‘ Um(x,t) — 0 as t - —oo. Indeed, one has
z|<c|t

um(x,t) < exc(x~u+ct+c1n1\>f) iA dp+ M(?O)ef'(o)(mn M)
{veSN-1 c¢>¢c}

(note that, for the measure m, M > 0 because u* = 0). Take any n > 0 and let § > 0 be
such that m(S¥~1 x (¢,¢+§)) < n. For each |z| <¢lt|, t <0, v € S¥ ! and ¢ > ¢, one has
z-v+ct < —¢t+ct=(c—72)t<0. Therefore,

2£7(0)|In M| . )
Max tm(2,1) < ————— 7+ max / ehel@vtetteln M) d—AMJr—M(?O)ef'(O)(t““M).
|z <elt| B M lz|<elt] J{veSN-1 c>z+6} M

As it was done in the course of Lemma 4.7, the second and third terms of the right-hand side

converge to 0 as t — —oo. Since 1 > 0 is arbitrary, one concludes that ‘rr‘1<a)‘<| Um(z,t) = 0
z|<c|t

ast — —oo.

Let us now turn to the proof of
Lemma 4.9 The function u is equal to the function u,.
Proof. Let us first choose a real number 7 such that
¢ <& < min (¢, c" +¢/2).
Let w,, U,, U, and V,, be the solutions of the following Cauchy problems:

(Up); = Aty + f(i,), € RN, t>-n
(Tp); = AUp + f'(0)0,, z€ RN, t>-n

. ~ ulxr, —n if Tl < n
Up(x, —n) = Oy(z, —n) = { ()( ) ot}|1e|rwisve

A

A
~ ~ { uy(z,—n) if |z| < An
0 otherwise.



Since ¥ > ¢*, Lemma 4.2 yields
V(z,t) € RN x R, in(x,t) — u(x,t), Un(z,t) — uu(2,t) asn — +oo.
On the other hand,

ltz+a|?

N/2 .
@n(x t) = <L> / ef'(U)t/ fn(z) 6%z~x+%|Z|2— ) dz
’ t+n B(0Y)

where we recall that

> 2
Ful2) = (4m) P02 u(nz, —n) 'O

As in the proof of Lemma 4.6 and since ¥ > ¢* > 3, one gets that

T, ) — (1) 1= el O / xR o) = u(a, 1), (4.8)
B(0,7)

Similarly, one has

ltz+a|?

i N2 |
W)= () O [ Fale) BT

t+n

where

Fo(z) = (471')_N/27‘LN/2 uu(nz, —n) e (O=")n

Furthermore, since the function u, is such that

max u,(zr,t) - 0 ast — —oo
|z|<clt]

for some ¢ > ¢* (take for instance ¢ = % and apply Lemma 4.7), it also follows, as

in Lemma 4.6, that there exists a finite nonnegative Radon-measure p on B(0,%), whose

support is included in B(0, 3) for some § < ¢*, and such that
F.(z)dz — p(dz) in (C.(B(0,%)))" asn — 400

(up to extraction of some subsequence), and

Valz,t) = V(x, t) == ef'(o)t/ e%Z'”%‘ZPﬁ(dz) as n — 400.
B(0,7)

From the asymptotic behavior (1.12), which is satisfied by the function u,, one finds that
F(2)dz — ﬁ e OF3ENIMM ¢ () in (CL(B(0,¢))).
Eventually, from the definition of  in (4.7), it follows that p = p on B(0, ¢*), whence
V(z,t) € RN x R, V(x,t)=uv(z,t). (4.9)
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Since ¥ < min (¢*+¢/2, ¢p), Lemma 4.3 yields the existence of a real number & € (0, f'(0))
and of a, say, negative time T such that

