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Abstract

This paper is concerned with the existence and qualitative properties of pulsating fronts for
spatially periodic reaction-diffusion equations with bistable nonlinearities. We focus especially on
the influence of the spatial period and, under various assumptions on the reaction terms and by
using different types of arguments, we show several existence results when the spatial period is small
or large. We also establish some properties of the set of periods for which there exist non-stationary
fronts. Furthermore, we prove the existence of stationary fronts or non-stationary partial fronts at
any period which is on the boundary of this set. Lastly, we characterize the sign of the front speeds
and we show the global exponential stability of the non-stationary fronts for various classes of initial
conditions. Our arguments are based on the maximum principle, spectral analysis and dynamical
systems approach.

1 Introduction and main results

In this paper, we study the existence and qualitative properties of periodically propagating solutions of
periodic reaction-diffusion equations of the type

ut = (aL(x)ux)x + fL(x, u), t ∈ R, x ∈ R (1.1)

with L > 0, where ut stands for ut(t, x) = ∂tu(t, x) = ∂u/∂t(t, x), ux stands for ux(t, x) = ∂xu(t, x) =
∂u/∂x(t, x) and (aL(x)ux)x stands for (aL(x)ux)x(t, x) = ∂x(aLux)(t, x) = ∂(aLux)/∂x(t, x). The
diffusion and reaction coefficients aL and fL are given by

aL(x) = a(x/L) and fL(x, u) = f(x/L, u),
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where the function a : R → R is positive, of class C1,α(R) (with 0 < α < 1) and 1-periodic, that is
a(x+ 1) = a(x) for all x ∈ R. Throughout the paper, the function f : R× [0, 1]→ R, (x, u) 7→ f(x, u)
is continuous, 1-periodic in x, of class C0,α in x uniformly in u ∈ [0, 1], and of class C1,1 in u uniformly
in x ∈ R with ∂uf(·, 0) and ∂uf(·, 1) being continuous in R. One assumes that, for every x ∈ R, the
profile f(x, ·) is bistable in [0, 1], that is, there is θx ∈ (0, 1) such that

f(x, 0) = f(x, 1) = f(x, θx) = 0, f(x, ·) < 0 on (0, θx), f(x, ·) > 0 on (θx, 1). (1.2)

One also assumes that 0 and 1 are uniformly (in x) stable zeroes of f(x, ·), in the sense that there exist
γ > 0 and δ ∈ (0, 1/2) such that{

f(x, u) ≤ −γu for all (x, u) ∈ R× [0, δ],

f(x, u) ≥ γ(1− u) for all (x, u) ∈ R× [1− δ, 1].
(1.3)

Notice that this implies in particular that δ < θx < 1 − δ and max
(
∂uf(x, 0), ∂uf(x, 1)

)
≤ −γ

for all x ∈ R. Furthermore, from the periodicity and regularity of f , (1.3) is equivalent to
max

(
∂uf(x, 0), ∂uf(x, 1)

)
< 0 for all x ∈ R.

A particular case of such a function f satisfying (1.2) and (1.3) is the cubic nonlinearity

f(x, u) = u(1− u)(u− θx), (1.4)

where x 7→ θx is a 1-periodic C0,α(R) function ranging in (0, 1). Notice that in (1.4) or more generally
in (1.2), the intermediate zero θx of f(x, ·) is not assumed to be constant in general.

For mathematical purposes, the function f is extended in R × (R\[0, 1]) as follows: f(x, u) =
∂uf(x, 0)u for (x, u) ∈ R× (−∞, 0) and f(x, u) = ∂uf(x, 1)(u− 1) for (x, u) ∈ R× (1,+∞). Thus, f is
continuous in R × R, 1-periodic in x, minx∈R f(x, u) > 0 for all u < 0 and maxx∈R f(x, u) < 0 for all
u > 1, and f(x, u), ∂uf(x, u) are globally Lipschitz-continuous in u uniformly in x ∈ R.

Pulsating fronts

For each L > 0, the functions aL and fL(·, u) (for all u ∈ [0, 1]) are L-periodic (in x). One is especially
interested in the paper in understanding the role of the spatial period L on the existence of solutions
connecting the two stable steady states 0 and 1 and propagating with a constant average speed, the
so-called pulsating, or periodic, fronts. Namely, a pulsating front connecting 0 and 1 for (1.1) is a
solution u : R × R → [0, 1] such that there exist a real number cL (the average speed) and a function
φ : R× R→ [0, 1] such that

u(t, x) = φ(x− cLt, x/L) for all (t, x) ∈ R× R,
φ(ξ, y) is 1-periodic in y,

φ(−∞, y) = 1, φ(+∞, y) = 0 uniformly in y ∈ R.
(1.5)

If cL 6= 0, then the map (t, x) 7→ (x − cLt, x/L) is a bijection from R × R to R × R and φ is uniquely
determined by u. Furthermore, in this case, for every x ∈ R, the function t 7→ u(t, x + cLt) is L/cL-
periodic (in time). The notion of pulsating front with nonzero speed was first given in [46]. On the
other hand, a pulsating front with a speed cL = 0 simply means a stationary solution u(t, x) = φ0(x)
of (1.1) such that φ0 : R → [0, 1], φ0(−∞) = 1 and φ0(+∞) = 0. In this case, the function u can
be written as in (1.5) where the function φ, which is then not uniquely determined, can be defined as
φ(ξ, y) = φ0(ξ) for all (ξ, y) ∈ R× R.

In this paper, we will show the uniqueness of the speed cL of pulsating fronts for any L > 0, and
we will then give some conditions which guarantee the existence of pulsating fronts with nonzero or
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zero speed. In particular, we will focus on the dependence with respect to the spatial period L of the
underlying medium and we will consider the limits as L→ 0+ (the homogenization limit) and L→ +∞
(slowly varying media). We will finally discuss the global and exponential stability of pulsating fronts
with nonzero speed.

Some known existence results

Before going further on, let us mention a very important case where the existence of fronts is known,
that is the case of a homogeneous medium in the sense that the function a is equal to a positive
constant d and the function f does not depend on x. In this case, the function f : [0, 1] → R is such
that f(0) = f(θ) = f(1) = 0 for some θ ∈ (0, 1), f < 0 on (0, θ), f > 0 on (θ, 1) and f ′(0) < 0,
f ′(1) < 0. It is well known [4, 23] that for this homogeneous equation

ut = d uxx + f(u), (1.6)

there exists a unique speed c ∈ R and a unique (up to shifts in x) front

u(t, x) = φ(x− ct) such that 0 < φ < 1 in R, φ(−∞) = 1 and φ(+∞) = 0. (1.7)

Such a front is decreasing in x and, for the equation (1.1) with an arbitrary L > 0, with aL = d and
with fL(x, ·) = f , it can also be viewed as a pulsating front with speed cL = c. Furthermore, the
speed c has the same sign as the integral

∫ 1
0 f and the front is globally and exponentially stable [23]

(we will come back later to the precise notions of stability, directly in the framework of the periodic
equation (1.1)). In particular, if we fix y ∈ R and if in (1.1) we freeze the coefficients aL and fL around
the position Ly, that is if we set ay(x) = aL(Ly) = a(y) for all x ∈ R and fy(u) = fL(Ly, u) = f(y, u)
for all u ∈ [0, 1], then the homogeneous equation (uy)t = ay(uy)xx+fy(uy) (with (t, x) ∈ R×R) admits
a unique front uy(t, x) = φy(x − cyt) and a unique speed cy ∈ R, with 0 < φy < 1 in R, φy(−∞) = 1
and φy(+∞) = 0. Furthermore, the speed cy has the sign of

∫ 1
0 f

y(u) du =
∫ 1

0 f(y, u) du.
When the coefficients aL and fL of (1.1) truly depend on x, the question of the existence of pulsating

fronts is a long-time standing open and difficult problem and only few partial results are known in the
literature. Actually, no explicit condition guaranteeing the existence or the non-existence has been
known so far in general. Nevertheless, some particular cases have been dealt with and some more
abstract conditions have been given. Firstly, for a given L > 0, the pulsating fronts are known to
exist for (1.1) if f = f(u) does not depend on x and if the coefficient aL is close to a constant in
some norms, see [22, 47, 50, 52, 53]. Secondly, when f(x, u) = b(x) g(u) with 0 < b1 ≤ b ≤ b2 < +∞
in R and

∫ 1
0 min[0,1] f(·, u) du > 0, the existence of pulsating fronts with nonzero speed was established

in [43]. Further results were obtained in [59] on the existence of pulsating fronts under the condition∫ 1
0 min[0,1] f(·, u) du > 0 (notice that both references [43, 59] were also concerned with generalized

transition fronts in non-periodic media). Thirdly, if the equation (1.1) has no stable L-periodic steady
state 0 < u(x) < 1 (see Definition 3.5 below for the precise meaning), then it admits pulsating fronts [22].
Moreover, (1.1) admits pulsating fronts with a positive speed under the additional assumption that at
least some compactly supported initial conditions give rise to solutions converging to 1 at t → +∞
locally uniformly in x ∈ R, see [19]. However, pulsating fronts with nonzero speed cL do not exist in
general for some diffusions aL (not too close to their average) and some x-independent reactions f =
f(u) = u(1− u)(u− θ) with θ ' 1/2, see [52, 54] and the comments following equation (1.8) below.

