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Abstract

We study the dynamics of adaptation of a large asexual population in a n-dimensional

phenotypic space, under anisotropic mutation and selection effects. When n = 1 or under

isotropy assumptions, the ’replicator-mutator’ equation is a standard model to describe these

dynamics. However, the n-dimensional anisotropic case remained largely unexplored.

We prove here that the equation admits a unique solution, which is interpreted as the phe-

notype distribution, and we propose a new and general framework to the study of the quan-

titative behavior of this solution. Our method builds upon a degenerate nonlocal parabolic

equation satisfied by the distribution of the ’fitness components’, and a nonlocal transport

equation satisfied by the cumulant generating function of the joint distribution of these com-

ponents. This last equation can be solved analytically and we then get a general formula for

the trajectory of the mean fitness and all higher cumulants of the fitness distribution, over

time. Such mean fitness trajectory is the typical outcome of empirical studies of adaptation

by experimental evolution, and can thus be compared to empirical data.

In sharp contrast with the known results based on isotropic models, our results show

that the trajectory of mean fitness may exhibit (n − 1) plateaus before it converges. It

may thus appear ’non-saturating’ for a transient but possibly long time, even though a

phenotypic optimum exists. To illustrate the empirical relevance of these results, we show

that the anisotropic model leads to a very good fit of Escherichia coli long-term evolution

experiment, one of the most famous experimental dataset in experimental evolution. The

two ’evolutionary epochs’ that have been observed in this experiment have long puzzled the

community: we propose that the pattern may simply stem form a climbing hill process, but

in an anisotropic fitness landscape.

1 Introduction

Biological motivation

Understanding the adaptation of asexual organisms (such as viruses, bacteria or cancer

cells) under the combined effects of selection and mutation is a fundamental issue in population

genetics.
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In parallel, the development of experimental evolution (especially in microbes) has made

it possible to compare observed dynamics, in the lab, with alternative models or infer various

model parameters from the data (for a recent special issue on this subject see [38]). Still,

the problem of modelling asexual evolutionary dynamics is inherently complex (discussed in

e.g. [16]): recurrent mutation changes the key parameters of the dynamical system constantly,

competition between numerous, ever changing types must be described, and both mutational

and demographic (birth/death) events are stochastic in nature.

Recent models of asexual adaptation seek to follow the dynamics of the full distribution of

fitness - the expected reproductive output of a lineage - within populations. Contrarily to other

approaches, such as ’origin fixation models’ which only follow the expected mean fitness m(t)

[40], these models do not make a low polymorphism assumption, but in exchange for ignoring

or simplifying the stochastic components of the dynamics. The resulting outcome is a partial

differential equation (PDE) or an integro-differential equation (IDE), that typically describes

the dynamics of the distribution of a single ’trait’. In some cases, this trait may be fitness itself

as in [1, 17, 42], leading to equations of the form:

∂tp(t,m) =M1[t,m, p(t,m)] + (m −m(t))p(t,m),

where the variable m ∈ R is the fitness and M1 is a differential or an integral operator de-

scribing the effect of mutations on the distribution p(t, ⋅) of fitness. Other models describe the

distribution of a given trait x ∈ R determining fitness (birth rate, phenotype), as in [2, 8]:

∂tq(t, x) =M2[t, x, q(t, x)] + (m(x) −m(t)) q(t, x),

where m(x) is a function which describes the relationship between the trait x and the fitness.

Here, M2 is a differential or an integral operator describing the effect of mutations on the

distribution q(t, ⋅) of the trait x. In these two equations, the last term (m −m)p(t,m) (resp.

(m(x) −m(t)) q(t, x)) corresponds to the effects of selection and will be explained later.

Broadly, it emerges when the growth rate m(x) (in the absence of competition) of a genotype

with phenotype x depends only on its own phenotype. This corresponds to the classic frequency-

independent model of selection.

One established finding from empirical fitness trajectories is that epistasis, namely the fact

that the distribution of a mutation’s effect on fitness depends on its ancestor’s genetic back-

ground, must be accounted for to explain the data (e.g. [21]). More precisely, fitness trajec-

tories tend to decelerate over time, implying a priori that beneficial mutations become weaker

and/or rarer as the population adapts (ignoring deleterious ones, which is of course debatable).

The question is then: which particular form of epistasis does explain/predict the data best? A

common metaphor to explain this decelerating pattern in fitness trajectories is to invoke some

form of ’fitness landscape’ connecting genotypes or phenotypes with fitness, as in the function

m(x) above, with one or several adaptive peak(s) where fitness is maximal (discussed in [11]).

In this view, deceleration in fitness trajectories stems from the hill climbing process of adap-

tation up a fitness peak. This view is appealing because of its intuitive/visual illustration, but

also because of a particular form of landscape, Fisher’s geometrical model (FGM; a single peak

phenotype-fitness landscape), has shown promising potential when compared to empirical mea-

sures of fitness epistasis. In the FGM, a multivariate phenotype at a set of n traits (a vector
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x ∈ Rn) determines fitness. The most widely used version assumes a quadratic form of the

Malthusian fitness function m(x), which decreases away from a single optimum O ∈ Rn [31, 41].

Without loss of generality, the traits can be defined such that the optimum sets the origin of

phenotype space:

m(x) = −
∥x∥2

2
,

with ∥⋅∥ the Euclidian norm in Rn. To describe the mutation effects on phenotypes, the standard

’isotropic Gaussian FGM’ uses a normal distribution N (0, λ In) with λ > 0 the phenotypic

mutational variance at each trait and In the identity matrix.

Given the potential complexity of the relationship between genotype, phenotype and fitness,

the FGM may appear highly oversimplified. However, several arguments suggest that it can be

more than a mere heuristic and may be a relevant, empirically sound null model of adaptation

(also discussed in a recent review of the FGM [41]). First [27], the Gaussian FGM can be

retrieved from a much less constrained model of phenotype-to-fitness landscape: Random Matrix

theory arguments show that it emerges as a limit of highly integrative phenotypic networks, near

an optimum (with an arbitrary fitness function and distribution of the original phenotypes).

Second, several assumptions of the classic FGM have been tested quite extensively on empirical

distributions of mutation effects on fitness, showing its power to fit or predict the observed

patterns. For example, the FGM has shown to accurately predict observed distributions of

epistasis among random and beneficial mutations in a virus and a bacterium [28], to accurately fit

patterns of epistasis among beneficial mutations in a fungus [39] or the pattern of re-adaptation

(compensation) from different deleterious mutant backgrounds in a ’recovery’ experiment with

a bacterium [34]. It also accurately predicted how stressful conditions (lowering the parental

fitness) affect the mean and variance of mutation fitness effects [30]. The assumption of a

quadratic fitness function is perhaps the most critical to the patterns tested so far: various

empirical tests showed that a deviation from the quadratic would actually lead to a lower fit

of the data (see [13] and fig. 5 in [30]). Overall, this suggests that, in spite of its apparent

simplicity, the FGM with a quadratic fitness function is not so oversimplified: it is a natural

limit of a diversity of more complex models and is consistent with various empirical patterns of

mutation fitness effects.

On the other hand, this ’fitness peak’ view is challenged by the observation [45] that, in

the longest evolution experiment ever undertaken (Long Term Evolution Experiment LTEE, in

the bacterium Escherishia coli), fitness has not reached any maximum after more than 70,000

generations. It has been suggested [19] that this experiment actually shows a ’two epochs’

dynamics with an initial (potentially saturating) fitness trajectory and a later and distinct non-

saturating dynamics. A similar pattern could be invoked in another mid-term experiment with

an RNA virus [33]. Several other experiments did seem to yield a ’true’ saturation (plateau) in

fitness trajectories over several thousands of generations in E. coli (e.g. [9, 12, 22]), but they

may simply be on a too short timescale to identify subsequent fitness increases. In fact, the

LTEE itself did seem to show a strongly saturating pattern after 10,000 generations [24].

Overall, these different insights on epistasis and adaptation trajectories are difficult to recon-

cile under a single theory: why would a single peak model show a good fit to mutation epistasis

over single mutations, or short term fitness trajectories, yet be invalid over the longer term? Is
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there really a two ’epochs’ dynamics in some long-term trajectories, when and why? A desirable

model should reconcile both timescales, describe both epistasis among random single mutations

and in long term fitness trajectories. Proposed models that do accurately fit non-saturating tra-

jectories [45] have the drawback that they only focus on beneficial mutations and do not yield

any prediction on the distribution of epistasis among random mutations. On the other hand,

simple fitness landscapes like the FGM do predict some short term patterns and the full distri-

bution of epistasis among random mutants, but cannot yield a never-ending fitness trajectory

(a fitness plateau must be reached at the optimum).

Aim of the paper

In this article, we explore the possibility that an extended version of the FGM be able

to fit multiple epochs fitness trajectories. The central extension proposed here is to consider

anisotropy in the landscape, in that different underlying traits affect fitness differently and

mutate differently. Namely, the fitness function associated with a trait x = (x1, . . . , xn) is:

m(x) =
n

∑
i=1

αimi(x), where mi(x) = −
x2i
2
, (1)

where the coefficients αi are positive. The mutation effects on phenotypes are described with

an anisotropic Gaussian distribution N (0,Λ), where Λ = diag (λ1, . . . , λn) is any given positive

diagonal matrix.

Using central limit and random matrix theory arguments [27], the FGM can be obtained as

a limit of a much less constrained model where high-dimensional phenotypes integrate into a

phenotypic network to a smaller set of traits that directly determine fitness, with an optimum.

The resulting FGM, however, is not necessarily isotropic, it can also show a single dominant

direction in phenotype space (that affects fitness much more) with all other directions remaining

approximately equivalent. Our initial intuition is that, in these conditions, adaptation along

the dominant direction will drive the early dynamics while a second ’epoch’ will be visible when

adaptation only proceeds along the remaining dimensions. Therefore, it seems natural to explore

how such a model would fare when compared to the fitness trajectories of the LTEE. Yet, this

requires deriving the fitness dynamics resulting from such a complex mutational model, in the

presence of mutation and competition between asexual lineages. This is the aim of the present

paper.

The existence of a phenotype optimum has been taken into account in recent PDE and

IDE approaches (second class of models alluded to above). For instance, in [2, 3], the fitness

depends on a single phenotypic trait x ∈ R, through a function m(x) which admits an optimum.

Extending these works to take into account the dependence of the fitness on several traits appears

as a natural question; especially since we know that the number of traits affected by mutation

and subject to selection critically affects the evolutionary dynamics [32, 44]. So far, and to

the best of our knowledge, such mathematical models that take into account n−dimensional

phenotypes together with the existence of a phenotype optimum always assume an isotropic

dependence between the traits x ∈ Rn and the fitness, and an isotropic effect of mutations on

phenotypes (see [18] for an IDE approach and [32] for an approach based on the analysis of a
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PDE satisfied by a moment generating function of the fitness distribution). Our goal here is to

extend these approaches in order to characterize the dynamics of adaptation in a n-dimensional

phenotypic space, without making an isotropy assumption. For the sake of simplicity here, we

ignore any stochastic component of the dynamics, but note that the same equations can be

obtained explicitly as a deterministic limit of a stochastic model of mutation and growth [32].

Model assumptions and definitions

We assume that a phenotype is a set of n biological traits, which is represented by a vector

x ∈ Rn. To describe the evolution of the phenotypic distribution we begin with an intuitive de-

scription of the concept of fitness. In an asexual population ofK types of phenotypes x1, . . . , xK ,

with rmax > 0 the growth rate of the optimal phenotype, the Malthusian fitness, relative to the

optimal phenotype is denoted mj =m (xj) ≤ 0 for a phenotype xj ∈ Rn. It is defined by the follow-

ing relation: N ′
j(t) = (rmax +mj)Nj(t), with Nj(t) the abundance of the phenotype xj at time

t. When we sum these equations over all indexes j = 1, . . . ,K, we obtain an ordinary differential

equation for the total population size N(t) = ∑Kj=1Nj(t) at time t: N ′(t) = (rmax +m(t))N(t),

where the quantity m(t) = ∑Kj=1mjNj(t)/N(t) is the mean relative fitness in the population at

time t. Now if we turn to the distribution of the phenotype frequencies q(t,xj) = Nj(t)/N(t),

we get the partial differential equation:

∂tq (t,xj) = (m(xj) −m(t)) q (t,xj). (2)

This equation can be generalized to a continuous distribution of phenotype frequencies (see

e.g. [42]), as we assume in the sequel, with:

m(t) = ∫
Rn
m(x) q(t,x)dx. (3)

If m(x) < m(t), then (2) implies that the frequency of the phenotype x decreases, whereas if

m (x) >m(t), then the frequency increases.

We recall that mutation’s effects on phenotypes are assumed to follow an anisotropic Gaus-

sian distribution N (0,Λ), with Λ = diag (λ1, . . . , λn) a positive diagonal matrix. Assuming a

small mutational variance maxλi << 1, and a mutation rate U , these mutational effects can be

approximated by an elliptic operator∑ni=1(µ
2
i /2)∂ii, where µi =

√
U λi > 0 and ∂ii denotes the sec-

ond order partial derivative with respect to the i-th coordinate of x (or later m as in (17) below).