Vi<T,VzeRN, 0< u(z,t), u,(r,t) <e® <1

where n > 0 is such that f is increasing in [0, 7] and f(s) > f'(0)s— ks* on [0, n], with k > 0.
With the same proof as for Lemma 4.4, and by using (4.8) and (4.9), one finally finds that

vt < T, Vo e RY, { u(@,1) < v(@,1) < u(w, et + Cshy(a, ) (4.10)

u (1) <z, t) < uy(z,t)es™ + Cshs(x,t)

where C3 = (|| flloo + f/(0) + reT)e&e™™
Call w = u — uy,. Since f'(s) < f'(0) for all s € [0, 1], the function |w| satisfies

ow < Aw+ f'(0)w], t€R, e R
For each n large enough, it easily follows from (4.10) that
\w(z, —n)| = |u(z, —n) — u,(z, —n)| < (u(z, —n) + u,(x, —n))2ge_5m + Cshs(x, —n).
Choose any z € IRY and, say, t < 0. The maximum principle yields
\w(x,t)] < I, + 11,
where

{ I, = el O (St 4 n) - (227 (u(-, —n) + uu(-, —n))))(x)
II, f :

I

e
=

+
2
—
W
—
~

S
~—
—~
2
> o
-

—~~
|

IS —
—_—
~—
~—
—

5]
~—

for n large enough. .
Let us first estimate the term [,,. By definition of v,, and V},, one has

7 ]_ ly— '”lz
o= [0 [ e M ) + )y | 250
Wiz Jar(t + n)
+2Ee7 (3, (3, 1) + Vi, 1)).
Since ¥ > ¢*, Lemma 4.2 yields
£ (O)(t+n) L S
e /|>’yn—N€ i (u(y, —n) + uu(y, —n)) dy — 0 as n — +oo.

47 (t + n)

Since @, (x,t) and V,,(x,t) are bounded, one finally concludes that I, — 0 as n — +oo.
On the other hand, because of the definition of hy, the term I, is equal to

—n

I, = Cyel O+ (S(t +n)- ( [ el O (5 (—n — 5). 1.>;/s|)(y)d8>> )

=Gy [ OIS (= 5) - 1y o) (2) ds,
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t !
Since / el O (S(t —5) - 11545 (z) ds = hs(x,t) converges (because of Lemma 3.8-(b)),
Lebesgue’s dominated convergence theorem implies that 71, — 0 as n — +o0.
As a consequence, |w|(z,t) = 0 for each z € R" and ¢t < 0. The maximum principle for
\w| yields w(x,t) = 0 for each couple (z,t) € RN x IR. In other words, u = u, and the proof
of Lemma 4.9 is complete. L

In order to complete the proof of Theorem 1.4, one only has to show the following
Lemma 4.10 The support of p is included in S¥~1 x [¢* + &, +o00[ U {oo}.

Proof. One already knows that supp p C SV X [¢g, +00[ U {o0} for some ¢y > ¢*. Set
M = pu(X). From the definition of M in (4.6), one has M > 0.

Choose any couple (7,2) € S¥=! x (¢*,¢* +¢) and let Bz C SV x (¢*,400) be an
open neighborhood of (7,¢) such that

1
V(v,c) € Bog, ("+e)@-v)—c> 5(0* +e—¢)=:0>0. (4.11)
From the lower bound in (3.5) applied to the point (z,t) = ((¢* +¢)n7, —n), it is found that
A1
/ o((c"+env-v—cen+cln M)—dp < u((c" + €)nv, —n).
Bz M

Because of (4.11) and because of Lebesgue’s dominated convergence theorem, the left-hand
side in the previous inequality approaches ﬁﬂ(B(p,E)) as n — +o0o. On the other hand, the
hypothesis made on u implies that the right-hand side approaches 0. As a consequence,

Since SV~ x (¢*, ¢* +¢) can be covered by a countable sets of the type Bz, it follows that
p(SN T x (¢, ¢ +¢)) = 0.
The proof of Theorem 1.4 is now complete. r

Remark 4.11 Note that, under the assumption of Theorem 1.4, i is not necessarily con-
centrated on SV7! x (¢* 4 ¢, +00) U {oc}, that is to say that u(S™~' x {¢* +¢&}) may not be
0.