The bistability assumption (1.2), that is, the change of sign of f(x, ·) in (0, 1) and the fact that θx
depends on x in general, makes the questions of the existence of possible intermediate L-periodic steady
states of (1.1) and of the existence of pulsating fronts connecting 0 and 1 quite subtle. Many more
existence results have actually been established for other types of nonlinearities f such as combustion,
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monostable or specific Fisher-KPP nonlinearities: for instance, for 1-periodic (in x) combustion non-
linearities f for which f ≥ 0 in R × [0, 1], f = 0 in R ×

(
[0, θ] ∪ {1}

)
for some θ ∈ (0, 1) and f(x, ·) is

nonincreasing in [1 − δ, 1] for some δ > 0 independent of x, it is known that for every L > 0, there is
a unique (up to shifts in t) pulsating front u(t, x) = φ(x − cLt, x/L) connecting 0 and 1, with cL > 0,
see [8, 51]. This existence result holds whatever the size of a and f may be. On the other hand, when f
is positive on R× (0, 1), then for each L > 0, pulsating fronts u(t, x) = φ(x− ct, x/L) exist if and only
if c ≥ c∗L, for some positive minimal speed c∗L, see [8, 35, 38, 39, 48]. Furthermore, some variational
formulas for c∗L in the positive case and in the more specific KPP case have been derived in [10, 12, 20]
and some further qualitative and uniqueness properties for each speed c ∈ [c∗L,+∞) have been given
in [25, 28, 29].

Uniqueness of the speed and further qualitative properties of pulsating fronts

In this paper, we first discuss the question of the uniqueness of the speed of pulsating fronts for
the bistable equation (1.1), under assumptions (1.2) and (1.3), as well as the monotonicity and the
uniqueness of pulsating fronts with nonzero speed. In [9], qualitative properties of transition fronts,
which are more general than pulsating fronts, were investigated in unstructured heterogeneous media.
Some results of [9] can be applied to the pulsating fronts of the periodic equation (1.1), provided that
the propagation speeds are not zero. More precisely, [9, Theorems 1.11 and 1.14] (see also [49] for
x-independent reactions f = f(u)) lead to the uniqueness of the speed and of the fronts (up to shifts in
time) in the class of pulsating fronts with nonzero speed, as well as the negativity of ∂ξφ for a pulsating
front φ(x − ct, x/L) with c 6= 0 and ξ = x − ct. In the present paper, we prove the uniqueness of the
speed in a more general class of pulsating fronts with zero or nonzero speed. Furthermore, we show that
if the speed is not equal to 0, then it has a well determined sign, as in the homogeneous case. To our
knowledge, these fundamental properties are new for the x-dependent equation (1.1). Throughout the
paper, we denote f the arithmetic mean of the function f with respect to the variable x, that is,

f(u) =

∫ 1

0
f(x, u) dx for u ∈ [0, 1].

Theorem 1.1. For any fixed L > 0, the speed of pulsating fronts for (1.1) is unique in the sense that
if uL(t, x) = φL(x − cLt, x/L) and ũL(t, x) = φ̃L(x − c̃Lt, x/L) are two pulsating fronts, then c̃L = cL.
Furthermore, if cL 6= 0, then it has the sign of

∫ 1
0 f(u) du, the functions uL and ũL are increasing in t

if cL > 0, resp. decreasing in t if cL < 0, and the front is unique up to shifts in t, that is, there is τ ∈ R
such that ũL(t, x) = uL(t+ τ, x) for all (t, x) ∈ R2.

When cL 6= 0, given the uniqueness of the speed stated in the first part of Theorem 1.1, the
monotonicity and uniqueness of uL up to shifts in t can then be viewed as a consequence of [9]. Here,
we will see that the uniqueness results (the uniqueness of the fronts as well as that of the speed) follow
from the global stability of the pulsating fronts with nonzero speed (see Theorem 1.9 below and the
last part of the proof of Theorem 1.1 in Section 2.2).

Theorem 1.1 also shows that the sign of the front speed, if not zero, is that of
∫ 1

0 f(u)du and therefore,
it does not depend on L. But we point out that this property is only valid under the condition cL 6= 0.
In other words, one can not say that if

∫ 1
0 f(u)du 6= 0 then cL 6= 0. Consider for instance the equation

ut = (d(x)ux)x + µ2g(u), t ∈ R, x ∈ R, (1.8)

where d(x) = 1 + δλ sin(2πx), µ ∈ R, δ ∈ R, λ ∈ R, and g(u) = u(1− u)(u− 1/2 + δ). Xin [52] proved
that there are µ > 0, δ ∈ (0, 1/2) and λ 6= 0 such that equation (1.8) admits a stationary front, that is,
a pulsating front with speed c = 0, whereas

∫ 1
0 g(u)du 6= 0.
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Existence of pulsating fronts for small L > 0

In this section and the following two ones, we present new results on the existence of pulsating fronts
for the bistable equation (1.1). We first begin with the case of rapidly oscillating environments. For
combustion-type and x-independent nonlinearities f = f(u), Heinze proved in [30] that pulsating fronts
for equation (1.1), which exist in this case for every L > 0, can be homogenized as L → 0+. He also
showed in [31] that the homogenization process still holds for semilinear higher-dimensional reaction-
diffusion equations of the type ut = ∆u + f(u) with x-independent bistable nonlinearities f = f(u)
in periodically perforated domains (see the beginning of Section 3.1). By using variational principles
for the speeds, the asymptotic expansions of the speeds for both models were established in [32]. In
the case of periodic Fisher-KPP type of nonlinearity, the convergence of the minimal speeds c∗L to the
homogenization limit was proved in [21].

Inspired by the aforementioned homogenization results and the methods which were used, mostly
in [31], we will show here that, under some assumptions guaranteeing their existence, pulsating fronts
uL(t, x) = φL(x − cLt, x/L) of (1.1) converge as L → 0+, in a sense which will be made clear in
Lemma 3.2, to the following limit:

aHφ
′′
0 + c0φ

′
0 + f(φ0) = 0 in R, φ0(−∞) = 1, φ0(+∞) = 0, (1.9)

where aH > 0 denotes the harmonic mean of the function a, defined by

aH =
(∫ 1

0
a(x)−1dx

)−1
. (1.10)

Theorem 1.2. Assume that there is a unique (up to shifts) front φ0, with speed c0 6= 0, for the
homogenized equation (1.9). Then there is L∗ > 0 such that for any 0 < L < L∗, equation (1.1) admits
a unique (up to shifts in time) pulsating front uL(t, x) = φL(x − cLt, x/L), with speed cL 6= 0, and
cL → c0 as L→ 0+. Lastly, up to translation of φ0, there holds φL(ξ, y)− φ0(ξ)→ 0 in H1(R× (0, 1))
as L→ 0+.

This theorem does not only give the existence and uniqueness of pulsating fronts at small L > 0,
but it also provides the convergence of the speeds cL to c0 as L → 0+. In particular, for small L > 0,
the speeds cL have the same sign as the speed c0 of the homogenized equation (1.9), that is, the same
sign as the integral

∫ 1
0 f(u) du (notice that this sign property could also be viewed as a consequence of

Theorem 1.1).