We refer to Appendix A for further details on the derivation of this diffusion approximation.

Intuitively, the regime where it applies is the ’Weak Selection Strong Mutation’ (WSSM) regime

(high rate of small effect mutations) where a wide diversity of lineages accumulate mutations

and co-segregate at all times. The extreme alternative is the Strong Selection Weak Mutation

(SSWM) regime where few mutations of large effect invade successively and the population is

effectively close to monomorphic at all times. This latter regime will not be treated here.

Overall, the corresponding PDE describing the dynamics of the phenotype distribution

q(t,x), under the combined effects of selection and mutation, is:

∂tq(t,x) =
n

∑
i=1

µ2i
2
∂iiq(t,x) + (m(x) −m(t)) q(t,x), t > 0, x ∈ Rn, (4)
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with m(t) defined by (3). Recent studies [2] have already treated the case n = 1 (see also [3] for

more general fitness functions). In this paper, we consider the general case n ≥ 1. Without loss

of generality, we may assume in the sequel that α1 = . . . = αn = 1 in (5), up to a scaling of the

phenotype space (q̃(t,x) = (∏
n
i=1 α

1/2
i ) q(t, x1/

√
α1, . . . , xn/

√
αn)). This leads to:

m (x) = −
∥x∥2

2
, (5)

with ∥ ⋅ ∥ the standard Euclidian norm in Rn. Similarly, we could remove the anisotropy in the

mutation effects, up to an other scaling of the phenotype space (defined this time by q̃(t,x) =

(∏
n
i=1 µ

−1
i )q(t, µ1x1, . . . , µnxn)), but in this case the coefficients αi would be replaced by αi

√
µi

and hence cannot be taken all equal to 1. Note that, for the sake of simplicity, we assumed a

diagonal corvariance matrix Λ and that m(x) was a linear combination of the fitness components

mi(x) = −x
2
i /2. More general covariance matrices Λ and quadratic forms m(x) could have been

considered as well using the transformations of the phenotype space presented in [29].

In the one-dimensional case, an equation of the form (4) with a general nonlocal reaction

term of the form m(x) − ∫Rm(z)q(t, z)dz has been studied in [3]. Under the assumption that

m(x) tends to −∞ as x tends to ±∞, the authors have established a formula for q involving the

eigenelements of the operator H1 =
µ2

2 d
2/dx2 +m(x). The formula can be made more explicit

for our choice of m, m(x) = −x2/2 [2]. However, the method used in [2], which consists in

reducing the equation (4) to the heat equation thanks to changes of variables based on Avron-

Herbst formula and generalized Lens transform, cannot be directly applied in our n−dimensional

anisotropic framework. Recently, another method based on constrained Hamilton-Jacobi equa-

tions has been developed to study the evolution of phenotypically structured populations, with

integral or differential mutation operators (e.g., [6, 10, 15, 25, 35]). This method assumes a

small mutation parameter µ2/2 (the terms µ2i /2 in (4)) of order ε≪ 1, and is based on a scaling

t → t/ε. Thus, it typically describes asymptotic evolutionary dynamics, at large times and in

a ’small mutation’ regime. Note however that, as µ2 = U λ, with U the mutation rate and λ

the mutational variance (at each trait), it encompasses the cases where the mutation rate is not

small, provided that λ ≪ 1/U. This method should apply with anisotropic mutation operators,

as in (4). However, to the best of our knowledge, it cannot lead to explicit transient trajecto-

ries of adaptation, which is the real objective of our work. We use here a completely different

approach.

In order to understand the dynamics of adaptation, an important quantity is of course the

fitness distribution p(t,m), such that p(t,m)dm is the pushforward measure of the measure

q(t,x)dx by the map x ↦ −∥x∥2/2, and the mean fitness m(t). In the isotropic case [18], the

authors directly focused on the equation satisfied by p(t,m) and not by q(t,x). Whereas (4) is

quadratic into the variables x1, . . . , xn, the equation satisfied by p(t,m) is linear with respect

to m, which makes possible the derivation of some PDEs satisfied by generating functions of

p(t,m). Here, due to the anisotropy, the dynamics of p(t,m) is not summarized by a single

one-dimensional PDE. Instead, we define the fitness components m = (m1, . . . ,mn) and the

joint distribution of the fitness components p(t,m) such that p(t,m)dm is the pushforward

measure of the measure q(t,x)dx by the map x ↦ (−x21/2,⋯,−x
2
n/2) (see Proposition 2.3 for

more details). As fitness is the sum of the fitness components, the distributions p and p are
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linked by:

p(t,m) = ∫
Rn−1− ∩{m≤∑

n−1
i=1 mi}

p(t,m1, . . . ,mn−1,m −
n−1

∑
i=1

mi)dm1 . . . dmn−1, (6)

where R− = (−∞,0].

Thus the mean fitness m(t) can be easily connected with these distributions:

m(t) = ∫
Rn
m(x)q(t,x)dx =

n

∑
i=1
∫
Rn−
mip(t,m)dm = ∫

R−
mp(t,m)dm,

see also (15) below.

This paper is organized as follows. The results are presented in Section 2, and their proofs

are presented in Section 4. More precisely, Section 2.1 is dedicated to the analysis of the

time-dependent problem (4). We begin with the existence and uniqueness of the solution of

the Cauchy problem. We then give an explicit formula for q(t,x) in the particular case of

a Gaussian initial distribution of phenotypes q0(x). Then, we derive a nonlocal degenerate

parabolic equation satisfied by p(t,m), and the equation satisfied by its cumulant generating

function (CGF). Solving the equation satisfied by the CGF, we derive an explicit formula for

m(t). Then, in Section 2.2, we study the long time behavior and the stationary states of (4). We

shall see that the distribution of the fitness components p(t,m) converges towards a distribution

p∞(m) as t → +∞, and we give an explicit formula for p∞(m). Lastly, in Section 2.3 we show

that including anisotropy in the models may help to understand experimental trajectories of

fitnesses, such as those obtained in the famous experiment of Richard Lenski [23, 24, 45].

2 Main results

2.1 The time-dependent problem

Solution of the Cauchy problem associated with equation (4) for q(t,x)

We first show that the Cauchy problem admits a unique solution. We need the following

assumption on the initial distribution q0:

q0 ∈ C
2+α

(Rn), (7)

for some α ∈ (0,1), that is, ∥q0∥C2+α(Rn) < +∞. Additionally, we assume that:

∫
Rn
q0(x)dx = 1, (8)

and there exists a function g ∶ R+ → R+ (with R+ = [0,+∞)) such that:

g is non-increasing, 0 ≤ q0 ≤ g(∥ ⋅ ∥) in Rn, x↦m(x)g(∥x∥) is bounded in Rn,

and ∫
Rn

∣m(x)∣ g(∥x∥)dx < +∞. (9)

These assumptions are made throughout the paper, and are therefore not repeated in the state-

ments of the results below.

We can now state an existence and uniqueness result for the distribution of phenotypes.
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Theorem 2.1. There exists a unique nonnegative solution q ∈ C1,2(R+ ×Rn) of:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tq(t,x) =
n

∑
i=1

µ2i
2
∂iiq(t,x) + (m(x) −m(t)) q(t,x), t ≥ 0, x ∈ Rn,

q(0,x) = q0(x), x ∈ Rn,
(10)

such that q ∈ L∞((0, T ) ×Rn) for all T > 0, and the function:

t↦m(t) = ∫
Rn
m(x) q(t,x)dx,

is real-valued and continuous in R+. Moreover, we have:

∀ t ≥ 0, ∫
Rn
q(t,x)dx = 1.

The next result gives an explicit solution of (10) in the particular case where the phenotypes

are initially Gaussian-distributed.

Corollary 2.2. Assume that the initial distribution of phenotype frequencies is Gaussian, that

is,

∀x ∈ Rn, q0(x) = (2π)−n/2(
n

∏
i=1

(s0i )
−1/2

) exp(−
n

∑
i=1

(xi − q
0
i )

2

2s0i
) , (11)

for some parameters q0i ∈ R and s0i > 0. Then the solution q(t,x) of the Cauchy problem (10) is

Gaussian at all time:

∀ t ≥ 0, ∀x ∈ Rn, q(t,x) = (2π)−n/2(
n

∏
i=1

(si(t))
−1/2

) exp(−
n

∑
i=1

(xi − qi(t))
2

2si(t)
) , (12)

with:

qi(t) =
µiq

0
i

µi cosh(µit) + s0i sinh(µit)
, and si(t) = µi

µi sinh(µit) + s
0
i cosh(µit)

µi cosh(µit) + s0i sinh(µit)
. (13)

Moreover, we have:

m(t) = −
n

∑
i=1

q2i (t) + si(t)

2
.

We also note, in Corollary 2.2, that the distribution q(t,x) converges to a Gaussian distribution

with mean q∞ = 0 and variances s∞,i = µi, as t→ +∞.

The determination of an explicit formula for q(t,x) becomes more involved when the initial

distribution q0 is not a Gaussian. In this case, we study the equation satisfied by the distribution

of the fitness components p(t,m) (see Introduction) and, as a by-product, we derive an explicit

formula for m(t).

A degenerate parabolic PDE satisfied by p(t,m)

Our objective here is to derive an equation for p(t,m) that only involves linear dependencies

with respect to the coefficients mi, and holds for general initial phenotype distributions q0, which

may not be Gaussian.

First, we express the distribution of the fitness components p(t,m) in terms of the distribu-

tion of phenotypes q(t,x) given in Theorem 2.1.
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Proposition 2.3. For all t ≥ 0 and m = (m1, . . . ,mn) ∈ (R∗
−)
n, there holds:

p(t,m) =
2−n/2

√
∣m1⋯mn∣

∑
ε=(ε1,...,εn)∈{±1}n

q(t,xε(m)), (14)

with xε(m) = (ε1
√
−2m1, . . . , εn

√
−2mn) ∈ Rn. Furthermore, we have:

∀ t ≥ 0, ∫
Rn−

p(t,m)dm = 1, and m(t) =
n

∑
i=1
∫
Rn−
mip(t,m)dm, (15)

where all above integrals are convergent.

It also turns out that the expression (14) becomes simpler when q satisfies some symmetry

properties. In the sequel, for a given function f ∈ C(Rn), we define its #−symmetrization

f# ∈ C(Rn) by:

∀x = (x1, . . . , xn) ∈ Rn, f#(x) = 2−n ∑
ε=(ε1,...,εn)∈{±1}n

f(ε1x1, . . . , εnxn).

From the symmetries inherent to (4), it is easy to check that, if q is the solution of (4) with

initial condition q0 satisfying the conditions of Theorem 2.1, then q# is the solution of (4) with

initial condition q#0 , and q(t, ⋅) and q#(t, ⋅) have the same mean fitness m(t) at every time t ≥ 0.

Furthermore, using the expression (14), we observe that p(t,m) can be described in terms of

the #−symmetrization of q(t, ⋅):

p(t,m) =
2n/2

√
∣m1⋯mn∣

q#(t,x11
(m)), (16)

for every t ≥ 0 and m ∈ (R∗
−)
n, with:

x11
(m) = (

√
−2m1, . . . ,

√
−2mn) ∈ Rn+.

This function p(t,m) satisfies a degenerate parabolic equation:

Theorem 2.4. The distribution function of the fitness components p is a classical C1,2(R+ ×

(R∗
−)
n) solution of:

∂tp(t,m) =
n

∑
i=1

µ2i ∣mi∣∂iip(t,m) −
3

2

n

∑
i=1

µ2i ∂ip(t,m) + (
n

∑
i=1

mi −m(t)) p(t,m), (17)

for t ≥ 0 and m ∈ (R∗
−)
n, with initial condition:

p0(m) =
2n/2

√
∣m1⋯mn∣

q#0 (x11
(m)). (18)

The equation (17) is degenerate in the sense that the operator in the right-hand side is not

uniformly elliptic, as at least one of the coefficients µ2i ∣mi∣ in front of the second order differential

terms vanishes at the boundary of (R∗
−)
n.

In the isotropic case (µi = µ > 0 for all i), it is also possible to derive a scalar equation for

the distribution of fitness p(t,m), defined by (6).
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Theorem 2.5. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then the fitness distribution p(t,m)

is a classical C1,2(R+ ×R∗
−) solution of:

∂tp(t,m) = −µ2m∂mmp(t,m) + µ2 (
n

2
− 2)∂mp(t,m) + (m − m(t))p(t,m), (19)

for t ≥ 0 and m < 0, with initial condition,

p0(m) = ∫
Rn−1− ∩{m≤∑

n−1
i=1 mi}

p0 (m1, . . . ,mn−1,m −
n−1

∑
i=1

mi) dm1 . . . dmn−1. (20)

As expected, the equations (17) and (19) only involve linear combinations of the coefficients

mi. This allows us to derive simpler equations satisfied by the generating functions of p(t,m)

and p(t,m).