Indeed, for any ¢y > c*, let us prove that the measure p = dv x é,,, which is concentrated

on SV71 x {c}, gives rise to a function u, satisfying ‘r‘na}T‘ u(z,t) — 0 as t — —oo.
z|<colt

The measure p being radially symmetric, each function w,(z, —n) defined as in (3.1) is
radially symmetric with respect to the origin, and, eventually, the function u,, is itself radially
symmetric with respect to the origin (see more details in section 5.2). Therefore,

@)‘COCO In M

max u(;z;,t) = maXx U(T|t|,0, . .70,15) S 7A/ e)xco(—rm-i-co)tdy
|z|<colt] 0<r<co M SN-1
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by definition of y and from (3.5). The function g(r) := / ereo(=rite)tdy, s such that

SgN-1
9'(r) = —Ae petolrteltg,  — ) vy (ereoTrateo)l _ phag(rviteolty gy,
SN-1 SN-1n{v; >0}
> 0.
Therefore,
eACOCQ lnM
max u(x,t) < 7A/ ereo(—eonteoltygy, ()
|z <colt| M SN=1

as t — —oo (from Lebesgue’s dominated convergence theorem).

4.3 Uniqueness in the class of the solutions bounded away from 1
(proof of Theorem 1.5)

This section is devoted to the proof of theorem 1.5. Let u(z,t) be an entire solution of (1.1)
and assume that there exists a time ty such that sup u(-,ty) < 1. Our goal is to prove that
u(z,t) depends only on t.

Let us first prove the following

Lemma 4.12 Set M(t) = supu(-,t). Then M(t) — 0 as t — —o0.

Proof. Assume not. There exist then a real ¢ > 0 and two sequences ¢, — —oo and
1, € IRYN such that u(x,,t,) > . By standard parabolic estimates, V, u(z,t) is uniformly
bounded in RY x IR. Hence, there exists a real r > 0 such that u(z,t,) > /2 if |z —z,| < 7.

Let now p(z) be a continuous nonnegative function such that 0 < p(z) < /2 if |z| < r
and p(z) = 0 otherwise. From the results of Aronson and Weinberger [2], the function v(z, t)
solving the Cauchy problem

v = Av+ f(v), t >0, v(z,0) = p(x),

goes to 1 as t — 400, uniformly in any compact subset of IRY.
From the maximum principle, it follows that

Vit >t,, ©v(0,t—t,) <u(x,t)

Take t = t; and pass to the limit ¢, — —oo in this inequality. The left-hand side goes to 1
whereas u(xy,ty) < supu(+,tg) < 1 by hypothesis. This is impossible. L

Let us now turn to the
Proof of Theorem 1.5. Take u as above (there exists ¢y € IR such that sup u(-,%y) < 1).
From Lemma 4.12 and Theorem 1.4, there exists a measure ;1 € M such that u = w,.
Furthermore, from Lemma 4.10, p is concentrated on S¥ 1 x [¢c,+00) U {oo} for each
¢ > ¢*. Therefore, © = p(00)ds. As a consequence, the functions u, defined in (3.1) do not
depend on x. Neither does u,. In other words, v = u, only depends on time ¢. Actually, if

1t = p(00)0s0, then M = p(o0) and the formula (3.12) implies that u,,(t) ~ e/’ ()1 #u(o0) s (0}t
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as t — —oo. Therefore, it eventually follows that the set of such solutions u,, where p =
1(00)0s and p(oo) describes (0,+00), is equal to the one-dimensional family of solutions
{t—=&(t+h), he R}

As a consequence, if a solution u, of (1.1) is such that x is not concentrated on {oco},

then u cannot depend on ¢ only, whence sup w,(z,t) =1 for all £ € IR. That completes the
z€IRN
proof of Theorem 1.5. C

5 Nonplanar travelling waves and radial solutions

In this section, we apply the general results stated in Theorems 1.2 and 1.4, and we deal
with special solutions of (1.1), namely, travelling waves and radial solutions.