Remark 1.3. By the assumptions (1.2) and (1.3), the function f is a C1([0, 1]) function such that

f(0) = f(1) = 0, f
′
(0) < 0 and f

′
(1) < 0. In addition, if one assumes that there is a unique real

number θ ∈ (0, 1) such that f(θ) = 0, then, as already mentioned, equation (1.9) admits a unique
solution (φ0, c0) with 0 < φ0 < 1 in R, and c0 has the sign of

∫ 1
0 f(u) du. However, it is easy to see

that there are examples of nonlinearities f(x, u) which satisfy (1.2) and (1.3), but for which f has more
than one zero in (0, 1). The possible multiple oscillations of f on (0, 1) do not exclude the existence of
fronts for the homogenized equation (1.9), although the existence does not hold in general, see [23].

Recently, Fang and Zhao [22] considered the propagation property for the equation

ut = (d(x)ux)x + f(u), t ∈ R, x ∈ R, (1.11)

where d(x) is a positive C1-continuous periodic function and f(u) = u(1 − u)(u − θ) with θ ∈ (0, 1).
Under an abstract setting, they first established the existence of bistable traveling waves for monotone
spatially periodic semiflows, and then applied the abstract results to the semiflow generated by the
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solution operator associated with equation (1.11). By studying the stability of the intermediate (i.e.,
ranging in (0, 1)) periodic steady states, they proved the existence of pulsating fronts provided that
d(x) is sufficiently close to a positive constant in C0-norm. Actually, we will show in the present paper
that some results of [22] can be used to prove the existence of pulsating fronts for (1.1) when L is small
enough, under some assumptions on f but for general diffusion coefficients a (we will consider later the
case of large periods L). More precisely, we have the following result:

Theorem 1.4. Assume that there is θ ∈ (0, 1) such that

f < 0 on (0, θ), f > 0 on (θ, 1), and f
′
(θ) > 0. (1.12)

Then there is L̃∗ > 0 such that for all 0 < L < L̃∗, equation (1.1) admits a pulsating front uL(t, x) =
φL(x−cLt, x/L) with speed cL, and cL → c0 as L→ 0+, where c0 is the unique speed for the homogenized
equation (1.9). Furthermore, cL = c0 = 0 for all 0 < L < L̃∗ if c0 = 0.

The results stated in Theorems 1.2 and 1.4 and the methods used to prove them are different. On
the one hand, the proof of Theorem 1.2 relies on a perturbation argument and on the application of
the implicit function theorem in some suitable Banach spaces. It provides the uniqueness (up to shifts
in time) of the pulsating fronts uL(t, x) = φL(x− cLt, x/L) when L is small, as well as the uniqueness
and the nonzero sign of the speeds cL. The proof uses as an essential ingredient the fact that the front
speed of the homogenized equation (1.9) is not zero. On the other hand, the main tool in the proof
of Theorem 1.4 is to show that equation (1.1) does not admit any semistable L-periodic steady state
ranging in (0, 1), and this strategy may well give rise to pulsating fronts uL(t, x) = φL(x − cLt, x/L)
with speed cL = 0. Consider for instance the equation (1.8) again, which admits some stationary
fronts for some parameters d(x), µ > 0, g(u) = u(1 − u)(u − 1/2 + δ) and δ ∈ (0, 1/2). For the
equation (1.1) with aL(x) = d(x/L) and fL(x, u) = f(u) = µ2g(u), Theorem 1.2 can be applied
since f(u) = µ2u(1− u)(u− 1/2 + δ) and the speed c0 associated with (1.9) is positive (it has the sign
of
∫ 1

0 f). As a consequence, the period L∗ given in Theorem 1.2 satisfies L∗ ≤ 1, since the interval
(0, L∗) is an interval of existence (and uniqueness) of pulsating fronts with nonzero speeds. Theorem 1.4
can also be applied in this case since f satisfies (1.12) with θ = 1/2 − δ. We believe that in this case,
for every L > 0, equation (1.1) has no semistable L-periodic steady state ranging in (0, 1). If that
were true, then the method used in the proof of Theorem 1.4 would imply that the threshold L̃∗ would
actually be infinite (while L∗ ≤ 1). Generally speaking, though completely different, the methods used
in Theorems 1.2 and 1.4 are both based on some compactness arguments, which make difficult to get
some explicit a priori bounds on L∗ and L̃∗ and to compare them in general.

Finally, we point out that even if Theorem 1.2 can cover the case of functions f with multiple
oscillations on the interval [0, 1], it does not hold if

∫ 1
0 f(u)du = 0, while Theorem 1.4 does, under

the additional assumption (1.12) (Theorem 1.2 provides an interval of existence and uniqueness of
pulsating fronts with nonzero speeds, while the fronts given in Theorem 1.4 may be stationary in
general). As an example, fix an x-independent function f = f(u) satisfying (1.2) and (1.3) and fix
a positive constant d > 0. It follows from [22] that there is η > 0 such that for every L > 0 and
for every a satisfying the general assumptions of the present paper together with ‖a − d‖L∞(R) ≤ η,
equation (1.1) admits a pulsating front. From Theorem 1.1, this pulsating front has to be stationary
since

∫ 1
0 f(u) du =

∫ 1
0 f(u) du = 0. The existence of these stationary fronts cannot be covered by

Theorem 1.2, but it can by Theorem 1.4, for small L > 0 (and actually, for all L > 0 since all L-
periodic stationary states 0 < ū(x) < 1 are unstable if ‖a− d‖L∞(R) ≤ η, and the proof of Theorem 1.4
is based on this property).
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Existence of pulsating fronts for large L > 0

The method used in the proof of Theorem 1.4 can also be applied to prove the existence of pulsating
fronts of equation (1.1) with large L > 0.

Theorem 1.5. Assume that∫ 1

0
f(x, u) du > 0 and

∂f

∂u
(x, θx) > 0 for all x ∈ R. (1.13)

Then there is L∗ > 0 such that for all L > L∗, equation (1.1) admits a pulsating front uL(t, x) =
φL(x− cLt, x/L) with speed cL > 0.

Notice that, similarly, equation (1.1) admits a pulsating front with negative speed cL < 0 for large L
large if (1.13) is replaced by

∫ 1
0 f(x, u) du < 0 for all x ∈ R. On the other hand, if minx∈R

∫ 1
0 f(x, u)du <

0 < maxx∈R
∫ 1

0 f(x, u)du, then there is in general no pulsating front with nonzero speed for large L,
but there are stationary fronts (see our paper [17]).

Theorem 1.5 shows the existence of pulsating fronts with speed cL > 0 for large L. Actually,
in the proof of Theorem 1.5, from some compactness arguments, we first prove the instability of all
intermediate L-periodic steady states to get the existence of pulsating fronts with cL ≥ 0 for L large
under the assumption (1.13) and we exclude the case cL = 0 for large L by using again (1.13). We
also point out that, as in Theorems 1.2 and 1.4, the existence of pulsating fronts stated in Theorem 1.5
does not require that the coefficients of (1.1) be close to their spatial average. Thus, one can say that
Theorems 1.2, 1.4 and 1.5 are of a different spirit from the aforementioned existence results of [22, 50, 52].

Remark 1.6. From the proofs of Theorems 1.4 and 1.5 in Sections 3.2 and 3.3, one will see that the
conditions (1.12) and (1.13) are only used to show the instability of the L-periodic steady states of
equation (1.1), and this stability property is invariant by changing x into −x. Thus, these conditions
do not only imply the existence of fronts u(t, x) = φ(x−cLt, x/L) satisfying (1.5), but they also provide
the existence of pulsating fronts of the type ũ(t, x) = φ̃(x+ c̃Lt, x/L) for the same range of periods L,
where φ̃ is 1-periodic in its second variable and satisfies reversed limiting conditions:

φ̃(−∞, y) = 0 and φ̃(+∞, y) = 1, uniformly for y ∈ R.