Generating functions

We define the moment generating functions (MGFs) Mp and Mp of p and p and their

logarithms – the cumulant generating functions (CGFs) – Cp and Cp by:

Mp(t,z) = ∫
Rn−
ez ⋅mp(t,m)dm, Mp(t, z) = ∫

0

−∞
ezmp(t,m)dm, (21)

and:

Cp(t,z) = logMp(t,z), Cp(t, z) = logMp(t, z), (22)

for t ≥ 0, z ∈ Rn+ and z ≥ 0. The integrals are well defined because the components mi are all

negative. Furthermore, it follows from (15) and the nonnegativity of p that, for each t ≥ 0, the

functions Mp(t, ⋅) and Cp(t, ⋅) are of class C∞((R∗
+)
n) ∩ C1(Rn+), while the functions Mp(t, ⋅)

and Cp(t, ⋅) are of class C∞(R∗
+) ∩C

1(R+).

The following result gives the equation satisfied by Cp.

Theorem 2.6. The cumulant generating function Cp of p is of class C1,1(R+ × Rn+) 1 and it

solves:
⎧⎪⎪
⎨
⎪⎪⎩

∂tCp(t,z) = A(z) ⋅ ∇Cp(t,z) − b(z) −m(t), t ≥ 0, z ∈ Rn+,

Cp(0,z) = Cp0(z), z ∈ Rn+,
(23)

where:

A(z) = (1 − µ21z
2
1 , . . . ,1 − µ

2
nz

2
n) ∈ R

n, b(z) =
n

∑
i=1

µ2i
2
zi ∈ R, m(t) =

n

∑
i=1

∂iCp(t,O), (24)

and ∇Cp(t,z) denotes the gradient of Cp with respect to the variable z.

As a corollary of this theorem, we derive an equation satisfied by Cp in the isotropic case.

Corollary 2.7. (Isotropic Case) If µi = µ for all 1 ≤ i ≤ n, then the cumulant generating

function Cp of the fitness distribution p is a C1,1(R+ ×R+) solution of:

⎧⎪⎪
⎨
⎪⎪⎩

∂tCp(t, z) = (1 − µ2z2)∂zCp(t, z) −
n

2
µ2z −m(t), t ≥ 0, z ∈ R+,

Cp(0, z) = Cp0(z), z ∈ R+,
(25)

where p0 is the initial fitness distribution given in (20), and m(t) = ∂zCp(t,0).

1. This means that the partial derivatives of Cp with respect to the variables t and z exist and are continuous

in R+ ×Rn+ .
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Note that the equation (25) is directly obtained as a by-product of (23), without using

the equation (19) satisfied by p(t,m). Each of these two equations (23) and (25) has a unique

solution which can be computed explicitly, leading to a formula for m(t). We refer to Section 2.3

for an application of this result.

In the Introduction, we mentioned that the coefficients µ2i can be interpreted as the product

between the mutation rate U and the variance λi at the i-th trait. In the isotropic case, µ2i =

µ2 = U λ. Thus we have retrieved the equation mentioned in [32, Eq. (E5) in Appendix E].

The last two results of this section provide some explicit expressions of Cp(t,z) and Cp(t, z)

when z and z are close enough to O and 0.

Proposition 2.8. The cumulant generating function Cp of p is given by, for all t ≥ 0 and

z = (z1, . . . , zn) ∈ [0,1/µ1) ×⋯ × [0,1/µn),

Cp(t,z) =
1

2

n

∑
i=1

log [
cosh(µit) cosh(atanh(µizi))

cosh(µit + atanh(µizi))
] +Cp0(ψ(t,z)) −Cp0(ψ(t,O)), (26)

with:

ψ(t,z) = (ψ1(t,z), . . . , ψn(t,z)), and ψj(t,z) =
1

µj
tanh (µjt + atanh(µjzj)) . (27)

Moreover, for all t ≥ 0, we have:

m(t) =
n

∑
i=1

[(1 − tanh2
(µit)) ∂iCp0(ψ(t,O)) −

µi
2

tanh(µit)]. (28)

Corollary 2.9. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then the cumulant generating function

Cp of p is given by:

Cp(t, z) =
n

2
log(

cosh(µ t) cosh(atanh(µz))

cosh(µ t + atanh(µz))
) +Cp0(ϕ(t, z)) −Cp0(ϕ(t,0)), (29)

for t ≥ 0 and 0 ≤ z < 1/µ, with ϕ(t, z) = (1/µ) tanh (µ t + atanh(µz)). Moreover, we have:

m(t) = (1 − tanh2
(µt))∂zCp0(

tanh(µt)

µ
) −

nµ

2
tanh(µt). (30)

2.2 Long time behavior and stationary states

We are here interested in the long time behavior of the solutions of (4) and (17). We begin

with a result on the convergence of the solution of (17) at t→ +∞.

Theorem 2.10. Let p and m(t) be as in the previous section. Then:

(i) p(t, ⋅) weakly converges in (R∗
−)
n to p∞ as t→ +∞, where:

p∞(m) =
1

πn/2
√
µ1⋯µn

√
∣m1⋯mn∣

exp(
n

∑
i=1

mi

µi
) for all m ∈ (R∗

−)
n, (31)

in the sense that ∫
(R∗−)n

p(t,m)φ(m)dm → ∫
(R∗−)n

p∞(m)φ(m)dm as t → +∞ for every

test function φ ∈ C∞
c ((R∗

−)
n);

11



(ii) m(t)→m∞ = −
n

∑
i=1

µi
2

as t→ +∞ and m∞ =
n

∑
i=1
∫
Rn−
mip∞(m)dm;

(iii) the function p∞ is a classical C2((R∗
−)
n) solution of:

0 =
n

∑
i=1

µ2i ∣mi∣∂iip∞(m) −
3

2

n

∑
i=1

µ2i ∂ip∞(m) + (
n

∑
i=1

mi −m∞)p∞(m). (32)

In the isotropic case, we retrieve the result of [32] in the WSSM case (Weak Selection and

Strong Mutation), which says that the fitnesses are asymptotically distributed according to the

symetrized Gamma distribution −Γ(n/2, µ), with µ =
√
Uλ:

Corollary 2.11. (Isotropic case) If µi = µ for all 1 ≤ i ≤ n, then p(t, ⋅) weakly converges in R∗
−

to p∞ as t→ +∞, where:

p∞(m) =
∣m∣

n
2
−1

Γ(n/2)µn/2
exp(

m

µ
) for all m < 0,

and Γ(x) = ∫
+∞

0
tx−1e−tdt is the standard Gamma function.

Thanks to the previous two results, we get the asymptotic behavior of the phenotype distri-

bution in the symmetric case.

Corollary 2.12. If q0 is #-symmetric in the sense that q0 = q
#
0 , then q(t, ⋅) = q#(t, ⋅) weakly

converges to q∞ as t→ +∞ on Rn where, for all x ∈ Rn,

q∞(x) =
1

(2π)n/2
√
µ1⋯µn

exp(−
n

∑
i=1

x2i
2µi

) , (33)

and m(t)→m∞ = ∫
Rn
m(x) q∞(x)dx as t→ +∞.

We note that q∞ is a classical positive stationary state of (4), i.e., it satisfies the following

equation:
n

∑
i=1

µ2i
2
∂iiq∞(x) +m(x) q∞(x) =m∞ q∞(x) for all x ∈ Rn.

Thus, the distribution q(t,x) and the mean fitness m(t) converge to the principal eigenfunction

(resp. eigenvalue) of the operator Hn = ∑
n
i=1

µ2i
2 ∂ii +m(x).

In the 1D case (x ∈ R), the results in [3] imply that q(t, x) can be written in terms of the

eigenelements (λk, φk) of the operator H1 = −
µ2

2 d
2/dx2 −m(x). Namely,

q(t, x) =K(t)
∞

∑
k=0

(q0, φk)L2(R) φk(x) e
−λk t,

where K(t) is such that q(t, ⋅) sums to 1, and (⋅, ⋅)L2(R) is the standard scalar product in L2(R).

As a corollary, the authors of [3] obtained the convergence of the distribution q(t, x) and of the

mean fitness m(t) to the principal eigenfunction (resp. eigenvalue) of H1, namely φ0 (resp. λ0).

Thus, in the 1D case, their result is stronger than that of Corollary 2.12, as the convergence of

q(t, x) occurs in Lp(Rn), for all 1 ≤ p ≤ +∞, and does not require q0 to be #-symmetric. Based on

the spectral properties of the operator Hn [20], we conjecture that their results can be extended

to the anisotropic multidimensional framework considered here, meaning that the convergence

result in Corollary 2.12 remains true when the initial condition q0 is not #-symmetric.
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2.3 Effect of anisotropy: numerical computations and connection with Es-

cherichia coli long-term evolution experiment

The objective of this section is to illustrate the importance of taking anisotropy into account

when modelling adaptation trajectories. Isotropic models [32] lead to regularly saturating tra-

jectories of m(t) with a plateau, i.e. a single ’epoch’. Here, we show that, in the presence of

anisotropy, the trajectory of m(t) can exhibit several plateaus before reaching a stable level close

to m∞. Thus, the dynamics of adaptation can show several evolutionary ’epochs’, as those ob-

served in the E. coli long-term evolution experiment [19], corresponding to different time-scales

at which adaptation occurs.

For the sake of simplicity of the computations, and although the existence and uniqueness

results of Section 2.1 were only obtained with continuous initial distributions of phenotypes, we

assume a Dirac initial distribution of the phenotypes. Namely, we assume that q0 = δx0 with

x0 = (x0,1, . . . , x0,n) ∈ Rn. This corresponds to an initially clonal population. This hypothesis

implies that the initial distribution of the fitness components and the initial CGF are respectively

given by:

p0 = δm(x0), and Cp0(z) = exp (m(x0) ⋅ z) ,

with m(x0) = (−x20,1/2, . . . ,−x
2
0,n/2). In this case, the expression (28) in Proposition 2.8 simplifies

to:

m(t) =
n

∑
i=1

⎛

⎝

x20,i

2
( tanh2

(µit) − 1) −
µi
2

tanh (µit)
⎞

⎠
. (34)

Trajectory of adaptation in the presence of anisotropy: an illustrative example

We take n = 3 and µ1 > µ2 > µ3. The corresponding trajectory of m(t) is depicted in Figure 1.

After a brief initial decay which was already observed in the isotropic case [32], m(t) rapidly

increases and reaches a first plateau (of value close to m∞,1 ∶= −x
2
0,2/2−x

2
0,3/2−µ1/2). Then, m(t)

rapidly increases again to reach a second plateau (of value close to m∞,2 ∶= −x
2
0,3/2−µ1/2−µ2/2).

Finally, m(t) increases again and stabilises around m∞ = −µ1/2 − µ2/2 − µ3/2. Interestingly,

although the ultimate value m∞ does not depend on the initial phenotype, the intermediate

plateaus depend on x0. Their values approximately correspond to the fitnesses associated with

the successive projections of x0 on the hyperplanes {x1 = 0} and {x1 = x2 = 0} minus the mutation

load (we recall that the optimal phenotype was fixed at x = (0, . . . ,0), see Introduction).

More generally speaking, we prove in Section 4.5 that, for n ≥ 2 and µ1 > . . . > µn, the

trajectory exhibits (n − 1) plateaus (before the final one of value m∞), of respective values:

m ≈m∞,k ∶= −
n

∑
i=k+1

x20,i

2
−

k

∑
i=1

µi
2
, (35)

for k = 1, . . . , (n − 1). More precisely, we obtain the following proposition.

Proposition 2.13. Let m(t) and m∞,k be defined by (34) and (35), respectively. Given x0 =

(x0,1, . . . , x0,n) ∈ Rn, T > 0, ε > 0 and µ1 > 0, there exist µ2, . . . , µn > 0 such that, for each

k ∈ J1, n − 1K, the set:

{t ≥ 0, ∣m(t) −m∞,k∣ ≤ ε},
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Figure 1 – Trajectory of adaptation in the presence of anisotropy, with n = 3. The

function m(t) is given by formula (34), and the approximations of the values of the intermediate

plateaus are m∞,1 = −x
2
0,2/2 − x

2
0,3/2 − µ1/2 and m∞,2 = −x

2
0,3/2 − µ1/2 − µ2/2. The mutational

parameters are µ1 =
√

2, µ2 =
√

2 ⋅ 10−2 and µ3 =
√

2 ⋅ 10−4. The other parameter values are

x0 = (3/2,1,1).

contains an interval of length at least equal to T .

Note that the values m∞,k may not be ordered by increasing order, depending on the param-

eter values, possibly leading to nonmonotone trajectories of m(t). The plateaus are more visible

when the µi’s have different orders of magnitude. More precisely, we show in Section 4.5 that,

given T > 0, m(t) remains around each plateau of value m∞,k at least during a time interval of

duration T , for a good choice of the parameters µi.