5.1 Nonplanar travelling waves

This subsection is devoted to the
Proof of Theorem 1.7. Proof of (1). Let u(z,t) be a travelling wave for (1.1), satisfying
(1.17) for some (14, ¢o) € S¥~1 x [0, +00[ and let v be defined by (1.18).

Proof of (1-a). Assume that ¢y < ¢*. From (1.18), one has v(0) = u(—cotrp,t) for all
t € R. Since 0 < ¢y < ¢*, Lemma 4.1 yields limy_, o, u(—cotry, t) — 1, whence v(0) = 1.
This is impossible since 0 < v(y) < 1 for all y.

Before proving the monotonicity properties satisfied by each travelling wave for (1.1) in
a cone of directions (Theorem 1.7, part 1-b), let us state the following

Lemma 5.1 Let u(z,t) be an entire solution of (1.1) such that the fields u;/u and V,u/u
are globally bounded. Then, for each vector p € IRN such that |p| = /p-p < c* = 24/ f(0),
one has u, + p- Vyu > 0 in RN x IR.

Proof. To this end, it is enough to prove that dyu(x,t) + p- Vyu(z,t) > 0 for all (x,t) €
RN x IR. Indeed, suppose the latter is true. The function U = d,u + p - V,u satisfies the
linear parabolic equation

o,U = AU + f'(u)U.

From the strong parabolic maximum principle, U is then either identically equal to 0 or
U(z,t) > 0 for all (z,t) € RN x IR. The first case would imply that the function w(t) =
u(pt,t) is constant, but, since |p| < ¢*, that would be in contradiction with Lemma 4.1.
Hence, U = Oyu + p- V,u > 0 and the conclusion of Lemma 5.1 will follow.

Let us now denote by v(z,t) the function

Oyu(x,t) + p- Vyu(z,t)

v ) = u(x,t)

By assumption, this function v is globally bounded and one then only has to prove that
infBN <RV Z 0.
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Suppose by contradiction that infpyv,pv = —2 < 0. There exists a sequence (x,,t,) €
RN x IR such that v(z,,t,) — — as n — +oc. Up to extraction of some subsequence, two
and only two cases may occur :

Case 1: u(xp,t,) = a € (0,1] as n — +o0,

Case 2: u(xp,t,) — 0 as n — +o0.

Let us first deal with case 1. After a straightforward calculation, it is found that the
function v satisfies

Vu

vy = Av + 2
u

Vv + (f'(u) — @) v in RN x IR.

Let us set
un(z,t) = u(r + zp,t +t,) and v,(z,t) =v(x + ., t + t,).

From standard parabolic estimates, the functions u, converge in C} (IR;) and C? (IRY)
to a function us, (up to extraction of some subsequence). The function wus is such that

0 < us <1 and it solves
Do = Atige + f(use) in RY x IR.

Furthermore, since u(x,,t,) — « € (0,1] as n — +o00, one has u(0,0) = a > 0. There-
fore, the function u(x,t) is positive everywhere (because of the strong parabolic maximum
principle) and the globally bounded sequences of functions V,u,/un,, f'(u,) and f(u,)/u,
converge to the globally bounded functions Ve /teo, ['(teo) and f(tso) /oo, respectively.

Similarly, the globally bounded functions v, converge locally in the sense of the topology
T (up to extraction of some subsequence) to a globally bounded function v.,, which is equal
to

o atuoo +p- V:1:“00

= " :

The function v., is such that vy (z,t) > —¢ for all (z,t) € IRY x IR and v,(0,0) = —&.
Furthermore, v, satisfies

o0

V2 loo

o0

f(us)

o0

OpVoo = AUy + 2

-+ VUso + (f'(uoo) — ) Vs in RN x IR.