Moreover, if both speeds cL and c̃L are nonzero, then they must have the same sign, which is that of∫ 1
0 f(u)du, as a consequence of Theorem 1.1. Furthermore, by uniqueness, c̃L = cL if a and f are even

in x. But whether c̃L = cL for general coefficients a and f is not clear in general.1

Remark 1.7. Let a and f satisfy the general assumptions of the paper, in particular, (1.2), (1.3) as
well as the 1-periodicity in x, and consider now the equation

ut = (a(x)ux)x +M f(x, u), t ∈ R, x ∈ R, (1.14)

where the positive parameter M measures the amplitude of the reaction. A solution u of this 1-periodic
equation is a pulsating front with speed σ if and only if the function v(t, x) = u(t/M, x/

√
M) is a

pulsating front for the equation (1.1) with L =
√
M and speed σ/

√
M . Therefore, under the assumption

of Theorem 1.2, there is M∗ > 0 such that for all 0 < M < M∗, equation (1.14) admits a unique (up
to shifts in time) pulsating front, with speed σM 6= 0, and σM ∼

√
M c0 as M → 0+. Similarly, under

the assumption (1.12) of Theorem 1.4, there is M̃∗ > 0 such that for all 0 < M < M̃∗, equation (1.14)
admits a pulsating front with speed σM , and σM ∼

√
M c0 as M → 0+ if the unique speed c0 of the

1We thank Dr. X. Liang for mentioning this question.
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homogenized equation (1.9) is not zero, while σM = 0 for all 0 < M < M̃∗ if c0 = 0. Lastly, under the
assumption (1.13) of Theorem 1.5, there is M∗ > 0 such that for all M > M∗, equation (1.14) admits
a pulsating front with speed σM > 0. However, the study of the behavior of σM as M → +∞ is still
open, as that of cL as L→ +∞ in Theorem 1.5 (see also the discussion after Theorem 1.8).

Set of periods L for which pulsating fronts with nonzero speed exist

After establishing some conditions for the existence of pulsating fronts for small or large periods, we
derive some properties of the set of periods L for which (1.1) admits pulsating fronts with nonzero
speeds. We had already emphasized the particular role played by the stationary fronts and we focus in
this section on the fronts with nonzero speeds. We define

E =
{
L > 0 : (1.1) admits a pulsating front with speed cL 6= 0

}
(1.15)

and we investigate the properties of E under the assumption
∫ 1

0 f(u) du 6= 0. Indeed, if
∫ 1

0 f(u) du = 0,
then the sign property of the speed in Theorem 1.1 excludes the existence of pulsating fronts with
nonzero speeds for any period L: in other words, E is empty in this case. It also follows from [17] that
there is a constant C which only depends on a and f such that

|cL| ≤ C, ∀L ∈ E, (1.16)

that is, the front speeds are globally bounded independently of the period L. As we 13see in [17], the
same property actually holds for the broader notion of global mean speeds of generalized transition
fronts. In the present paper, we do not prove this global property (1.16) and we deal with local
properties of the set E. In particular, it will follow from Theorem 1.8 below that the speeds cL with
L ∈ E are locally bounded around any point L0 ∈ E and we will also prove in Lemma 4.6 below that the
speeds cL with L ∈ E are locally bounded around any boundary point L0 ∈ ∂E ∩ (0,+∞). Motivated
by the implicit function theorem used in the homogenization process in Theorem 1.2, we will first prove
the following result.

Theorem 1.8. The set E is open and for any L0 ∈ E, one has cL → cL0 as L→ L0 and L ∈ E.

Under the assumptions of Theorems 1.4 and 1.5, that is, under conditions (1.12) and (1.13), it is
natural to wonder whether E = (0,+∞), namely, whether there exist pulsating fronts with nonzero
speed for all L > 0. As a matter of fact, the answer is negative in general, since quenching may occur
even for some x-independent nonlinearities f = f(u) (see again the example given with (1.8)), that is,
stationary fronts connecting 0 and 1 may exist. Under the conditions of Theorems 1.2 and 1.5, the set E
contains some neighborhoods of 0 and +∞. When E 6= (0,+∞), is E of the type E = (0, L)∪ (L,+∞)
for some 0 < L ≤ L < +∞ ? We leave this question for further investigation.

In view of Theorem 1.1, the periods L for which (1.1) admits stationary fronts cannot belong to E,
but they may appear at the boundary of E. Hence, it is of interest to investigate the question of the
solutions of equation (1.1) when L ∈ (0,+∞) is a boundary point of E. In Section 4, we prove further
results on the existence of partial fronts and semistable periodic states (in a sense to be defined) at
points of ∂E ∩ (0,+∞). The statements are a bit long and require additional stability notions, so we
postpone them in Section 4.

As already emphasized, E = (0,+∞) for equation (1.1) under some additional assumptions on the
coefficients a and f , see [22, 23, 50, 52, 53] and the comments after equation (1.11). When E = (0,+∞),
it is interesting to investigate the effect of environmental fragmentation on the speed of pulsating fronts:
from Theorem 1.8, the map L 7→ cL is continuous, but can one say that it is monotone? As known
in [41] for equations with periodic Fisher-KPP type nonlinearities f , the minimal wave speed c∗L of

8



pulsating fronts, which is well defined for all L > 0, is nondecreasing with respect to the period L > 0.
The limits of c∗L as L → 0+ and L → +∞ have been determined in [21, 26, 27], and the proofs use
as an essential tool a variational formula for c∗L, which only involves the derivative ∂uf(·, 0) of f at
u = 0. For the bistable equation (1.1) under assumptions (1.2) and (1.3), Theorems 1.2 and 1.4 give
the limit of cL as L → 0+, but the determination of the limit, if any, of cL as L → +∞ under the
assumptions of Theorem 1.5 is still open, as is the question of the monotonicity of cL with respect to
L on the connected components of the set E.

More generally speaking, for general diffusion and reaction coefficients a(x) and f(x, u) satis-
fying (1.2) and (1.3), the question of the existence of pulsating fronts with zero or nonzero speed cL
for the L-periodic equation (1.1) is very challenging. The possible presence of multiple ordered steady
states can prevent the existence of fronts with zero or nonzero speed in general, as in the homogeneous
case f = f(u) (see [23] and Remark 4.4 below) or as for problems in straight infinite cylinders with
non-convex sections, see [7]. After completion of the present paper, we learned that the answer to the
question of existence of stationary or non-stationary fronts is negative in general, see [59]. Apart from
the results in [59], the only related “non-existence” results had been concerned with the non-existence
of pulsating fronts with nonzero speed, for some specific equations such as (1.8) (see [52, 54]) or in
the case of large periods (see [17]). We mention that the existence of stationary solutions (preventing
the existence of truly propagating solutions) has also been investigated for spatially discrete mod-
els [1, 5, 13, 15, 36, 40], for some non-periodic equations [3, 37, 42, 44] or in some higher-dimensional
situations [6, 14].

Exponential stability of pulsating fronts

The last main result of the paper is concerned with the global and exponential stability of the pulsating
fronts with nonzero speed. In this section, we fix L ∈ (0,∞) and we assume that equation (1.1) admits
a pulsating front φL(x − cLt, x/L) with nonzero speed cL 6= 0. We study the asymptotic behavior as
t→ +∞ of the solutions of {

ut = (aL(x)ux)x + fL(x, u), t > 0, x ∈ R,
u(0, x) = g(x), x ∈ R,

(1.17)

for the class of “front-like” initial conditions g ∈ L∞(R, [0, 1]) (the initial condition u(0, x) = g(x) is
understood for a.e. x ∈ R). From [23], it is well known that for the homogeneous equation (1.6), if
the initial value g is above 1 − δ at −∞ and below δ at +∞, where δ > 0 is as in (1.3), then the
solution of associated initial value problem converges at large time to a translate of the traveling wave
solution (1.7), and this convergence is exponential in time. For scalar reaction-diffusion equations with
bistable time-periodic nonlinearities, such exponential stability of time-periodic traveling waves was first
proved in [2], and then a dynamical systems approach to these results was presented in [57, Section 10].
For a special class of equations in periodic habitat with x-independent bistable reaction f = f(u), only
the local stability of pulsating fronts had been shown, see [50] (see also [45] for some results on the
local stability of fronts for time almost-periodic bistable equations). In the current paper, we show the
global and exponential stability of pulsating fronts for the more general equation (1.1).

Theorem 1.9. Assume that equation (1.1) admits a pulsating front uL(t, x) = φL(x − cLt, x/L) with
speed cL 6= 0. Then there exists a positive constant µ > 0 such that for every g ∈ L∞(R, [0, 1]) satisfying

lim inf
x→−∞

g(x) > 1− δ and lim sup
x→+∞

g(x) < δ, (1.18)

where δ is the constant given in (1.3), the solution u(t, x) of (1.17) satisfies

|u(t, x)− uL(t+ τg, x)| = |u(t, x)− φL(x− cLt− cLτg, x/L)| ≤ Cg e−µt for all t ≥ 0, x ∈ R, (1.19)
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for some constants τg ∈ R and Cg > 0.