Remark 2.14. The proof of Proposition 2.13 does not lead to explicit expressions for the in-

tervals at which the plateaus occur. In the particular case n = 2, we can obtain a more precise

characterization of these intervals, see Section 4.5. In particular, taking µ1 = 1, µ2 = 10−k for

some k ≥ 1 and x0,1 = x0,2 = 1, we show that:

(i) m′(t)→ −1/2 − 10−2k/2 as t→ 0;

(ii) at t = t0 = ln(3), m′(t0) > 27/250 − µ2/2 > 0.1 − 10−k/2;

(iii) for all t in the interval I ∶= (ln (2 ⋅ 10k) ,10k/2), m′(t) is of order 10−3k/2;

(iv) at t = t1 = 10k ln[(
√

2 +
√

6)/2] > 10k/2, m′(t) is of order 10−k.

At larger times, we already know that m′(t) → 0. Finally, this shows that m(t) remains stable

within the interval I, corresponding to a part of the plateau, relatively to the times t0 (before the

interval I) and t1 (after the interval I).

Long term evolution experiment with Escherichia coli

The long term evolution experiment (LTEE) has been carried by Lenski and his collaborators

since 1988 [23]. Twelve populations of E. coli have been founded from a single common ancestor,
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and are still evolving after more than 70,000 generations. The fitness evolved rapidly during

the first 2,000 generations, and then remained nearly static between generations 5,000 and

10,000 [24], which would at least phenomenologically advocate for the existence of a phenotype

optimum. However, more recent data (after generation 10,000) indicate that the mean fitness

seems to increase without bounds [45]. Our goal here is not to propose a new explanation of the

LTEE data, but simply to check whether the anisotropic model (4) leads to a better fit than an

isotropic model.

The interpretation of the fitness data from the LTEE is quite subtle (see the comments in

Richard Lenski’s Experimental Evolution website http://myxo.css.msu.edu/ ecoli/srvsrf.html).

For the sake of simplicity, as our objective is to check if the trajectories given by (34) can be

qualitatively consistent with the fitness data from the LTEE, we make the following simplifying

assumptions: (1) a time unit t in our model corresponds to 1 cycle of the experiment (1 day),

corresponding to ≈ 6.64 generations [23]; (2) the link between m(t) and the mean fitness values

given by the LTEE data, which are of the form w(gen) (gen is the generation number and w

the Darwinian mean fitness, which is related to the Malthusian fitness through an exponential)

is made by assuming that m(t + 2) −m(2) = ln [w(6.64t)]. Thus, we assume (arbitrarily) that

2 cycles were necessary to build the founding colony from the single ancestor (hence the term

t+2). Additionally, in the data, the fitness is a relative fitness against the ancestor, which implies

that w(0) = 1; this is why the quantity m(2) was subtracted to m(t + 2). As mentioned above,

the data are available for 12 populations. Here, we only use the data from one population (the

population Ara-1, see [45]), for which measurements were obtained at 100-generation intervals

during the first 2,000 generations, and then at 500-generation intervals.

We carried out a fit (using Matlab R○ Curve Fitting Toolbox R○, with a nonlinear least squares

method) with the function f(t) = m(t + 2) −m(2). For the sake of simplicity, we assumed a

two-dimensional phenotypic space (n = 2). The only parameters to estimate are µ1, µ2 and

x0. We compared the result of this fit with a fit of the isotropic model (µ1 = µ2). The results

are depicted in Figure 2. A graphical analysis shows that the anisotropic model gives a far

better fit. This is confirmed by the adjusted R2: 0.89 for the anisotropic model versus 0.57 for

the isotropic model (R2=1 indicates that the fitted model explains all of the variability in the

data). In the anisotropic model, the fitted mutational parameters have two different orders of

magnitude: µ1 = 1.3 ⋅ 10−2 and µ2 = 3.0 ⋅ 10−4. This leads to a first plateau until about 1,000

cycles (6,640 generations) followed by a second increase of the fitness. As expected, the isotropic

model cannot explain this type of pattern.

3 Discussion

We considered a natural n-dimensional extension of the standard diffusive ’replicator-mutator’

equation, to describe the dynamics of a phenotype distribution under anisotropic mutation and

selection effects, and in the presence of a phenotype optimum. We proved that the correspond-

ing Cauchy problem was well-posed (existence and uniqueness of the solution) and we proposed

a new and general framework to the study of the quantitative behavior of the solution q(t,x).

This framework enabled us to derive a formula for the mean fitness in the population at all time
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Figure 2 – Trajectory of adaptation, anisotropic and isotropic model versus LTEE

data. The function f(t) = m(t + 2) −m(2), with m(t) given by (34) was fitted to the LTEE

data. The functions f(t) with the parameter values corresponding to the best fit are depicted

in blue. The red crosses correspond to the LTEE data (population Ara-1, ln [w(6.64t)], with w

the original data). The values leading to the best fit are (a, anisotropic model) x0 = (0.73,0.76),

µ1 = 1.3 ⋅ 10−2 and µ2 = 3.0 ⋅ 10−4; (b, isotropic model) x0 = (0.30,0.09) and µ1 = µ2 = 5.3 ⋅ 10−3.
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(equation (28)), an important quantity to describe the dynamics of adaptation.

The case of an initially Gaussian distribution q0 of the phenotypes is simpler, as the pheno-

type distribution q(t,x) remains Gaussian (though anisotropic) at all time. However, when q0

is not Gaussian, this result obviously breaks down. In this case, the method that we proposed

consists in two steps: (1) to derive a degenerate nonlocal parabolic equation satisfied by the

distribution p(t,m) of the fitness components, i.e., the joint distribution of the mi = −x2i /2.

This equation is degenerate at 0, but has the advantage of being linear with respect to m; (2) to

derive a nonlocal transport equation satisfied by the cumulant generating function of p(t,m).

This last equation can be solved analytically, and its solution leads to explicit formulae for all

the moments of p.

Conversely, the methods that are developed in this paper could be applied to solve more

general degenerate parabolic PDEs. The idea would be firstly to transform the degenerate

equation into a non-degenerate equation, through a change of function of the type (16) (rewriting

q# in terms of p) to get an existence result, and secondly to consider PDEs satisfied by moment

generating functions in order to obtain uniqueness and more quantitative properties of the

solution of the degenerate PDE.

A natural idea to solve (4) could be to consider directly the cumulant generating function

associated with q:

Cq(t,z) = ln(∫
Rn
ez⋅xq(t,x)dx) . (36)

One would then have to see for which z this quantity makes sense, since now one integrates with

respect to x ∈ Rn. Due to the nonlinear term m(x) in (4), the equation satisfied by Cq would

then be a nonlocal second-order viscous Hamilton-Jacobi type equation:

∂tCq(t,z) = −
1

2
∆Cq(t,z) −

1

2
∥∇Cq(t,z)∥

2
+

n

∑
i=1

µ2i
2
z2i −m(t),

whereas equation (23) for Cp was a nonlocal first-order transport equation.

From an applied perspective, the results of Section 2.3 illustrate the importance of taking

anisotropy into account, as it can open up further explanations of experimental data. In sharp

contrast with the known results based on isotropic models, our results show that the trajectory

of adaptation may exhibit (n − 1) plateaus before it reaches the final one. In particular, using

our analytic formulae for the dynamics of m(t), we obtained a very good fit of one of the

most famous experimental dataset in experimental evolution, for which several evolutionary

’epochs’ had already been observed [19]. This suggests that the FGM, in its anisotropic form,

can generate a diversity of behaviours that may reconcile the various outcomes observed in

long versus short term experimental evolution. However, whether this versatility may lead to

overparameterization remains an open statistical question.

Model extensions

The simple formalism of model (4) can easily be extended to more general situations. A first

generalization corresponds to the case where the environment changes over time, which would

be described by a moving optimum changing smoothly with some external environmental factor
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(e.g., a drug dose, a temperature, etc.). Such a moving optimum could be taken into account

by setting:

m(t,x) = −
∥x −O(t)∥2

2
,

with O(t) ∈ Rn the optimum at time t, instead of (5). In this case, we conjecture that Gaussian

solutions of the form (12) still exist, suggesting that most our results could be extended to this

situation.

Another generalization would be to explicitly consider birth-dependent mutation. Indeed,

in many cases, mutations occur at birth. For example, in unicellulars undergoing a birth-death

process, divisions without mutation occur at per capita rate b (1−u) and divisions with mutation

occur at rate bu where u is a per division mutation probability. If the birth rate varies across

genotypes or over time, then so does the mutation rate, and we can no longer consider a constant

per capita mutation rate U . First, let us note that this complication can be ignored in several

biologically relevant situations:

- In multicellulars, evolving over a discrete time demographic process (e.g. annual plants),

the process of birth and mutations are decorrelated as what determines the mutation rate

is the number of divisions in the germline, which does not a priori correlate with fitness

(fecundity or survival). Hence the model with constant U can be applied here, our model

being a continuous time approximation to the exact discrete time model.

- In many microbial evolution experiments (like the LTEE presented in Section 2.3), cells

undergo rounds of a pure birth process separated by regular dilutions by a constant

factor. In this situation, if cells grow to a constant density, then remain ’dormant’ before

dilution (so-called stationary phase in microbiology) then each cycle corresponds to a

constant number of divisions. With a faster birth rate, these divisions simply occur earlier

on during the cycle, but are not more numerous. This process becomes approximately

equivalent to a discrete time life cycle at the scale of growth dilution cycles. The mutation

rate per cycle is then also constant (independent of the birth rate). Note that this

heuristics is only approximate, as it ignores variation in the birth rate between genotypes,

relative to its mean, among co-segregating lineages, over one growth cycle. However, that

this heuristics applies to the LTEE may explain why models that ignore the coupling of

birth and mutation rate can provide a good fit to data from the LTEE. More detailed

individual-based stochastic models for the LTEE can be found in e.g. [5, 7].

- Under ’viability selection’, selection only acts to reduce the death rate d, while the birth

rate b shows limited evolution: mutation rates are then also roughly constant over time

(U ≈ bu, where b is the mean birth rate, stable over time). This happens if (i) the

environmental challenge mainly affects the death rate and (ii) birth and death rates are

uncorrelated so that evolution of d has little impact on b. In the context of phenotype-

fitness landscape models, one situation where this applies is when fitness only depends

on phenotype through the death rate, m(x) = b−d(x): the mutation rate is then U = bu,

stable over time and across genotypes/phenotypes.

Overall there are several situations where one could ignore the connection between birth and

mutation rates. Yet, in a more general context where the birth rate b(x) ≥ 0 does depend on

phenotype x, then the mutation rate per capita per unit time also depends on x: U(x) = ub(x),
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with u the probability of mutation per birth event. The model (4) can then be extended, to

take into account this effect:

∂tq(t,x) =
n

∑
i=1

1

2
∂ii[µ

2
i (x)q(t,x)] + (m(x) −m(t)) q(t,x), t > 0, x ∈ Rn,

with µ2i (x) = λiU(x) = λi ub(x), with λi the mutational variance at each trait, see Appendix A.

However, the mathematical results of our paper cannot be straightforwardly extended to this

case, even in the isotropic case. In particular, as soon as b(x) is not constant, this equation

has no Gaussian solution. Still, characterization of the steady states should be possible as a

principal eigenvalue problem.

4 Proofs

This section is devoted to the proofs of the results announced in Section 2. Section 4.1 is

concerned with problem (10) satisfied by the distribution of phenotype frequencies q(t,x), while

Section 4.2 deals with the fitness frequencies p(t,m) and the proofs of Proposition 2.3 and

Theorem 2.4. In Section 4.3, we carry out the proofs of Theorem 2.6 and Proposition 2.8 on the

cumulant generating functions, and their corollaries (Theorem 2.5 and Corollaries 2.7 and 2.9)

in the isotropic case. Lastly, Sections 4.4 and 4.5 are concerned with the stationary states and

the existence of plateaus for the mean fitness.

4.1 Proofs of Theorem 2.1 and Corollary 2.2 on the Cauchy problem (10)

Before considering the nonlocal problem (10), we begin with the local problem:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tv(t,x) =
n

∑
i=1

µ2i
2
∂iiv(t,x) +m(x) v(t,x), t ≥ 0, x ∈ Rn,

v(0,x) = q0(x), x ∈ Rn,
(37)

where q0 satisfies (7)-(9). As the fitness function:

m(x) = −
∥x∥2

2
,

is unbounded, standard parabolic theory with bounded coefficients does not apply. However,

some properties of (37) can be for instance be found in [4, 26, 36], which in particular lead to

the following result.

Theorem 4.1. The problem (37) admits a unique bounded solution v ∈ C1,2(R+ × Rn). Addi-

tionally, we have:

∀T > 0, ∃S > 0, ∀ t ∈ [0, T ], ∥v(t, ⋅)∥C2+α(Rn) ≤ S ∥q0∥C2+α(Rn), (38)

and:

0 < v(t,x) < (Kt ∗ q0)(x), for all (t,x) ∈ R∗
+ ×Rn, (39)

with:

Kt(x) =
1

(2πt)n/2 µ1⋯µn
exp [−

n

∑
i=1

x2i
2µ2i t

] . (40)
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Proof. Let us fix a time T > 0. Theorem 2 in [26] implies that (37) admits a unique bounded

solution v ∈ C1,2([0, T ] ×Rn) and this solution satisfies (38). Theorem III in [4] further implies

that this solution is nonnegative. As T was chosen arbitrarily, these existence, uniqueness and

nonnegativity results extend to t ∈ (0,+∞), with local boundedness in t.