The point (0, 0) is a global minimum for the function v, and v5(0,0) = — < 0. On the
other hand, u(0,0) = a € (0,1] and f'(a) — f(«)/a < 0 since the function f is concave

on [0,1] and f(0) = 0. From the strong parabolic maximum principle for the function v,
atuoo +p- V:1:“00

it follows then that v, = —¢ in IRY x IR~. In other words, = —<0in
Uoo
RN x IR~. Since uy, is positive, one gets
Olog + P+ Valloe < 0 in RY x IR™. (5.1)

But, since uq, is a solution of Ojts = Atise + f(Ueo) such that uy, < 1, one has either uy, =1
Or Uy < 1. The case uy = 1 is in contradiction with (5.1). The case uy < 1 means that
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the function us is a solution of (1.1), such that 0 < uy < 1. Since |p| < ¢*, Lemma 4.1
implies in particular that w(t) = ux(pt,t) — 0 as t — —oo. But this positive function w is
decreasing for t < 0 by (5.1). One has then reached a contradiction. As a conclusion, case
1 is ruled out.

Let us now deal with case 2. Up to extraction of some subsequence, one has

u(Tp, t,) — 0 as n — +o0.

Let us set

b+ Tn,t 1) 1,
ulw + pl + 2w, b+ )eé’”, (z,t) € RY x IR.
u(m )

Since the fields u;/u and V,u/u are globally bounded, there exists a constant C' such that
wy(x,t) < eCUUHED for all (z,¢) € RY x IR and all n. In particular, the sequence (w,) is
locally bounded and the functions (z,t) — u(z + z,,t + t,) approach 0 locally in RN x IR.
On the other hand, each function w,, satisfies

wy(z,t) =

flulz + pt + z,,t + 1))
u(z + pt + xp, t + ty,)

1
(wp) = Aw,, + ( — Z|p|2> wy, (r,t) € RY x IR.

From standard parabolic estimates, the functions w, converge locally in the sense of the
topology 7 (up to extraction of some subsequence), to a nonnegative and locally bounded
function ws,. The function w., solves

1
Dtog = Ao + (f(0) = 71pl") weo in RY x IR (5.2)

and it satisfies
Vt e R, Vo € RY, wy(z,t) < €tz (5.3)
Due to the definition of w, and to the choice of (x,,t,), one has

Oz, ty) + p- Vou(z,, t,)
W(Tp, tn)

Oyw,(0,0) = =v(zp,t,) = —€ as n — +0o0.

Hence,
O (0,0) = —&. (5.4)

Choose now any point (z,t) € RN x IR. Because of (5.2) and (5.3), wy(z,?) can be
written as "
weo (1, 1) = O~ 7lP)(E+R) /RN p(z =y, t+ k) weo(y, —k) dy

212
for all & > |t|, where p(z,7) = (47r7')*N/26_% for any 7 > 0 and z € IRN. As a consequence,
D, 1) = e OAI [ Dty 14 k) wly, k) dy + (7'(0) ~ 31ol?) wecla, )
R

Notice that 0,p(z,7) > —%p(Z,T) for all 7 > 0 and z € IRN. Since w. is nonnegative, it

follows that . N
> | £1(0) — =|p|* — :
O (1) > (f 0= 1P~ 5 k)) w1, 1)
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Passing to the limit £ — +o0 in the above formula leads to
1

Since |p| < ¢* = 2,/f'(0) and wy, > 0, one gets dywo (x,t) > 0 for all (z,t) € RN x IR. That
is in contradiction with (5.4). Therefore, case 2 is ruled out too and the proof of Lemma 5.1
is complete. L

Let us now come back to the proof of Theorem 1.7.
Proof of (1-b). Let v € SN=" be such that v - 1 > cos(arcsin(%)). Let p be the vector
defined by p = ¢o(vp - V)V — covp. One has

pP=ct —ci(v-v)? <c—ch COSZ(aI'CSiIl(C—)) = (¢")2
0

Let us now check that the function u satisfies the assumption of Lemma 5.1, that is to say
that u;/u and V,u/u are globally bounded. Indeed, since u is written as u(z, t) = v(z+cotryp),
one has uy/u = ¢y0y,v/v and V,yu/u = Vuv/v. Therefore, one only has to check that Vv /v
is bounded. But since v is a positive solution of Av — ¢yd,,v + f(v) = 0 in IRY, Schauder
interior estimates imply that |Vv(y)| < Cymax|, <1 v(z) and Harnack-type inequalities
[14] imply that max|,_y<; v(2) < Cominj,_y<; v(2) < Cov(y) for some constants C'; and
Cy independent of y. Therefore, |Vu(y)| < C1Cou(y) for all y € IRY, which was the desired
result.