This theorem implies in particular that for the large class of initial values satisfying (1.18), the solu-
tions of (1.17) have the same profile and the same wave speed at large time. Furthermore, Theorem 1.9
also immediately provides the uniqueness of the speed of pulsating fronts as well as the uniqueness
of the pulsating fronts up to shifts in time in the case where the speed is not zero (these uniqueness
properties stated in Theorem 1.1 are proved at the end of Section 2.2). More generally speaking, the
global stability of pulsating fronts will be used in [17] to prove a uniqueness result in the larger class of
generalized transition fronts.

In Theorem 1.9, the assumption cL 6= 0 is essential. Namely, there are equations of the type (1.1)
which admit stationary fronts (with speed cL = 0) that are not stable: in [17] we construct generalized
transition fronts which connect unstable stationary fronts to stable ones.

In Theorem 1.9, the initial conditions are assumed to be close enough to 0 and 1 at ±∞. Actually,
the convergence holds under other types of assumptions for the initial conditions, as the following result
shows.

Theorem 1.10. Assume that equation (1.1) admits a pulsating front uL(t, x) = φL(x− cLt, x/L) with
speed cL 6= 0 and assume that the L-periodic stationary states 0 < ū(x) < 1 of (1.1) are all unstable.
Then for any L-periodic stationary states 0 < ū±(x) < 1 of (1.1) and for any g ∈ L∞(R, [0, 1]) with

lim inf
x→−∞

(
g(x)− ū−(x)

)
> 0 and lim sup

x→+∞

(
g(x)− ū+(x)

)
< 0, (1.20)

the solution u(t, x) of (1.17) satisfies (1.19).

Under the assumptions of Theorem 1.10 (we thank Dr. J. Fang for mentioning initial conditions of
the type (1.20)), it follows that any two L-periodic stationary states 0 < ū1(x) < 1 and 0 < ū2(x) < 1
of (1.1) are either identically equal, or unordered in the sense that minR(ū1− ū2) < 0 < maxR(ū1− ū2).
Given this fact, the proof of Theorem 1.10 is then based on the following argument. Firstly, if a
function v solves the Cauchy problem (1.17) with an L-periodic initial condition g ∈ L∞(R, [0, 1]) such
that g > ū1 in R (resp. g < ū2 in R), then v(t, x) → 1 (resp. v(t, x) → 0) as t → +∞ uniformly
in x ∈ R. Secondly, the main step consists in showing that the solution u of (1.17) with an initial
condition g satisfying (1.20) can be controlled from below or above as x → ±∞ by solutions v of the
above type. Therefore, u(T, ·) satisfies the limiting conditions (1.18) for some time T > 0 large enough
and Theorem 1.9 can be applied to u(T + t, x) and leads to the conclusion.

However, we point out that even if Theorem 1.9 is used in the proof of Theorem 1.10, the assump-
tion (1.20) does not imply (1.18) in general, so Theorem 1.10 cannot be viewed as a direct corollary
of Theorem 1.9. To see it, let us consider the homogeneous equation (1.6) with an x-independent
function f = f(u) satisfying (1.2), with θx = θ, together with (1.3) and

∫ 1
0 f(u) du > 0. The as-

sumptions of Theorems 1.9 and 1.10 are fulfilled, and any initial condition g ∈ L∞(R, [0, 1]) such that
lim infx→−∞ g(x) > θ and lim supx→+∞ g(x) < θ satisfies (1.20) but not (1.18) in general.

In Theorems 1.9 and 1.10, the initial conditions g are front-like in the sense that g is not too small at
−∞ and not too large at +∞. We mention that the Cauchy problem with initial conditions which are
compactly supported or at least not too large at ±∞ has been extensively studied in the homogeneous
and periodic cases, see, e.g., [4, 18, 23, 24, 52, 58].

Remark 1.11. Some of the results proved in the paper could be extended to higher dimensions, such
as those on the homogenization regime when L > 0 is small. Some others require specific features
of some limiting one-dimensional equations, such as the study of the case of large periods, and their
extension to higher dimensions is not clear. Lastly, the stability results can not be extended as such in
higher dimensions, because of possible non-converging oscillations in the directions orthogonal to the
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propagation. We also preferred to focus in this paper on the one-dimensional equation (1.1) for the sake
of simplicity of the presentation and since this situation already contains difficult issues and reveals
some of the most interesting aspects of the role of the spatial periodicity.

Outline of the paper. In Section 2, we give the proof for the qualitative properties of pulsating fronts
stated in Theorem 1.1. Section 3 is devoted to the proof of the existence results for small and large
periods L, that is, Theorems 1.2, 1.4 and 1.5. In Section 4, we prove Theorem 1.8 and further results
on the properties of the set of periods of non-stationary fronts. Lastly, Section 5 is devoted to the proof
of the stability results, Theorems 1.9 and 1.10, while the Appendix (Section 6) is concerned with the
proof of some auxiliary lemmas used in the proofs of Theorems 1.2 and 1.8.

2 Qualitative properties of pulsating fronts: proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In Section 2.1, we prove the part of Theorem 1.1
which is concerned with the sign of the speed of non-stationary fronts. In Section 2.2, we carry out the
proof for the other part of Theorem 1.1, that is, the monotonicity and uniqueness of non-stationary
fronts as well as the uniqueness of the speed for pulsating fronts with zero or nonzero speed.

2.1 The sign of the speeds of non-stationary pulsating fronts

In this section, we show that the sign of non-stationary pulsating fronts is that of the integral
∫ 1

0 f(u) du.
We state this result (see Lemma 2.2 below) in a separated section, since it will be used several times
later and is also of interest in its own. Before doing so, we first establish some exponential bounds
for the pulsating fronts when they approach their limiting states, whether they be stationary or non-
stationary. The proof is similar to that of the exponential decay of pulsating fronts for combustion
nonlinearities in [51]. We include it here because its strategy is useful.

Lemma 2.1. For a fixed L > 0, if u(t, x) = φL(x− cLt, x/L) is a pulsating front of equation (1.1) with
speed cL ∈ R, then there exist A1, A2 ∈ R, µ1 > 0, µ2 > 0, C1 > 0, C2 > 0 such that

0 < u(t, x) = φL(x− cLt, x/L) ≤ C1e−µ1(x−cLt) if x− cLt ≥ A1, (2.1)

0 < 1− u(t, x) = 1− φL(x− cLt, x/L) ≤ C2eµ2(x−cLt) if x− cLt ≤ A2. (2.2)

Proof. From the strong parabolic maximum principle, we know that 0 < u(t, x) < 1 for all (t, x) ∈ R2.
According to the sign of cL, two cases may occur.

Case 1: cL = 0. In this case, u(t, x) = u(x) is a stationary solution of equation (1.1) with limiting
conditions limx→−∞ u(x) = 1 and limx→+∞ u(x) = 0. Then there exists A1 ∈ R such that u(x) ≤ δ
for all x ≥ A1, where δ > 0 is as in (1.3). It follows from (1.3) that (aLu

′)′(x) − γu(x) ≥ 0 for
all x ≥ A1. Choose µ1 > 0 small enough so that aL(x)µ2

1 − a′L(x)µ1 − γ ≤ 0 for all x ∈ R, and define
ω(x) = C1e−µ1x, where C1 is a positive constant such that C1e−µ1A1 ≥ u(A1). But (aLω

′)′(x)−γω(x) =
C1(aL(x)µ2

1 − a′L(x)µ1 − γ)e−µ1x ≤ 0 for all x ∈ R. Then the inequality (2.1) follows from the elliptic
weak maximum principle, and (2.2) can be obtained in the same way, using this time the second line
of (1.3).

Case 2: cL 6= 0. In this case, consider the variables

ξ = x− cLt and y =
x

L
. (2.3)
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Upon substitution, φL(ξ, y) satisfies the following problem:
∂̃L(a(y)∂̃LφL) + cL∂ξφL + f(y, φL) = 0 for all (ξ, y) ∈ R× R,
φL(ξ, y) is 1-periodic in y,

φL(−∞, y) = 1, φL(+∞, y) = 0 uniformly in y ∈ R,
(2.4)

where

∂̃L = ∂ξ +
1

L
∂y.