Let us set h(t,x) ∶= (Kt ∗ q0)(x) for t > 0, and h(0,x) = q0(x). The function h satisfies:

∂th(t,x) =
n

∑
i=1

µ2i
2
∂iih(t,x),

for all t > 0 and x ∈ Rn. Let ψ(t,x) ∶= v(t,x) − h(t,x). We see that, for all t > 0 and x ∈ Rn,

∂tψ(t,x) −
n

∑
i=1

µ2i
2
∂iiψ(t,x) =m(x)v(t,x) ≤ 0, (41)

and ψ(0,x) = 0. By the Phragmèn-Linderlöf principle [36, Theorem 10, Chapter 3], we get that

ψ ≤ 0 in R+ × Rn, i.e., v(t,x) ≤ h(t,x) = (Kt ∗ q0)(x). We therefore infer that 0 ≤ v(t,x) ≤

(Kt∗q0)(x) in (0,+∞)×Rn. Since q0 is bounded, this also implies that v is bounded in R+×Rn.

By the standard strong parabolic maximum principle, we conclude that the first inequality

is strict, i.e., 0 < v(t,x), for all (t,x) ∈ (0,+∞)×Rn, since v(0, ⋅) = q0 is continuous, nonnegative

and not identically equal to 0. Furthermore, since the inequality in (41) is then strict for

all (t,x) ∈ (0,+∞) × (Rn ∖ {O}), we get that ψ(t,x) < 0, i.e., v(t,x) < (Kt ∗ q0)(x), for all

(t,x) ∈ (0,+∞) ×Rn.

In order to connect (37) and (10), we need the following lemma.

Lemma 4.2. The function:

t↦mv(t) ∶= ∫
Rn
m(x) v(t,x)dx, (42)

is real-valued and continuous in R+ and, for every t ≥ 0, there holds:

1 + ∫
t

0
mv(s)ds = 1 + ∫

t

0
∫
Rn
m(x)v(s,x)dxds = ∫

Rn
v(t,x)dx > 0. (43)

Proof. First of all, denote:

µ ∶= min(µ1, . . . , µn) > 0 and µ ∶= max(µ1, . . . , µn) > 0. (44)

It follows from the assumptions on q0 that mv(0) is a nonpositive real number. Consider now

any t > 0 and let us check that mv(t) defined in (42) is a nonpositive real number. The function

x↦m(x) v(t,x) is nonpositive and continuous in Rn. Furthermore, it follows from Theorem 4.1

and the assumptions on q0 that:

∫
Rn

∣m(x)∣ v(t,x)dx ≤
1

2(2πt)n/2µn
∫
Rn
∫
Rn

exp(−
∥x − y∥2

2µ2t
) g(∥y∥) ∥x∥2 dy dx

=
µn

2πn/2µn
∫
Rn
∫
Rn

exp(−∥z∥2) g(∥x − µ
√

2tz∥) ∥x∥2 dzdx

≤
µn

2πn/2µn
∫
Rn

(∫
∥z∥≤∥x∥/(2µ

√
2t)

exp(−∥z∥2) g(∥x∥/2)dz

+∫
∥z∥>∥x∥/(2µ

√
2t)

exp(−∥z∥2) g(0)dz) ∥x∥2 dx

≤
µn

2πn/2µn
(πn/2∫

Rn
g(∥x∥/2) ∥x∥2 dx + g(0)∫

Rn
ht(∥x∥) ∥x∥

2 dx) ,
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where:

ht(r) ∶= ∫
∥z∥≥r/(2µ

√
2t)

exp(−∥z∥2)dz = O(exp(−r)), as r → +∞.

Since the integral ∫Rn ∥x∥2 g(∥x∥)dx converges by assumption, one concludes that the integral

∫Rn ∣m(x)∣ v(t,x)dx converges as well, hence mv(t) is a nonpositive real number. Furthermore,

since the quantities ht(r) are non-decreasing with respect to t > 0, the same arguments together

with Lebesgue’s dominated convergence theorem imply straightforwardly that the function mv

is continuous in R+.

The convergence of the integral definingmv(t) for every t ≥ 0, together with the nonnegativity

and continuity of v and x↦ −m(x) = ∥x∥2/2, immediately implies that the integral ∫Rn v(t,x)dx

is a nonnegative real number for each t ≥ 0. Moreover, since v(t,x) > 0 for all (t,x) ∈ R∗
+ ×Rn,

we infer that:

∫
Rn
v(t,x)dx > 0 for all t > 0.

As in the previous paragraph, the function t↦ ∫Rn v(t,x)dx is also continuous in R+.

Fix now an arbitrary t > 0. For R > 0, denote BR = {x ∈ Rn, ∥x∥ < R}, ν the outward unit

normal on ∂BR and dσ(x) the surface measure on ∂BR. For every ε ∈ (0, t) and every R > 0,

the integration of (37) over [ε, t] ×BR yields:

∫
BR

v(t,x)dx − ∫
BR

v(ε,x)dx =
1

2
∫

t

ε
∫
∂BR

n

∑
i=1

µ2i νi ∂iv(s,x)dσ(x)ds

+ ∫

t

ε
∫
BR

m(x) v(s,x)dxds.

Since the first term of the right-hand side converges to 0 as R → +∞ from standard parabolic

estimates (see [14]), one gets that:

∫
Rn
v(t,x)dx − ∫

Rn
v(ε,x)dx = ∫

t

ε
mv(s)ds,

by passing to the limit R → +∞. The limit ε→ 0+ then yields:

∫
Rn
v(t,x)dx − 1 = ∫

Rn
v(t,x)dx − ∫

Rn
q0(x)dx = ∫

t

0
mv(s)ds, (45)

which gives the desired result (43) for t > 0. Formula (43) for t = 0 is trivial since v(0, ⋅) = q0 has

unit mass. The proof of Lemma 4.2 is thereby complete.

Proof of Theorem 2.1. Let v ≥ 0 be the unique classical solution of (37) given in Theorem 4.1.

From Lemma 4.2, the function mv defined by (42) is continuous in R+. Let us then set:

q(t,x) =
v(t,x)

1 + ∫
t
0 mv(s)ds

, (46)

for every (t,x) ∈ R+ × Rn. We recall that the denominator in the right-hand side of (46) is

positive from Lemma 4.2. From Theorem 4.1 and Lemma 4.2, the function q is nonnegative and

of class C1,2(R+ ×Rn). Furthermore, q(0, ⋅) = v(0, ⋅) = q0 in Rn and it follows from Lemma 4.2

that:

∀ t ≥ 0, ∫
Rn
q(t,x)dx = 1, and m(t) ∶= ∫

Rn
m(x) q(t,x)dx =

mv(t)

1 + ∫
t
0 mv(s)ds

,
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hence the function m is real-valued, nonpositive and continuous in R+. Lastly, it is immediate to

see that q obeys (10). Furthermore, since v is bounded in (0, T )×Rn, the function q is bounded

in (0, T ) ×Rn for every T > 0.

To show the uniqueness, assume now that we have two nonnegative classical solutions q1 and

q2 of (10) in C1,2(R+ ×Rn) ∩L∞((0, T ) ×Rn) (for every T > 0), with the same initial condition

q0 satisfying (7)-(9), and such that the functions:

m1(t) ∶= ∫
Rn
m(x) q1(t,x)dx, and m2(t) ∶= ∫

Rn
m(x) q1(t,x)dx,

are real-valued and continuous in R+. Define:

vi(t,x) = qi(t,x) exp (∫

t

0
mi(s)ds),

for i = 1,2, and (t,x) ∈ R+ × Rn. The two functions v1 and v2 satisfy (37) and are bounded in

(0, T ) ×Rn for every T > 0. From Theorem 4.1, we get v1 ≡ v2 in R+ ×Rn. Furthermore, for all

i = 1,2 and t ∈ R+, there holds:

mvi(t) = ∫Rn
m(x) vi(t,x)dx =mi(t) exp(∫

t

0
mi(s)ds) =

d

dt
[exp(∫

t

0
mi(s)ds)] .

Hence, for all (t,x) ∈ R+ ×Rn, we get:

q1(t,x) =
v1(t,x)

1 + ∫
t
0 mv1(s)ds

=
v2(t,x)

1 + ∫
t
0 mv2(s)ds

= q2(t,x).

The proof of Theorem 2.1 is thereby complete.

Proof of Corollary 2.2. It is a straightforward calculation to check that the function q defined

by (12)-(13) is a classical bounded solution of (10) with initial condition given by (11). The

conclusion then follows from the uniqueness part of Theorem 2.1.

4.2 A degenerate parabolic PDE satisfied by p(t,m)
Proof of Proposition 2.3. We recall that the phenotypes are represented by n traits, and so by

a vector in Rn and that we have a constant optimum O, which is fixed to (0, . . . ,0) up to

translation. We define, for each ε = (ε1, . . . , εn) ∈ {±1}n, the subset:

Qε = {x ∈ ε1R∗
+ ×⋯ × εnR∗

+} ⊂ Rn.

For any time t ≥ 0, we get from the law of total probability that:

∫
Rn−

p(t,m)dm = ∫
Rn
q(t,x)dx = 1,

and that, for any m ∈ Rn−,

p(t,m) = ∑
ε∈{±1}n

p(t,m ∣ x(m) ∈ Qε) ∫
Qε
q(t,y)dy, (47)

with p(t,m ∣ x(m) ∈ Qε) the conditional density of the fitness vector m, given that the associated

phenotype x(m) is in Qε. In the above formula (47), we also use the fact that ∫H q(t,x)dx = 0

with:

H = ⋃
1≤i≤n

{x ∈ Rn, xi = 0},
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since q(t, ⋅) is continuous in Rn.

As the fitness function x ∈ Qε ↦m(x) = (m1(x), . . . ,mn(x)) with mi(x) = −x
2
i /2 is one-to-

one from Qε to (R∗
−)
n, with inverse m ↦ xε(m) = (ε1

√
−2m1, . . . , εn

√
−2mn), we infer that, for

every t ≥ 0 and m ∈ (R∗
−)
n,

p(t,m ∣ x(m) ∈ Qε) ∫
Qε
q(t,y)dy =

q(t,xε(m))

∣detJε∣
=

2−n/2
√

∣m1⋯mn∣
q(t,xε(m)),

with Jε = diag(−ε1
√
−2m1, . . . ,−εn

√
−2mn). Finally, we get:

p(t,m) =
2−n/2

√
∣m1⋯mn∣

∑
ε∈{±1}n

q(t,xε(m)),

and:

m(t) =
n

∑
i=1
∫
Rn
−
x2i
2
q(t,x)dx =

n

∑
i=1
∫
Rn∖H

−
x2i
2
q(t,x)dx,

=
n

∑
i=1

∑
ε∈{±1}n

∫
{ε1x1>0,...,εnxn>0}

−
x2i
2
q(t,x)dx,

=
n

∑
i=1

∑
ε∈{±1}n

∫
(R∗−)n

miq(t,x
ε
(m))

2−n/2
√

∣m1⋯mn∣
dm =

n

∑
i=1
∫
(R∗−)n

mip(t,m)dm.

Notice that all integrals in the last sum converge since all integrands are nonpositive and the sum

of these integrals is a real number. Observe lastly that ∫
(R∗−)n

mip(t,m)dm = ∫
Rn−
mip(t,m)dm,

for every 1 ≤ i ≤ n, since p(t, ⋅) is an L1(Rn−) function. The proof of Proposition 2.3 is thereby

complete.

Proof of Theorem 2.4. Formula (16) implies that the function p is of class C1,2(R+ × (R∗
−)
n)

with initial condition p0 given by (18). Furthermore, it is straightforward to check that, for all

t ≥ 0 and m ∈ (R∗
−)
n:

2−n/2 ∂ip(t,m) = −
q#(t,x11(m))

2mi

√
∣m1⋯mn∣

−
1

√
2∣mi∣

∂iq
#(t,x11(m))
√

∣m1⋯mn∣
,

2−n/2 ∂iip(t,m) =
3

4

q#(t,x11(m))

m2
i

√
∣m1⋯mn∣

+
3

2

∂iq
#(t,x11(m))

mi

√
2∣mi∣

√
∣m1⋯mn∣

−
1

2mi

∂iiq
#(t,x11(m))

√
∣m1⋯mn∣

,

with x11(m) = (
√
−2m1, . . . ,

√
−2mn) ∈ (R∗

+)
n. Hence, we have:

n

∑
i=1

µ2i (mi∂iip(t,m) +
3

2
∂ip(t,m))

= −
n

∑
i=1

2n/2
√

∣m1⋯mn∣

µ2i
2
∂iiq

#
(t,x11

(m)),

= −2n/2
∂tq

#(t,x11(m)) − (m(x11(m)) −m(t)) q#(t,x11(m))
√

∣m1⋯mn∣
,

= −∂tp(t,m) + (
n

∑
i=1

mi −m(t)) p(t,m).