As a consequence, Lemma 5.1 can be applied and yields d,u + p - Vyu > 0 in RY x IR.
Due to the definition of v, it follows that covp-Vo+p-Vv > 0in RY, i.e. ¢o(vp-v)v-Vo > 0.
Since v - v > 0 and ¢y > 0, one gets v - Vo > 0 in IRV,

Let v be as above and choose a € IRY. One has v(a + co(v - 1p)sv) = u(a+ co(v - vp)sv —
la + co(v - vo)sv — cosip|

coSly, §). From the calculation above, lim sup < ¢*. From Lemma

s——+00 |S|
4.1, one gets limy_, o v(a+cy(v-vy)sv) =0 and lim,_, 4 o v(a+co(v - 1vp)sv) = 1. Last, since
co(v - vp) > 0, the conclusion in (1-b) follows.

Proof of (1-c). Suppose that ¢y = ¢*. From (1-b) and by continuity, the function v is
then nondecreasing in any direction v such that v -1y > 0. It is then both nondecreasing
and nonincreasing in any direction v such that v - 1y = 0. Therefore, v is planar and can be
written as v(y) = w(rg-y). The function w satisfies 0 < w < 1 on R and w" —c*w'+ f(w) =0
in R with w(—o00) = 0, w(+00) = 1 (from (1-b)). As a consequence, w(s) = (s + h)
for some h € IR. In other words, u(x,t) = (- v + ¢*t + h) is a planar travelling wave
propagating with the speed c*.

Proof of (2-a). From Theorem 1.2, the only thing we have to prove is that, when

k
w= .Zlmifs(ui,C*) +ia4 eM
1=
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is concentrated on S(,, ¢, for some (14, co), then u, is a travelling wave for (1.1) satisfying
(1.17) and the function v, defined by (1.18) is the smallest solution of (1.19) such that (1.20)
holds.

Let p be as above. Since 1 is concentrated on Sy, ), one has p(co) = 0. By definition,
u,(,t) is the limit of u,(x,t) where u, is the solution of the Cauchy problem

(un); = Aup + f(uy), t>-n, z€ RN

tn(r,—n) = max (max (g (@ = '+ ' lnm), (55)

~o 1
lz-v—cn+clnM)—=dpn) .

Choose any (z,t) € R x IR and 7 € IR. One shall prove that u,(x, t+7) = u,(x+ o1, t).
The proof is quite similar to that given in section 3.6 to prove property (iii) of Theorem 1.2.
Observe that u,(z,t + 7) = limy o0 un(z,t + 7) and that w,(z,t + 7) can be written as
up(x,t +7) = Up(x,t) where U, is the solution of the Cauchy problem

(Un): =AU, + f(Up), t>-n—71, x€ RN
Up(z,—n — 1) = uy(z, —n).

Since covy - v = c¢ for each (v,c) € S(y,q) and p is concentrated on Sy, ), the function
Un(x,—n — 7) can be rewritten as

Un(x,—n — 7) = max <lr£1a<>§c (e ((z + covor) - v; — " (n+7) + ¢ Inmy)),
_7/_

1
(2 + v—cn+7)+clnM)=—dj) .
/SN1><(c*,+oo)80 ((:L’ COVOT) v C(n T) cin )M M)