By the periodicity condition, equation (2.4) can be restricted in y ∈ T := R/Z.
For any µ ∈ R, let Tµ be the linear operator defined by

Tµ(ψ) = L−2(aψ′)′ − 2L−1µaψ′ +
(
− L−1µa′ − cLµ+ aµ2 − γ

)
ψ

for all ψ ∈ C2(T). The Krein-Rutman theory provides the existence and uniqueness, for any µ ∈
R, of the principal eigenvalue λ1(µ) of Tµ, associated with a (unique up to multiplication) positive
eigenfunction ψµ. By uniqueness, λ1(0) = −γ < 0. Moreover, there are α > 0 (depending on a) and
β > 0 (depending on a, L, cL and γ) such that −µa′(y)/L− cLµ+ a(y)µ2 − γ ≥ αµ2 − β for all µ ∈ R
and y ∈ R, whence λ1(µ) ≥ αµ2 − β and λ1(µ) > 0 for |µ| large enough. Since µ 7→ λ1(µ) is a convex
function (see, e.g., the proof of [8, Proposition 5.7]), λ1(µ) is continuous in µ, and hence there is µ1 > 0
such that λ1(µ1) = 0. A direct computation shows that

∂̃L
(
a(y)∂̃L(e−µ1ξψµ1(y))

)
+ cL∂ξ

(
e−µ1ξψµ1(y)

)
− γe−µ1ξψµ1(y) = 0 for all (ξ, y) ∈ R× T, (2.5)

that is, ut − (aL(x)ux)x + γu = 0 with u(t, x) = e−µ1(x−cLt)ψµ1(x/L). On the other hand,
since limξ→+∞ φL(ξ, y) = 0 uniformly for y ∈ T, there is A1 ∈ R such that 0 < φL(ξ, y) ≤ δ for
all ξ ≥ A1 and y ∈ T. It then follows from (1.3) that

∂̃L(a(y)∂̃LφL) + cL∂ξφL − γφL ≥ 0 for all ξ ≥ A1 and y ∈ T. (2.6)

One can normalize ψµ1 in such a way that e−µ1A1ψµ1(y) > φL(A1, y) for all y ∈ T. Define ε∗ = inf
{
ε ≥

0 | u(t, x)−ε ≤ u(t, x) for all x−cLt ≥ A1

}
. The real number ε∗ is well defined and u(t, x)−ε∗ ≤ u(t, x)

for all x − cLt ≥ A1. Assume by contradiction that ε∗ > 0. Since u(t + L/cL, x + L) = u(t, x)
in R2 and u(t, x) → 0 as x − cLt → +∞, there is then (t∗, x∗) ∈ R2 such that x∗ − cLt∗ ≥ A1 and
u(t∗, x∗) − ε∗ = u(t∗, x∗), whence x∗ − cLt∗ > A1 from the normalization of ψµ1 . Define z = u − u.
From (2.5) and (2.6), one has 0 ≤ zt−(aL(x)zx)x+γz for all x−cLt ≥ A1. But z has a minimum at the
point (t∗, x∗) with x∗ − cLt∗ > A1 and z(t∗, x∗) = −ε∗ < 0. Hence 0 ≤ −γ ε∗, which is a contradiction.
Thus, ε∗ = 0, that is, (2.1) holds C1 = maxT ψµ1 > 0.

Similarly, there is A2 ∈ R such that 0 < 1 − φL(ξ, y) ≤ δ for all ξ ≤ A2 and y ∈ T. As above, by
working this time with the function 1− φL(ξ, y) on the set (−∞, A2)× T, (2.2) follows.

Lemma 2.2. If equation (1.1) admits a pulsating front u(t, x) = φL(x− cLt, x/L) with cL 6= 0, then cL
has the sign of

∫ 1
0 f(s)ds.

Proof. Use the variables (ξ, y) as in (2.3) and notice that, since cL 6= 0, parabolic estimates applied to u
and ut imply that the function φL(ξ, y) is a classical solution of (2.4) and, by Lemma 2.1, all functions
∂ξφL, ∂yφL, ∂ξξφL, ∂ξyφL and ∂yyφL converge to 0 exponentially as ξ → ±∞. Integrating by parts the

first equation of (2.4) against ∂ξφL yields
∫
R×T

(
a(y)∂̃LφL∂̃L(∂ξφL) − cL(∂ξφL)2 − f(y, φL)∂ξφL

)
= 0.

Since
∫
R×T a(y)∂̃LφL∂̃L(∂ξφL) = (1/2)

∫
R×T a(y)∂ξ

(
∂̃LφL

)2
= 0, one infers that

cL

∫
R×T

(∂ξφL)2 = −
∫
R×T

f(y, φL)∂ξφL = −
∫
R×T

∂ξ

(∫ φL(ξ,y)

0
f(y, s)ds

)
=

∫ 1

0
f(s)ds.

Hence, cL has the sign of
∫ 1

0 f(s)ds.
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2.2 Monotonicity and uniqueness properties

To complete the proof of Theorem 1.1, we now only need to show that non-stationary pulsating fronts
are strictly monotone in time and unique up to shift in time, and that the speeds of pulsating fronts,
whether they be stationary or non-stationary, are unique as well. The general strategy can be described
as follows. The first step is to derive the time-monotonicity result by quoting the monotonicity property
established in [9] for transition fronts (which are more general than pulsating fronts). We should point
out that the time-monotonicity property can also be proved directly by applying the sliding method
(see, [8, 9, 49]). Then, the time-monotonicity property is used as a key point to establish the global
stability of non-stationary fronts stated in Theorem 1.9. Lastly, as already mentioned in Section 1,
the uniqueness properties stated in Theorem 1.1 are consequences of such a global stability. Since the
proof for Theorem 1.9 is quite lengthy, for the sake of clarity, we just quote the conclusions here and
postpone the proof in Section 5 (which is a separated section consisting of the proof for two types of
global stability of non-stationary fronts).

Proof of Theorem 1.1. Since the sign property of the speed has been proved in Lemma 2.2, we only
do the proof for the monotonicity and uniqueness results here. We first show the time-monotonicity
property of pulsating fronts with nonzero speed. According to the definition of transition fronts in [9,
Definition 1.1], it is easy to see that, as for equation (1.1), any pulsating front uL(t, x) = φL(x−cLt, x/L)
connecting 0 and 1 is a transition front connecting two stationary solutions 0 and 1 with (Γt)t∈R :=
(cLt)t∈R, (Ω+

t )t∈R := ({x |x < cLt})t∈R and (Ω−t )t∈R := ({x |x > cLt})t∈R. Furthermore, due to the

assumptions (1.2), (1.3) and the regularity of f , there is a positive constant δ̃ ≤ δ such that the function
s 7→ f(x, s) is nonincreasing in [0, δ̃] and in [1− δ̃, 1]. Therefore, if cL > 0, then uL(t, x) is an invasion of
0 by 1 (see, [9, Definition 1.4]), whence [9, Theorem 1.11] together with its followed discussion implies
that uL(t, x) is increasing in t. Similarly, if cL < 0, then uL(t, x) is an invasion of 1 by 0, and hence
uL(t, x) is decreasing in t.

As far as the uniqueness properties are concerned, one has to show that if U(t, x) = φL(x−cLt, x/L)
and Ũ(t, x) = φ̃L(x− c̃Lt, x/L) are two pulsating fronts of equation (1.1) with cL 6= 0, then c̃L = cL, and
U and Ũ are equal up to shift in time. Since Ũ(0, ·) ∈ C(R, [0, 1]) and Ũ(0,−∞) = 1, Ũ(0,+∞) = 0,
Theorem 1.9 (whose proof will be given in Section 5, and is independent of the present one) yields the
existence of τ ∈ R such that supx∈R |Ũ(t, x)− φL(x− cLt− cLτ, x/L)| → 0 as t→ +∞, whence

sup
ξ∈R

∣∣∣φL(ξ − cLτ, ξ + cLt

L

)
− φ̃L

(
ξ + (cL − c̃L)t,

ξ + cLt

L

)∣∣∣→ 0 as t→ +∞. (2.7)

Remember that φ̃L(+∞, x/L) = φL(+∞, x/L) = 0, φ̃L(−∞, x/L) = φL(−∞, x/L) = 1 uniformly
in x ∈ R, that φL(ξ, x/L) is continuous in R2, L-periodic in x and decreasing in ξ, whence 0 <
minx∈R φL(ξ, x/L) ≤ maxx∈R φL(ξ, x/L) < 1 for all ξ ∈ R. Therefore, if cL 6= c̃L, by fixing ξ ∈ R and
letting t→ +∞ in (2.7), one derives a contradiction. Thus, cL = c̃L and one infers from (2.7) that, for
every (ξ, x) ∈ R2 and k ∈ N,

φL

(
ξ−cLτ,

x

L

)
−φ̃L

(
ξ,
x

L

)
= φL

(
ξ−cLτ,

ξ

L
+cL

(x− ξ
cLL

+
k

|cL|
))
−φ̃L

(
ξ,
ξ

L
+cL

(x− ξ
cLL

+
k

|cL|
))
−→
k→+∞

0.