Theorem 2.4 is thereby proven.
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Proof of Theorem 2.5. Since by definition p(t,m)dm is the pushforward measure, at each time

t ≥ 0, of the measure q(t,x)dx by the map x ↦ −∥x∥2/2, it follows from the layer-cake formula

that:

p(t,m) = (2∣m∣)
n/2−1

∫
Sn−1

q(t,
√

2∣m∣σ)dσ = (2∣m∣)
n/2−1Q(t,

√
2∣m∣),

for all (t,m) ∈ R+ ×R∗
+, where Sn−1 denotes the unit Euclidean sphere of Rn and:

Q(t, r) = ∫
Sn−1

q(t, r σ)dσ,

for (t, r) ∈ R+ ×R+. Since q is of class C1,2(R+ ×Rn), it is easy to see that the function:

(t,x)↦ q̃(t,x) ∶= ∫
Sn−1

q(t, ∥x∥σ)dσ,

is of class C1,2(R+ × Rn) too, hence the function Q is of class C1,2(R+ × R+) and p is of class

C1,2(R+ ×R∗
−). Furthermore, q̃(0, ⋅) is of class C2+α(Rn) since q(0, ⋅) = q0 is of class C2+α(Rn).

Since q solves (10), which is invariant by rotation in the present isotropic case (µi = µ for

every 1 ≤ i ≤ n) and since m(t) = ∫Rnm(x) q(t,x)dx = ∫Rnm(x) q̃(t,x)dx, for every t ≥ 0, it

follows that q̃ solves (10) as well, with initial condition q̃(0, ⋅). As a consequence, Q satisfies:

∂tQ(t, r) =
µ2

2
(∂rrQ(t, r) +

n − 1

r
∂rQ(t, r)) + ( −

r2

2
−m(t))Q(t, r),

for all (t, r) ∈ R+ ×R∗
+. But since:

Q(t, r) = r2−n p(t,−
r2

2
),

for all (t, r) ∈ R+ ×R∗
+, it is then straightforward to check that p solves (19) in R+ ×R∗

−. Lastly,

the formula (20) is an immediate consequence of the definitions of p and p, and the proof of

Theorem 2.5 is thereby complete.

4.3 Generating functions

Proof of Theorem 2.6. Given q0 satisfying (7)-(9), we call v the unique bounded nonnegative

C1,2(R+ × Rn) solution of (37) defined in Theorem 4.1 with initial condition q#0 . Notice that

the function q#0 satisfies the same assumptions (7)-(9) as q0. By uniqueness and symmetry

of (37) with respect to the change of variable xi into −xi, for any 1 ≤ i ≤ n, it follows that

v(t,x) = v#(t,x) and, as in (46),

q#(t,x) =
v#(t,x)

1 + ∫
t
0 mv(s)ds

=
v(t,x)

1 + ∫
t
0 mv(s)ds

, (48)

for all (t,x) ∈ R+ ×Rn+.

As already noticed in Section 2.1, from (15) and the nonnegativity of p, the functions

(t,z) ↦ Mp(t,z) and (t,z) ↦ Cp(t,z) given in (21)-(22) are well defined in R+ × Rn+. Let

us start by proving the continuity of these functions Mp and Cp in R+ × Rn+. Owing to the

relations (16) and (48), we see that:

Mp(t,z) =
2n/2

1 + ∫
t
0 mv(s)ds

∫
Rn−

ez⋅m
√

∣m1⋯mn∣
v(t,x11

(m))dm, (49)
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for all (t,z) ∈ R+ ×Rn+, with x11(m) = (
√
−2m1, . . . ,

√
−2mn). Hence, we have:

Mp(t,z) =
2n

1 + ∫
t
0 mv(s)ds

∫
Rn+

exp ( −
n

∑
i=1

zix
2
i

2
) v(t,x)dx,

=
1

1 + ∫
t
0 mv(s)ds

∫
Rn

exp ( −
n

∑
i=1

zix
2
i

2
) v(t,x)dx.

(50)

Notice that the function t↦ ∫
t
0 mv(s)ds is continuous in R+. Furthermore, the function (t,z)↦

exp(−∑ni=1 zix
2
i /2) v(t,x) is also continuous in R+ ×Rn+, for every x ∈ Rn. Lastly, as in the proof

of Lemma 4.2, it follows from (9), (39)-(40) and (44) that, for any z ∈ Rn+, T > 0, t ∈ (0, T ] and

x ∈ Rn, there holds:

0 ≤ exp ( −
n

∑
i=1

zix
2
i

2
) v(t,x) ≤ v(t,x),

≤
1

(2πt)n/2µn
∫
Rn

exp ( −
∥x − y∥2

2µ2t
) q#0 (y)dy,

≤
µn

πn/2µn
∫
Rn
e−∥y

′∥2 g(∥x − µ
√

2ty′∥)dy′,

≤
µn

πn/2µn
[∫

∥y′∥≤∥x∥/(2µ
√
2t)
e−∥y

′∥2 g(∥x∥/2)dy′+g(0)∫
∥y′∥>∥x∥/(2µ

√
2t)
e−∥y

′∥2 dy′],

≤
µn

πn/2µn
[πn/2g(∥x∥/2) + g(0)∫

∥y′∥>∥x∥/(2µ
√
2T )

e−∥y
′∥2 dy′].

(51)

Call h(x) the quantity given in the right-hand side of the last inequality. Since by (9) the

function g(∥ ⋅∥) is in L∞(Rn)∩L1(Rn), the function h belongs to L1(Rn), and is independent of

z ∈ Rn+ and t ∈ (0, T ]. One then infers from (50) and Lebesgue’s dominated convergence theorem

that the function Mp is continuous in R+×Rn+. As Cp = logMp, the cumulant generating function

Cp is also continuous in R+ ×Rn+.

Let us then check that Mp and Cp are C0,1(R+×Rn+), meaning that the functions ∂iMp =
∂Mp

∂zi

and ∂iCp =
∂Cp

∂zi
exist and are continuous in R+ × Rn+, for every 1 ≤ i ≤ n. As a matter of

fact, since p(t, ⋅) is a probability density function in Rn− for any t ≥ 0 and since the inte-

gral ∫Rn− ∥m∥p(t,m)dm converges by formula (15) in Proposition 2.3, it easily follows from

Lebesgue’s dominated convergence theorem that ∂iMp(t,z) exists for all (t,z) ∈ R+ × Rn+ and

1 ≤ i ≤ n, with:

∂iMp(t,z) = ∫
Rn−
mi e

z⋅mp(t,m)dm, (52)

hence, as in (49)-(50),

∂iMp(t,z) =
2n/2

1 + ∫
t
0 mv(s)ds

∫
Rn−
mi

ez⋅m
√

∣m1⋯mn∣
v(t,x11

(m))dm,

= −
1

1 + ∫
t
0 mv(s)ds

∫
Rn
x2i
2

exp ( −
n

∑
i=1

zix
2
i

2
) v(t,x)dx,

(53)

from (16) and (48). On the one hand, the function t ↦ ∫
t
0 mv(s)ds is continuous in R+ and so

is the function (t,z) ↦ x2i exp(−∑ni=1 zix
2
i /2) v(t,x) in R+ ×Rn+, for every x ∈ Rn. On the other

hand, as in the previous paragraph, it follows from (39)-(40) and (44) that, for any 1 ≤ i ≤ n,
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z ∈ Rn+, T > 0, t ∈ (0, T ] and x ∈ Rn, there holds:

0 ≤ x2i exp ( −
n

∑
i=1

zix
2
i

2
) v(t,x),

≤ ∥x∥2 v(t,x) ≤
µn

πn/2µn
[πn/2∥x∥2g(∥x∥/2) + g(0)∥x∥2∫

∥y′∥>∥x∥/(2µ
√
2T )

e−∥y
′∥2 dy′].

Call h̃(x) the quantity given in the right-hand side of the last inequality. Since by (9) the

function x↦ ∥x∥2g(∥x∥) is in L1(Rn), the function h̃ belongs to L1(Rn), and is independent of

z ∈ Rn+ and t ∈ (0, T ]. One then infers from (53) and Lebesgue’s dominated convergence theorem

that the function ∂iMp is continuous in R+ ×Rn+, and so is the function ∂iCp = ∂iMp/Mp.

In this paragraph, we are interested in the differentiation of Mp with respect to t. By (37),

we already know that:

∣∂tv(t,x)∣ ≤
n

∑
i=1

µ2i
2

∣∂iiv(t,x)∣ + ∣m(x) v(t,x)∣, (54)

for all (t,x) ∈ R+ × Rn. Fix T > 0 and let S > 0 be the constant given in (38). Thus, for all

(t,x) ∈ [0, T ] ×Rn, there holds:

∣∂iiv(t,x)∣ ≤ ∥v(t, ⋅)∥C2+α(Rn) ≤ S∥q
#
0 ∥C2+α(Rn) ≤ S∥q0∥C2+α(Rn). (55)

Let us now focus on the boundedness of the second term of the right-hand side of (54), that

is, the boundedness of the function (t,x) ↦ m(x)v(t,x) in [0, T ] × Rn. Since this function is

continuous in R+ ×Rn, let us show its boundedness in (0, T ]×Rn. Thanks to (9) and (39)-(40),

we get, as in (51), that:

∣m(x)v(t,x)∣ ≤ ∫
Rn

µn∥x∥2

2πn/2µn
q#0 (x − µ

√
2ty) e−∥y∣∣

2

dy,

for all (t,x) ∈ (0, T ] ×Rn. Thus, we have:

∣m(x)v(t,x)∣ ≤
µn

πn/2µn
∫
Rn

(∥x − µ
√

2ty∥
2
+ 2tµ2∥y∥

2) g(∥x − µ
√

2ty∥) e−∥y∥
2

dy,

≤
C µn

πn/2µn
+

2µn+2T g(0)

πn/2µn
∫
Rn

∥y∥
2 e−∥y∥

2

dy,

where the constant C is such that ∥x′∥2q#0 (x′) ≤ ∥x′∥2g(∥x′∥) ≤ C, for all x′ ∈ Rn. Therefore, the

function (t,x)↦m(x)v(t,x) is bounded in [0, T ]×Rn for any T > 0, and so is ∂tv by (54)-(55).

Together with (38), (48) and the continuity of mv in R+, it follows that the function ∂tq
# is

bounded in [0, T ] ×Rn, for every T > 0. Finally, (16) implies that for all (t,z) ∈ [0, T ] ×Rn+ and

m ∈ (R∗
−)
n,

∣ez⋅m ∂tp(t,m)∣ ≤ 2n/2∥∂tq
#
∥L∞([0,T ]×Rn)

ez⋅m
√

∣m1⋯mn∣
.

Since the integrals:

∫
Rn−

ez⋅m
√

∣m1⋯mn∣
dm = 2n/2∫

Rn+
exp ( −

n

∑
i=1

zix
2
i

2
)dx,
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converge for all z ∈ (R∗
+)
n, it then easily follows from the previous estimates and from Lebesgue’s

dominated convergence theorem that the function Mp is differentiable with respect to t in

R+ × (R∗
+)
n, with:

∂tMp(t,z) = ∫
Rn−
ez⋅m ∂tp(t,m)dm, (56)

and that the function ∂tMp is itself continuous in R+×(R∗
+)
n. So is the function ∂tCp = ∂tMp/Mp.

The continuity of the functions ∂tMp and ∂tCp in the closure R+ × Rn+ of R+ × (R∗
+)
n will be

obtained as a consequence of the equations satisfied by these two functions, which shall be

established below.

Let us then turn to find an equation satisfied by Mp, in order to derive the equation (23)

satisfied by Cp. Fix (t,z) ∈ R+ × (R∗
+)
n. Thanks to (17), we have:

ez⋅m ∂tp(t,m) = −
n

∑
i=1

µ2imie
z⋅m∂iip(t,m) −

3

2

n

∑
i=1

µ2i e
z⋅m∂ip(t,m)

+ (
n

∑
i=1

mi −m(t)) ez⋅m p(t,m), (57)

for all m ∈ (R∗
−)
n.

We are now going to integrate (57) over Rn−. To do so, let us first focus on the first two terms

of the right-hand side of (57). Fix an index i ∈ J1, nK and consider the cubes:

Bε = {m = (m1, . . . ,mn) ∈ Rn−, −ε
−1

<mj < −ε, for each j ∈ J1, nK} = (−ε−1,−ε)n,

with 0 < ε < 1. Denote B̂ε = (−ε−1,−ε)n−1 and:

m̂ = (m1, . . . ,mi−1,mi+1, . . . ,mn), mρ
= (m1, . . . ,mi−1,−ρ,mi+1, . . . ,mn),

for ρ ∈ R. By using Fubini’s theorem and integrating by parts with respect to the variable mi,

one infers that:

∫
Bε

(mie
z⋅m∂iip(t,m) +

3

2
ez⋅m∂ip(t,m))dm

= ∫
Bε

(
zi
2
+miz

2
i ) e

z⋅m p(t,m)dm

+∫
B̂ε

[zi ε e
z⋅mε

p(t,mε
) − zi ε

−1 ez⋅m
1/ε

p(t,m1/ε
)] dm̂

+∫
B̂ε

[ez⋅m
ε

(
p(t,mε)

2
−ε∂ip(t,mε

)) − ez⋅m
1/ε

(
p(t,m1/ε)

2
−ε−1∂ip(t,m1/ε

))] dm̂.