In other words, U,(z,—n — 7) = upi,(x + covo7,—n — 7), where u,,, is defined as in
(5.5) by replacing n with n + 7. By uniqueness of the Cauchy problem, it follows that
Un(x,t) = tpyr(z + coroT,t) for each n. On the other hand, as already observed in section
3, the functions wu,(z,t) are nondecreasing with respect to n > 0 (n may not necessarily be
an integer). As a consequence, (% + covoT,t) = u,(x + T, t) as n — +o0o. Remember
now that w,(z,t + 7) = lim,, ;o0 Uy (2, t) by definition of U,,. Eventually, (1.17) follows.
From the lower part in (3.5) and using the definition of v,(y) = u,(y,0), one immediately
gets (1.20). On the other hand, let w(y) be a solution of (1.19) such that w satisfies (1.20)
(with w instead of v). The function U(z,t) = w(x + cotry) is a solution of (1.1) such that

U(z,—n) =w(x — copnry) > max (1128239 (@ ((x — convp) - v + ¢ Inmy)),
_7/_

a1
c - cv+cln M)—dp
/SN1><(C*,+00)90 (($ Conyo) Vo cin )M ﬂ)

= Uy, (z, —n)

since 1 is concentrated on S, .y and cory - v = c for each (v,c) € S(ve,co)- Therefore,
U(z,t) > uy,(z,t) for each n and the passage to the limit n — +oo leads to U(z,t) > u,(x,t)
for all (z,t) € RY x IR. In particular, w(y) = U(y,0) > u,(y,0) = v,(y), which gives the
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desired result.

Proof of (2-b). Take ¢y > ¢* and vy € S¥~! and call M, ., the set
M vo,e0) = {1t € M, pis concentrated on S o) }-

The application p — v,(-) (= uy(-,0)) is one-to-one on My, o) N M. Indeed, if v,, = v,,,
then it is immediately found that u,, = u,,, whence p; = po from Theorem 1.2. Further-
more, if u* (€ M(yy.c)) = 1 (€ M(yy,e)) in the sense described in section 1.1, then uu — uy,
in the sense of T, whence v,» — v, in CZ_(IR"). Therefore, in dimension N > 2, there exists
an infinite-dimensional manifold of solutions v of (1.19) such that 0 < v < 1.

Proof of (2-c). Let u be an entire solution of (1.1) of the type u, and assume that u is
a travelling wave satisfying (1.17). One has to prove that the measure 4 is concentrated on
S(vo,e0)- Let v, be the function defined as in (1.18) by w,(x,t) = vu(z + cotry). From the
lower bound in (3.5), it follows that

vu(y) = uu(y — cotry,t) > max (max(gpc*((c* — ¢y - Vi)t +y - v + ¢ lnm;)),

1<i<k :
/Agac((c—couo~V)t+y-u+clnM)T dﬂ)
X M

> max max (e ((¢" = covp - i)t +y - v + ¢ Inmy)),

1<i<k, covo-v;>c*

/A QOC((C—C()I/O'l/)t‘i‘y'l/—f—CIHM)iA dﬂ).
Xn{covov>c} M
If there exists an integer i € {1,---,k} such that covp - v; > ¢*, then the right hand side of
the above inequality goes to 1, for each y € IRY, as t goes to —oco. That would imply that
v, is identically equal to 1, which is impossible. Similarly, if 5 := ,u(X NA{corp - v > ¢}) is
positive, then M is it-self positive and, passing to the limit £ — —oo in the above inequality
leads to, through Lebesgue’s dominated convergence theorem, v,(y) > 5% for all y € IRN.
Therefore, u,(z,t) > ﬁﬁ for all (z,t) € RN x IR. Since ﬁﬁ is a positive real number, that
contradicts property (1.16). Eventually, the measure of the set X N {cyvy - v > ¢} is zero.
Similarly, by studying the limit as ¢t — +o0, it follows that p(X N{covy-v > ¢}) =0. As
a consequence, the measure y is concentrated on the set S, ).

Proof of (3-a) and (3-b). Property (3-a) immediately follows from (1.16) and from the
definition of v in (1.18). Property (3-b) follows from Theorem 1.4 and from property (2-c)
in Theorem 1.7.