Thus, φL(ξ− cLτ, x/L) = φ̃L(ξ, x/L) for all (ξ, x) ∈ R2, that is, Ũ(t, x) = U(t+ τ, x) for all (t, x) ∈ R2.
Hence, the proof of Theorem 1.1 is complete.

3 Existence of pulsating fronts

As already emphasized, the proofs of Theorems 1.2 and 1.4 on the existence of pulsating fronts for small
periods L use different methods. They are carried out in Sections 3.1 and 3.2, whereas Section 3.3 is
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devoted to the proof of Theorem 1.5 on the existence of pulsating fronts for large periods L.

3.1 Small periods L: the implicit function theorem

This section is devoted to the proof of Theorem 1.2. The strategy is similar to that used by Heinze
in [31]. There, the homogeneous process for the following equation as ε→ 0+ was considered{

ut = d∆u+ f(u), t ∈ R, x ∈ Ωε,

uν = 0, t ∈ R, x ∈ ∂Ωε,
(3.1)

where d is a positive constant, f : R → R is a bistable function of class C2, uν = ∂u
∂ν , ν denotes the

exterior normal vector to Ωε and Ωε = εΩ, with Ω being a smooth open connected set of Rn which is
1-periodic in all directions xi (1 ≤ i ≤ n). Assuming the existence of a traveling wave for a homogenized
problem and then using the implicit function theorem in an appropriate function space, Heinze obtained
a unique (up to shift in time) pulsating front for the equation (3.1) at small ε. Although a portion
of the arguments of Theorem 1.2 follows the same lines as those used in [31] for problem (3.1), the
oscillations in the diffusion coefficient aL and the nonlinearity fL in equation (1.1) make the analysis
different and more complicated. In addition, we provide a different approach in the convergence to the
homogeneous process (see Lemma 3.2 below). As a matter of fact, the approach we use here allows us
to prove some continuity results at any L > 0 and not only at L = 0+ (see Lemma 3.4 below). This
strategy can then later be applied to the proof of Theorem 1.8 in Section 4, where a pulsating front for
equation (1.1) is assumed to exist at a fixed L0 > 0. Thus, for the sake of completeness of the proof
here and also for convenience of that of Theorem 1.8, we include the details as follows.

We assume that the homogenized equation (1.9) has a (unique up to shifts) front φ0, with speed c0 6=
0. Without loss of generality, one may assume that the speed satisfies c0 > 0 throughout this subsection.
Indeed, if c0 < 0, then the function ψ0(x) = 1 − φ0(−x) solves (1.9) with speed −c0 (> 0) instead
of c0 and with g(u) = −f(1 − u) instead of f , where g(x, u) = −f(−x, 1 − u). Furthermore, if
u(t, x) = φ(x−cLt, x/L) is a pulsating front for (1.1) with speed cL, then v(t, x) = 1−φ(−x−cLt,−x/L)
is a pulsating front with speed −cL for the equation vt = (ãLvx)x + gL(x, v) with ã(x) = a(−x) (and
ãH = aH). Therefore, even if it means changing a into ã and f into g, one can assume here that c0 > 0.

Define the new variables (ξ, y) as in (2.3). For a given L > 0, finding pulsating fronts u(t, x) =
φL(x − cLt, x/L) of (1.1) with a speed cL 6= 0 amounts to finding solutions φL(ξ, y) for the problem
(2.4). We also restricted equation (2.4) in y ∈ T := R/Z, due to the periodicity condition. Let L2(R×T)
and H1(R× T) be the Banach spaces defined by{

L2(R× T) =
{
v ∈ L2

loc(R× R)
∣∣ v ∈ L2(R× (0, 1)) and v(ξ, y + 1) = v(ξ, y) a.e. in R2

}
,

H1(R× T) =
{
v ∈ H1

loc(R× R)
∣∣ v ∈ H1(R× (0, 1)) and v(ξ, y + 1) = v(ξ, y) a.e. in R2

}
,

endowed with the norms ‖v‖L2(R×T) = ‖v‖L2(R×(0,1)) and ‖v‖H1(R×T) = ‖v‖H1(R×(0,1)) =
(
‖v‖L2(R×T) +

‖∂ξv‖L2(R×T) + ‖∂yv‖L2(R×T)

)1/2
, respectively.

For the homogenization limit as L→ 0+, we introduce some auxiliary operators. Namely, fix a real
β > 0 and for any c > 0, define

Mc,L(v) = ∂̃L(a∂̃Lv)+c∂ξv−βv, v ∈ DL={v ∈ H1(R×T) | ∂̃L(a∂̃Lv)∈L2(R×T)}, L∈R∗,
Mc,0(v) = aHv

′′ + cv′ − βv, v ∈ D(Mc,0) = H2(R),
(3.2)

where aH > 0 is the harmonic mean of a defined in (1.10). The fact that v ∈ DL means that v ∈
H1(R×T) and there is a constant C > 0 such that

∣∣ ∫
R×T a∂̃Lv∂̃Lϕ

∣∣≤C‖ϕ‖L2(R×T) and
∫
R×T a∂̃Lv∂̃Lϕ=

14



−
∫
R×T ∂̃L(a∂̃Lv)ϕ for all ϕ ∈ H1(R× T). Notice that the operators Mc,L are also defined for negative

values of L, that the domain DL is dense in H1(R×T) and that Mc,L(v) ∈ L2(R×T) for all v ∈ DL and
L ∈ R∗. Furthermore, the domain D(Mc,0) = H2(R) of Mc,0 is dense in H1(R) and Mc,0(v) ∈ L2(R)
for all v ∈ D(Mc,0). We first state in the following three lemmas some of the basic properties of the
operators Mc,L, Mc,0 and their inverses.

Lemma 3.1. The operators Mc,0 : H2(R) → L2(R) and Mc,L : DL → L2(R × T) for L 6= 0 are
invertible for every c > 0. Furthermore, for every r1 > 0 and r2 > 0, there is a constant C =
C(r1, r2, β, a) such that for all c ≥ r1, |L| ≤ r2, g ∈ L2(R× T) and ϕ ∈ L2(R),

‖M−1
c,L(g)‖H1(R×T) ≤ C‖g‖L2(R×T) if L 6= 0, and ‖M−1

c,0 (ϕ)‖H1(R) ≤ C‖ϕ‖L2(R).

The following lemma deals with the convergence of M−1
cn,Ln

to M−1
c,0 when Ln → 0 with Ln ∈ R∗,

cn → c > 0 and the operators M−1
cn,L

are applied to gn with gn → g in L2(R× T).

Lemma 3.2. Fix β > 0 and c > 0. Then for every g ∈ L2(R× T),

M−1
cn,Ln

(gn)→M−1
c,0 (g) in H1(R× T) and M−1

cn,0
(ϕn)→M−1

c,0 (g) in H1(R) (3.3)

as n → +∞ for every sequences (gn)n∈N in L2(R × T), (ϕn)n∈N in L2(R), (cn)n∈N in (0,+∞)
and (Ln)n∈N in R∗ such that ‖gn−g‖L2(R×T) → 0, ‖ϕn−g‖L2(R) → 0, cn → c and Ln → 0 as n→ +∞,
where g ∈ L2(R) is defined as

g(ξ) =

∫
T
g(ξ, y) dy for ξ ∈ R, (3.4)

and M−1
c,0 (g) ∈ H2(R) is viewed as an H2(R × T) function by extending it trivially in the y-variable.