(58)

Let us pass to the limit as ε → 0 in the three integrals of the right-hand side of (58). Firstly,

since p(t, ⋅) is nonnegative and the functions m ↦ p(t,m) and m ↦ mip(t,m) are in L1(Rn−),
it follows from Lebesgue’s dominated convergence theorem together with (21) and (52) that:

∫
Bε

(
zi
2
+miz

2
i ) e

z⋅m p(t,m)dm→∫
Rn−

(
zi
2
+miz

2
i ) e

z⋅m p(t,m)dm =
zi
2
Mp(t,z) + z

2
i ∂iMp(t,z),

as ε→ 0. Secondly, by denoting:

Ĉε = (
√

2ε,
√

2ε−1)
n−1

, ẑ = (z1, . . . , zi−1, zi+1, . . . , zn),
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and:

x̂ = (x1, . . . , xi−1, xi+1, . . . , xn), xρ = (x1, . . . , xi−1,
√

2ρ, xi+1, . . . , xn),

for ρ ≥ 0, it follows from (16) that:

∫
B̂ε
zi ε e

z⋅mε

p(t,mε
)dm̂ = zi

√
ε e−ziε∫

B̂ε

2n/2 eẑ⋅m̂ q#(t,x11(mε))
√

∣m1⋯mi−1mi+1⋯mn∣
dm̂,

= zi
√
ε e−ziε 2n−1/2∫

Ĉε
exp ( −∑

j≠i

zjx
2
j

2
) q#(t,xε)dx̂.

Since the continuous function q#(t, ⋅) is bounded in Rn by (38) and (48), and since z ∈ (R∗
+)
n,

one then gets that:

∫
B̂ε
zi ε e

z⋅mε

p(t,mε
)dm̂→ 0, as ε→ 0.

Similarly, we prove that:

∫
B̂ε
zi ε

−1 ez⋅m
1/ε

p(t,m1/ε
)dm̂ = zi

√
ε−1 e−zi/ε 2n−1/2∫

Ĉε
exp ( −∑

j≠i

zjx
2
j

2
) q#(t,x1/ε

)dx̂→ 0,

as ε → 0. Thirdly, from the computations done in the proof of Theorem 2.4, we already know

that, for all m ∈ (R∗
−)
n:

1

2
p(t,m) +mi∂ip(t,m) =

2n/2∂iq
#(t,x11(m))

√
2∣m1⋯mi−1mi+1⋯mn∣

.

Hence, we have:

∫
B̂ε
ez⋅m

ε

(
p(t,mε)

2
− ε∂ip(t,mε

)) dm̂ = e−ziε∫
B̂ε

2n/2−1/2 eẑ⋅m̂ ∂iq
#(t,x11(mε))

√
∣m1⋯mi−1mi+1⋯mn∣

dm̂,

= e−ziε 2n−1∫
Ĉε

exp
⎛

⎝
−∑
j≠i

zjx
2
j

2

⎞

⎠
∂iq

#
(t,xε)dx̂.

Since the function ∂iq
#(t, ⋅) is continuous and bounded in Rn by (38) and (48), since ∂iq

#(t,x0) =

0, by #-symmetry of q#(t, ⋅), and since z ∈ (R∗
+)
n, one then infers from Lebesgue’s dominated

convergence theorem that:

∫
B̂ε
ez⋅m

ε

(
p(t,mε)

2
− ε∂ip(t,mε

)) dm̂→ 0, as ε→ 0.

Furthermore, the integral:

∫
B̂ε

ez⋅m
1/ε

(
p(t,m1/ε)

2
− ε−1∂ip(t,m1/ε

)) dm̂ = e−zi/ε 2n−1∫
Ĉε

exp
⎛

⎝
−∑

j≠i

zjx
2
j

2

⎞

⎠
∂iq

#
(t,x1/ε

)dx̂,

converges to 0 as ε → 0. Coming back to (58) and passing to the limit as ε → 0, it follows from

the previous estimates that:

∫
Bε

(mie
z⋅m∂iip(t,m) +

3

2
ez⋅m∂ip(t,m))dm Ð→

ε→0

zi
2
Mp(t,z) + z

2
i ∂iMp(t,z). (59)

Let us finally remember (57) and that the functions:

m↦ ez⋅m∂tp(t,m), m↦mie
z⋅mp(t,m) and m↦ ez⋅mp(t,m),
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are in L1(Rn−) with integrals given by (56), (52) and (21), respectively. Together with (58)

and (59), one concludes that:

∂tMp(t,z) =
n

∑
i=1

(1 − µ2i z
2
i )∂iMp(t,z) −

1

2

n

∑
i=1

µ2i ziMp(t,z) −m(t)Mp(t,z), (60)

for every (t,z) ∈ R+ × (R∗
+)
n. Since the right-hand side of the above equation is continuous in

R+ × Rn+, one infers that the function ∂tMp is extendable by continuity in R+ × Rn+ and (60)

holds in R+ ×Rn+. Owing to the definition Cp = logMp, one concludes that ∂tCp is continuous

in R+ ×Rn+ (finally, Cp is of class C1,1(R+ ×Rn+)) and:

∂tCp(t,z) =
n

∑
i=1

(1 − µ2i z
2
i )∂iCp(t,z) −

1

2

n

∑
i=1

µ2i zi −m(t) = A(z) ⋅ ∇Cp(t,z) − b(z) −m(t),

for all (t,z) ∈ R+ ×Rn+, where A and b are as in (24). Therefore, (23) holds in R+ ×Rn+ and the

proof of Theorem 2.6 is thereby complete.

Before going into the proof of the remaining results, let us first observe that, in (23)-(24),

m(t) = 1 ⋅ ∇Cp(t,O), with:

1 = (1, . . . ,1) ∈ Rn.

It turns out that, if A(z) = 1, then equation (23) can be solved explicitely by the method of char-

acteristics, as the following lemma shows (this lemma is used later in the proof of Proposition 2.8

in the general case A(z) given in (24)).

Lemma 4.3. The Cauchy problem:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) −∇Q(t,O)) − b̃(z), t ≥ 0, z ∈ Rn+,

Q(0,z) = Q0(z), z ∈ Rn+,

Q(t,O) = 0, t ≥ 0,

(61)

with b̃ ∈ C1(Rn+) and Q0 ∈ C
1(Rn+) such that b̃(O) = Q0(O) = 0, admits a unique C1,1(R+ ×Rn+)

solution, which is given by the expression:

Q(t,z) = ∫
t

0
(̃b(s1) − b̃(z + s1))ds +Q0(z + t1) −Q0(t1). (62)

Proof. First of all, it is immediate to check that the function Q given by (62) is a C1,1(R+ ×Rn+)
solution of (61). Let now Q1 and Q2 be two C1,1(R+ × Rn+) solutions of (61) and denote

Q = Q1 −Q2. The function Q is of class C1,1(R+ ×Rn+) and obeys:

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) −∇Q(t,O)) ,

for all (t,z) ∈ R+ ×Rn+, together with Q(0,z) = 0 for all z ∈ Rn+ and Q(t,O) = 0 for all t ≥ 0. It

remains to show that Q = 0 in R+×Rn+. Fix any (t,z) ∈ R+×Rn+. If t = 0, then Q(0,z) = 0, so let us

assume that t > 0. Consider the C1([0, t]) functionR defined byR(s) = Q(t−s,z+s1)−Q(t−s, s1)

for s ∈ [0, t] (which is well defined since z+ s1 ∈ Rn+). It follows from the equation satisfied by Q

that, for all s ∈ [0, t], there holds:

R′
(s) = −∂tQ(t − s,z + s1) − ∂tQ(t − s, s1) + 1 ⋅ (∇Q(t − s,z + s1) −∇Q(t − s, s1)) = 0.

Hence, Q(t,z) = Q(t,z)−Q(t,O) = R(0) = R(t) = Q(0,z+ t1)−Q(0, t1) = 0, which is the desired

conclusion.
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Proof of Proposition 2.8. In order to derive a general formula for the C1,1(R+ ×Rn+) solution Cp

of (23), we make a substitution of the spatial variable and use the previous special case described

in Lemma 4.3. To do so, we set, for t ≥ 0 and z ∈ Rn+,

Q(t,z) = Cp(t,y(z)),

where y(z) = (y1(z), . . . , yn(z)) and yi(z) = tanh(µizi)/µi for every 1 ≤ i ≤ n. Notice that

y(z) ∈ Rn+ for every z ∈ Rn+. The function Q is of class C1,1(R+ ×Rn+) and:

1 ⋅ ∇Q(t,z) =
n

∑
i=1

∂iQ(t,z) =
n

∑
i=1

(1 − tanh2
(µizi))∂iCp(t,y(z)) = A(y(z)) ⋅ ∇Cp(t,y(z)),

for all (t,z) ∈ R+ × Rn+, where A is given in (24). As m(t) = 1 ⋅ ∇Cp(t,O) = 1 ⋅ ∇Q(t,O) and

Q(t,O) = Cp(t,O) = logMp(t,O) = 0 by (15) and (21), it follows from (23) that:

⎧⎪⎪
⎨
⎪⎪⎩

∂tQ(t,z) = 1 ⋅ (∇Q(t,z) −∇Q(t,O)) − b(y(z)), t ≥ 0, z ∈ Rn+,

Q(t,O) = 0, t ≥ 0,

and Q(0,z) = Cp0(y(z)) for all z ∈ Rn+. The functions Cp0 ○ y and b̃ ∶= b ○ y are of class C1(Rn+)
and Cp0(y(O)) = b̃(O) = 0. Therefore, Lemma 4.3 implies that:

Q(t,z) = ∫
t

0
[b(y(s1)) − b(y(z + s1))] ds +Cp0(y(z + t1)) −Cp0(y(t1)), (63)

for all (t,z) ∈ R+ ×Rn+. Consider now any t ∈ R+ and z = (z1, . . . , zn) ∈ [0,1/µ1) ×⋯ × [0,1/µn).

Set:

z′ = (
atanh(µ1z1)

µ1
, . . . ,

atanh(µ1z1)

µ1
) ∈ Rn+,

and observe that y(z′) = z. Hence, we have:

Cp(t,z) = Cp(t,y(z′)),

= Q(t,z′) =∫
t

0
[b(y(s1))−b(y(z′ + s1))] ds +Cp0(y(z′+t1)) −Cp0(y(t1)),

which leads straightforwardly to the formulae (26)-(27). Furthermore, for every t ∈ R+, the

formula m(t) = 1 ⋅ ∇Q(t,O) together with (63) easily yields (28). The proof of Proposition 2.8

is thereby complete.

Proof of Corollary 2.7. Let p be the fitness distribution, that is, p(t,m)dm is the pushforward

measure of q(t,x)dx by the map x↦ −∥x∥2/2. Let:

Mp(t, z) = ∫
0

−∞
ezm p(t,m)dm,

be the moment generating function of p. As the fitness m ∈ R− is the sum of the fitness

components (m1, . . . ,mn) ∈ Rn−, we have:

Mp(t, z) = ∫
0

−∞
ezm p(t,m)dm = ∫

Rn−
ez(m1+⋯+mn) p(t,m)dm =Mp(t, z1),

30



for all (t, z) ∈ R+ ×R+. This implies that Cp(t, z) = Cp(t, z1) for all (t, z) ∈ R+ ×R+ and that Cp

is of class C1,1(R+×R+), with initial condition Cp(0, ⋅) = Cp0(⋅1). Thanks to the equations (23)-

(24) satisfied by Cp, it follows that:

∂tCp(t, z) =
n

∑
i=1

[(1 − µ2z2)∂iCp(t, z1) − ∂iCp(t,O) −
µ2

2
z] ,

= (1 − µ2z2)∂zCp(t, z) − ∂zCp(t,0) −
n

2
µ2z,

for all (t, z) ∈ R+ × R+. This is the desired result and the proof of Corollary 2.7 is thereby

complete.

Proof of Corollary 2.9. We have seen in the proof of Corollary 2.7 that Cp(t, z) = Cp(t, z1) for

all (t, z) ∈ R+ × R+. Thus, formulae (26)-(28) straightforwardly yield (29)-(30) for t ≥ 0 and

z ∈ [0,1/µ).

4.4 Stationary states

Proof of Theorem 2.10. We use the notations of Proposition 2.8. Let z ∈ [0,1/µ1)×⋯×[0,1/µn).