That completes the proof of Theorem 1.7. L

5.2 Radial solutions

This subsection is devoted to the
Proof of Theorem 1.8. Proof of (1-a). Take any couple (u,a) € Mp x IRY and define
Upa(2,t) = uu(z—a,t). In order to prove that u, , is radially symmetric with respect to a, it
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is equivalent to prove that u, is radially symmetric with respect to the origin. By definition,
one has u,(z,t) = lim, o u,(z,t), where u, is the solution of the Cauchy problem (3.1)
with initial condition

A~ 1
un(z, —n) = /Xgoc(:v-l/—cn—i-clnM) i dii

(remember that p* = 0 for u € Mg, whence M = p(X) > 0). For any rotation p € SO(N),
one has u,(p(z), —n) = u,(x, —n), because p is itself rotationaly invariant. By uniqueness
of the Cauchy problem, it follows that wu,(p(z),t) = u,(x,t) for all t > —n and z € RY.
The passage to the limit n — 400 leads to u,(p(z),t) = u,(x,t) for all (z,t) € RY x R. In
other words, the function u, is radially symmetric with respect to the origin, that is to say
that the function u, , is radially symmetric with respect to the point a.

The function v defined by u, (2, t) = v(|Jz —a|,t) clearly satisfies (1.21). Furthermore, if

p is not concentrated on the single point {co}, then sup wu,,(z,t) =1 for all t € IR. Since
zeRN
uy0(z,t) <1 for all z and ¢, one concludes that v(r,t) — 1 as r — +oo, for all t € IR.

Consider now a sequence (u", a") € Mp x IRN such that " — u € My (in the sense
of section 1.1) and a” — a € IRN. From Theorem 1.2, the functions u,. converge to the
function w, in the sense of the topology 7. Since these functions (u,~) are locally bounded,
say, up to their first-order (resp. second-order) derivatives in ¢ (resp. z), one concludes that
the functions wn 4» converge to the function wu,, in 7.

Last, choose two measures 1y and pe in Mpg, such that 4y and pe are not concentrated
on {oco}. Let a; and ay be two points in IRY. Suppose that u,, 4, = U6, One has

U’Hl,al(al’ O) = Ups,az (alv 0) = Ups,az (2(12 — a1, O)
since 1y, q, is radially symmetric with respect to the point a,. Similarly, it is found that
uuz,a2(2a2 — a, 0) = uul,a1(2a2 — a, 0) = uﬂl,al(gal — 2ay, 0)

since u,, o, is radially symmetric with respect to the point a;. Going one step further, one
gets Uy, o, (301 — 202, 0) = wy, 6, (301 — 202, 0) = uy, 4, (4a2 — 3a1,0). By induction, it is then
found that

Upy ar (a1, 0) = u2(2k(az — a1) + ay,0)

for each integer k € IN. Since uy is not concentrated on the single point {oo}, one has
Upy 0y (€,0) = 1 as |x| = +00. On the other hand, u,, 4, (a1,0) < 1. Therefore, by passing to
the limit & — +o0, it follows that as —a; = 0. As a consequence, since one had assumed that
Upy 4y = Upy a5 ONE gets U, = uy,, and Lemma 3.5 yields p; = po. Hence, (p1, a1) = (p2, as).
In other words, the map (y,a) — w,, is one-to-one if y is in the set of measures yp € Mp
which are not concentrated on the single point {co}.

Proof of (1-b). Fix a = 0. The map p € My — v, such that v,(|z|,t) = u,(z,t) ranges
in the set of solutions v(r,t) of (1.21). Furthermore, with the same arguments which were
used in the proof of (1-a), it follows that this map is one-to-one on the set of measures
which are not concentrated on {oco}. On the other hand, this map is continuous in the sense
that if 4" — pu, then v,n — v, in C with respect to ¢ and in C7, with respect to 7.

loc loc
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Proof of (2). Property (2) immediately follows from (1.16) and from Theorem 1.4.
That completes the proof of Theorem 1.8. r
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