As ψ(t,z) → (µ−11 , . . . , µ
−1
n ) as t → +∞, the continuity of Cp0 and the formulae (26)-(27) yield

that:

Cp(t,z)→
1

2

n

∑
i=1

log [exp (−atanh (µizi)) cosh (atanh (µizi))] = −
1

2

n

∑
i=1

log(1 + µizi), (64)

as t→ +∞. It then follows from the generalization of the Curtiss theorem [46] that, if the limit

as t → +∞ of the cumulant generating functions Cp(t, ⋅) is the cumulant generating function of

p∞ given by (31) in some subset of Rn− with non-empty interior, then the distributions p(t, ⋅)

weakly converge to p∞ as t → +∞. So let us compute the CGF of p∞. For all z ∈ Rn+, Fubini’s

theorem yields that:

∫
Rn−
ez⋅mp∞(m)dm =

1

πn/2
(
n

∏
i=1

µ
−1/2
i ) ∫

Rn−
(
n

∏
i=1

∣mi∣
−1/2

) exp(
n

∑
i=1

mi/µi) e
z⋅m dm,

=
1

πn/2

n

∏
i=1

[µ
−1/2
i ∫

0

−∞
∣mi∣

−1/2 exp ((1 + µizi) mi/µi) dmi] ,

=
1

πn/2

n

∏
i=1

[
1

√
1 + µizi

∫

+∞

0
∣xi∣

−1/2 e−xi dxi] =
n

∏
i=1

(1 + µizi)
−1/2 .

Hence, the CGF of p∞ is equal to the function z = (z1, . . . , zn)↦ −(1/2)∑ni=1 log (1 + µizi), that

is, the limit in (64). As a consequence, the distributions p(t, ⋅) weakly converge to p∞ in Rn− as

t→ +∞.

On the other hand, thanks to Proposition 2.8, we also know that:

m(t) = A(ψ(t,O)) ⋅ ∇Cp0(ψ(t,O)) − b(ψ(t,O)),

for every t ≥ 0, with A(z) = (1 − µ21z
2
1 , . . . ,1 − µ

2
nz

2
n) and b(z) = ∑

n
i=1 µ

2
i zi/2. Notice that

ψ(t,O) → (µ−11 , . . . , µ
−1
n ), A(ψ(t,O)) → O and b(ψ(t,O)) → ∑

n
i=1 µi/2, as t → +∞. Hence,

m(t)→ −∑
n
i=1 µi/2 =∶m∞, as t→ +∞. It is also straightforward to check that:

n

∑
i=1
∫
Rn−
mi p∞(m)dm =m∞,
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and that p∞ is a classical C2((R∗
−)
n) solution of (32) (this property is also a consequence of the

fact that p satisfies (17) and the distributions p(t, ⋅) weakly converge to p∞ as t → +∞). The

proof of Theorem 2.10 is thereby complete.

Proof of Corollary 2.11. By the same arguments as in the proof of Theorem 2.10, thanks to (29),

we see that, for all z ∈ [0,1/µ), Cp(t, z)→ −(1/2) log(1 + µz) as t→ +∞. This limiting function

corresponds to the cumulant generating function of a random variable distributed according to

−Γ(n/2, µ). Since a distribution is uniquely determined by its cumulant generating function,

this implies that p∞ is the probability density function of this random variable, i.e., for all m < 0,

p∞(m) =
1

Γ(n/2)µn/2
∣m∣

n
2
−1 exp(

m

µ
) ,

where Γ(x) = ∫
+∞

0 tx−1e−tdt is the standard Gamma function.

Proof of Corollary 2.12. We assume here that q0 is #-symmetric, that is, q0 = q#0 . As al-

ready emphasized in Section 2.1, the uniqueness for problem (10) implies that q(t, ⋅) is also

#-symmetric at each time t ≥ 0. Proposition 2.3 (or formula (16)) yields:

q(t,x) = 2−n∣x1⋯xn∣p(t,−
x21
2
, . . . ,−

x2n
2

),

for all (t,x) ∈ R+ × (R∗)n and, for each function φ ∈ C∞
c ((R∗)n):

∫
Rn
q(t,x)φ(x)dx = 2−n∫

Rn
∣x1⋯xn∣p(t,−

x21
2
, . . . ,−

x2n
2

)φ(x)dx,

= ∫
Rn+

∣x1⋯xn∣p(t,−
x21
2
, . . . ,−

x2n
2

)φ#(x)dx,

= ∫
Rn−

p(t,m)φ#(x11
(m))dm,

→ ∫
Rn−

p∞(m)φ#(x11
(m))dm = ∫

Rn
q∞(x)φ(x)dx,

as t→ +∞, with x11(m) = (
√
−2m1, . . . ,

√
−2mn) and:

q∞(x) = 2−n ∣x1⋯xn∣p∞( −
x21
2
, . . . ,−

x2n
2

).

The above formula corresponds to (33). Furthermore, since ∫Rn q∞(x)dx = 1 and since ∫Rn q(t,x)dx =

1, for every t ≥ 0, it then easily follows from the previous estimates that:

∫
Rn
q(t,x)φ(x)dx Ð→

t→+∞
∫
Rn
q∞(x)φ(x)dx,

for every φ ∈ C∞
c (Rn). In other words, the distributions q(t, ⋅) weakly converge in Rn to q∞ as

t → +∞. Lastly, the formula limt→+∞m(t) = m∞ = ∫Rnm(x) q∞(x)dx is a consequence of the

previous arguments and Theorem 2.10. The proof of Corollary 2.12 is thereby complete.
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4.5 Plateaus: proofs of Proposition 2.13 and Remark 2.14

Proof of Proposition 2.13. We show in this section that, given an initial phenotype x0 = (x0,1, . . . , x0,n) ∈

Rn, a value µ1 > 0, and a duration T > 0, we can choose some positive real numbers µ2, . . . , µn

(here, n ≥ 2) such that the mean fitness:

t↦m(t) ∶=
n

∑
i=1

(
x20,i

2
( tanh2

(µit) − 1) −
µi
2

tanh(µit)),

is close to each of the plateaus:

m∞,k = −
n

∑
i=k+1

x20,i

2
−

k

∑
i=1

µi
2
, for k = 1, . . . , n − 1,

at least during a time interval of duration T . We recall that the above formula for m(t) corre-

sponds to the limit of formula (28), when the initial conditions q0 approach the Dirac distribu-

tion δx0 .

More precisely, we are given x0 = (x0,1, . . . , x0,n) ∈ Rn, T > 0, ε > 0 and µ1 > 0, and we shall

prove the existence of (µ2, . . . , µn) ∈ (R∗
+)
n−1 such that, for each k ∈ J1, n − 1K, the set:

{t ≥ 0, ∣m(t) −m∞,k∣ ≤ ε}, (65)

contains an interval of length at least equal to T . In that respect, we firstly define some functions:

si ∶ (µ, t) ∈ R∗
+ ×R+ ↦ ∣

x20,i

2
tanh(µ t) −

µ

2
∣ for i = 1, . . . , n − 1.

Secondly, by iteration for k = 1, . . . , n − 1, we can then define:

◇ a function Sk ∶ t ∈ R+ ↦
k

∑
i=1

∣
x20,i

2
( tanh(µit) + 1) −

µi
2
∣,

◇ a time τk > τk−1 + T , (with τ0 = −T ) such that:

( max
t∈[τk,τk+T ]

Sk(t)) × (1 − tanh(µkτk)) ≤ ε
n + k

n
, (66)

◇ a real number µk+1 ∈ (0, µk) such that:

∀ i ∈ J1, kK, ∀ t ∈ [τi, τi + T ], sk+1(µk+1, t) tanh(µk+1(τi + T )) ≤
ε

2n
.

Note that the last property implies that:

∀k ∈ J1, n − 1K, ∀ i ∈ Jk + 1, nK, ∀ t ∈ [τk, τk + T ], si(µi, t) tanh(µi(τk + T )) ≤
ε

2n
. (67)

Fix now an index k ∈ J1, n − 1K and a time t ∈ [τk, τk + T ] (⊂ R∗
+). There holds:

∣m(t) −m∞,k∣ = ∣
k

∑
i=1

(
x20,i

2
( tanh2

(µit) − 1) −
µi
2

( tanh(µit) − 1))

+
n

∑
i=k+1

(
x20,i

2
tanh2

(µit) −
µi
2

tanh(µit))∣,

≤
k

∑
i=1

∣
x20,i

2
( tanh(µit) + 1) −

µi
2
∣ (1 − tanh(µit))

+
n

∑
i=k+1

∣
x20,i

2
tanh(µit) −

µi
2
∣ tanh(µit).

(68)
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As t ∈ [τk, τk +T ], we have 0 < 1− tanh(µit) ≤ 1− tanh(µk τk) for every i ∈ J1, kK (remember that

0 < µk < µk−1 < ⋯ < µ1), whereas tanh(µi t) ≤ tanh(µi (τk + T )) for every i ∈ Jk + 1, nK. It then

follows from (66)-(68) that, for every k ∈ J1, n − 1K and t ∈ [τk, τk + T ]:

∣m(t) −m∞,k∣ ≤ Sk(t) (1 − tanh(µkτk)) +
n

∑
i=k+1

si(µi, t) tanh(µi (τk + T )) ≤ ε
n + k

2n
+

n

∑
i=k+1

ε

2n
= ε.

Thus, with this choice of (µ1, . . . , µn) ∈ (R∗
+)
n, each set defined in (65) contains an interval of

length at least equal to T . This proves Proposition 2.13.

Proof of results in Remark 2.14. Take n = 2, µ1 = 1, µ2 = 10−k for some k ≥ 1 and x0,1 = x0,2 = 1.

Differentiating the expression 34, we observe that:

m′
(t) = (tanh(t) −

1

2
) (1 − tanh2

(t)) + µ2 (tanh(µ2 t) −
µ2
2

) (1 − tanh2
(µ2 t)).

We observe that, as t → 0, m′(t) → −1/2 − 10−2k/2. Then m′(t) rapidly increases, to reach

significantly positive values, e.g., at t0 = ln(3), m′(t0) > 27/250 − µ2/2 > 0.1 − 10−k/2.

Then, consider the interval:

I ∶= (ln (2 ⋅ 10k) ,10k/2) .

For each t in I, 1 − tanh2(t) < 4 exp(−2 t) < 10−2k and tanh(µ2 t) − µ2/2 < µ2 t < 10−k/2. Thus,

∣m′
(t)∣ ≤ 10−2k + 10−3k/2,

which means thatm(t) remains stable within this interval, corresponding to a part of the plateau.

Latter on, m′(t) reaches again significantly positive values which are significantly higher than in

this interval, e.g., at t1 = 10k ln[(
√

2 +
√

6)/2] > 10k/2, straightforward computations show that:

m′(t1) ≥ µ2 (tanh(µ2 t1) −
µ2
2
) (1 − tanh2(µ2 t1))

= 2 ⋅ 10−k [
(2+

√
3)(2+2

√
3)

(3+
√
3)3

− 10−k
(2+

√
3)

(3+
√
3)2

] ,

which show that m′(t) is of order 10−k at t1, vs 10−3k/2 in the interval I.

A A formal derivation of the diffusive approximation of the mu-

tation effects

The goal of this appendix is to give a formal justification of the diffusion term in (4). The

case n = 1 is classical and can be found e.g. in [37, 43]. The anisotropic case n ≥ 2 is less

standard, but it will easily follow from the same arguments.

Namely, we assume that the mutation effects on phenotypes follow a normal distribution

N (0,Λ), with Λ = diag (λ1, . . . , λn) and λi > 0 for each i ∈ J1, nK, and that these mutations

occur with a rate U > 0. In other words, the dynamics of the phenotype distribution under

the mutation effects only (i.e., without selection) can be described by an integro-differential

equation:

∂tq(t,x) = U (J ⋆ q − q)(t,x), t ≥ 0, x ∈ Rn,
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where ⋆ is the standard convolution product in Rn defined by:

(J ⋆ q)(t,x) = ∫
Rn
q(t, x1 − y1, . . . , xn − yn)J(y1, . . . , yn)dy1 . . . dyn,

and J the (Gaussian) probability density function associated with the normal distribution

N (0,Λ).

Formally, by writing a Taylor expansion of q(t,x − y) at x:

q(t,x − y) =
∞

∑
k1,...,kn=0

(−1)k1+⋯+kn
yk11 ⋯yknn
k1!⋯kn!

∂k1+⋯+knq

∂xk11 ⋯∂x
kn
n

(t,x),

and by defining the central moments of the normal distribution:

ωk1,...,kn = ∫Rn
yk11 ⋯yknn J(y1, . . . , yn)dy1 . . . dyn,

we then get that:

(J ⋆ q)(t,x) =
∞

∑
k1,...,kn=0

(−1)k1+⋯+kn
ωk1,...,kn
k1!⋯kn!

∂k1+⋯+knq

∂xk11 ⋯∂x
kn
n

(t,x).

Since ωk1,...,kn = 0 if at least one of the ki’s is odd, and since:

ωk1,...,kn = (
n

∏
i=1

ki!

2ki/2(ki/2)!
) × (

n

∏
i=1

λ
ki/2
i ),

otherwise, one infers in particular that the second-order moments with even indexes are such

that ω0,...,0,ki=2,0,...,0 = λi. Assuming that max
1≤i≤n

λi << 1, we may formally neglect the moments of

order k1 +⋯ + kn ≥ 4, leading to:

(J ⋆ q)(t,x) ≈ q(t,x) +
n

∑
i=1

λi
2
∂ii(t,x).

Finally, setting µ2i = U λi, we obtain:

U (J ⋆ q − q)(t,x) ≈
n

∑
i=1

µ2i
2
∂iiq(t,x).
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