Furthermore, the limits (3.3) are uniform in the ball BA={g∈L2(R×T) | ‖g‖L2(R×T)≤A} for any A>0.

The following lemma is the analogue of Lemma 3.2, when Ln → L 6= 0 as n→ +∞.

Lemma 3.3. Fix β > 0, c > 0 and L ∈ R∗. Then for every g ∈ L2(R × T) and every sequences
(gn)n∈N in L2(R × T), (cn)n∈N in (0,+∞) and (Ln)n∈N in R∗ such that ‖gn − g‖L2(R×T) → 0, cn → c

and Ln → L as n→ +∞, there holds M−1
cn,Ln

(gn)→M−1
c,L(g) in H1(R× T) as n→ +∞. Furthermore,

the limit is uniform with respect to g ∈ BA for every A > 0.

In order not to lengthen the course of the proof of Theorem 1.2, the proofs of these auxiliary lemmas
are postponed in the Appendix (Section 6).

Coming back to the solution (φ0, c0) of the homogeneous equation (1.9), it is well known that there
are some positive constants A1 and A2 such that φ0(ξ) ∼ A1e−λ1ξ as ξ → +∞ and 1−φ0(ξ) ∼ A2eλ2ξ as

ξ → −∞, with λ1 = (c0+(c2
0−4aHf

′
(0))1/2)/(2aH) > 0 and λ2 = (−c0+(c2

0−4aHf
′
(1))1/2)/(2aH) > 0.

Now, in order to apply an implicit function theorem around the homogeneous front (φ0, c0) to get the
existence of pulsating fronts for small L, we will rewrite the solutions (cL, φL) of (2.4) in terms of zeroes
of a function G introduced below. So we need to introduce a few more notations. Firstly, let χ ∈ C2(R)
be a solution of the equation a(y) (χ′(y) + 1) = aH . It is unique up to a constant and, by (1.10), χ is
periodic. Therefore,

(a(χ′ + 1))′ = 0 in R and χ(y + 1) = χ(y) for all y ∈ R. (3.5)

Secondly, for any v ∈ H1(R× T), c > 0 and L ∈ R, define

K(v, c, L)(ξ, y) =
(
aH + (aχ)′(y)

)
φ′′0(ξ) + La(y)χ(y)φ

(3)
0 (ξ) + c

(
φ′0(ξ) + Lχ(y)φ′′0(ξ)

)
+ f

(
y, v(ξ, y) + φ0(ξ) + Lχ(y)φ′0(ξ)

)
+ βv(ξ, y).
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From the exponential convergence of φ0 to its limits at ±∞ and from standard elliptic estimates, one
has φ0 ∈ L2(0,+∞), 1−φ0 ∈ L2(−∞, 0) and φ′0 ∈ H2(R). Since f(y, u) is globally Lipschitz-continuous
in u uniformly for y ∈ T, it follows that K(v, c, L) ∈ L2(R × T) for any v ∈ H1(R × T) (and even for
any v ∈ L2(R× T)). Finally, for v ∈ H1(R× T), c > 0 and L ∈ R, we set G(v, c, L) = (G1, G2)(v, c, L)
with 

G1(v, c, L) =

{
v +M−1

c,L

(
K(v, c, L)

)
if L 6= 0,

v +M−1
c,0

(
K(v, c, 0)

)
if L = 0,

G2(v, c, L) =

∫
R+×T

(
φ0(ξ) + v(ξ, y) + Lχ(y)φ′0(ξ)

)2 − ∫
R+

φ2
0,

(3.6)

where K(v, c, 0) ∈ L2(R) is defined as g in (3.4) (in particular, the term (aχ)′ disappears in K(v, c, 0)).2

In view of Lemma 3.1, the function G maps H1(R× T)× (0,+∞)×R into H1(R× T)×R. Note that
G(0, c0, 0) = (0, 0) by the definition of (φ0, c0) and f .

Moreover, it is also straightforward to check, using in particular (3.5) and a (χ′ + 1) = aH , that a
pair (φL, cL) ∈

(
φ0 +H1(R× T)

)
× (0,+∞) solves the first two lines of (2.4) for L 6= 0 with∫

R+×T
φ2
L =

∫
R+

φ2
0, (3.7)

if and only if G(φL − φ0 − Lχφ′0, cL, L) = (0, 0). This is what led us to the definition of G and the
introduction of χ.

The general strategy of the proof of Theorem 1.2 is to use the implicit function theorem for the
existence and uniqueness of a solution of (2.4) and (3.7) for small L. For this, we use some continuity
and differentiability properties of G.

Lemma 3.4. The function G : H1(R×T)× (0,+∞)×R→ H1(R×T)×R is continuous, and it is con-
tinuously Fréchet differentiable with respect to (v, c). Furthermore, the operator Q = ∂(v,c)G(0, c0, 0) :
H1(R× T)× R→ H1(R× T)× R is invertible.

The proof of Lemma 3.4 is quite lengthy and is therefore postponed in the Appendix (Section 6).
We just point out here that the proof of the invertibility of the operator Q uses as key-points some
properties of the linearization of (1.9) at φ0. Namely, denoting

H(u) = aHu
′′ + c0u

′ + f
′
(φ0)u = Mc0,0(u) + β u+ f

′
(φ0)u for u ∈ H2(R) (3.8)

and the adjoint operator H∗ being given by H∗(u) = aHu
′′ − c0u

′ + f
′
(φ0)u for u ∈ H2(R) in such a

way that (H∗(v), u)L2(R) = (v,H(u))L2(R) for all u, v ∈ H2(R), it follows from Section 4 of [31] that the
operators H and H∗ have algebraically simple eigenvalue 0 and that the range of H is closed in L2(R).
Furthermore, the kernel ker(H) of H is equal to ker(H) = Rφ′0. We will see in the proof of Theorem 1.8
that similar properties hold for the linearization of the equation (2.4) around a pulsating front for a
period L0 > 0.

End of the proof of Theorem 1.2. From Lemma 3.4, one can apply the implicit function theorem for the
functionG : H1(R×T)×(0,+∞)×R→ H1(R×T)×R (see, e.g., the remark of [16, Theorem 15.1]). Then
there exists L∗ > 0 such that for any 0 < L < L∗, there is a unique (vL, cL) ∈ H1(R×T)×(0,+∞) such
that G(vL, cL, L) = (0, 0) and (vL, cL)→ (0, c0) as L→ 0. Let φL(ξ, y) = φ0(ξ) + vL(ξ, y) +Lχ(y)φ′0(ξ)
for (ξ, y) ∈ R × T. It follows in particular that φL − φ0 → 0 in H1(R × T) as L → 0+. According to

2The second component of the function G in (3.6) will fix the shift in ξ. Actually, one can choose any set with the form
(s,+∞)×T for s ∈ R as an integral domain, while the set R×T is not suitable, since φ0 6∈ L2(R). Similarly, (3.7) is used
to fix the shift of φL in ξ.
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the definition of G, for every L ∈ (0, L∗), (φL, cL) is a weak solution and then, by parabolic regularity,
a bounded classical solution of the equation (2.4) which satisfies, in particular, the limiting conditions
in (2.4) since ∂ξφL and ∂yφL actually belong to L∞(R × R). The strong maximum principle together
with f(y, u) > 0 (resp. f(y, u) < 0) for all (y, u) ∈ R × (−∞, 0) (resp. (y, u) ∈ R × (1,+∞)) implies
that φL ranges in (0, 1).

Lastly, for any given L ∈ (0, L∗), if ũL(t, x) = φ̃L(x − c̃Lt, x/L) is a pulsating front for (1.1),
then c̃L = cL > 0 by Theorem 1.1,3 while ṽL(ξ, y) := φ̃L(ξ, y) − φ0(ξ) − Lχ(y)φ′0(ξ) ∈ H1(R × T)

from the general exponential decay estimates of φ̃L and 1 − φ̃L as ξ → ±∞ (see Lemma 2.1). By
continuity, there is ξ̃ ∈ R such that

∫
R+×T φ̃

2
L(ξ + ξ̃, y) =

∫
R+ φ

2
0, whence G(ṽL(· + ξ̃, ·), cL, L) = (0, 0)

and φ̃L(ξ + ξ̃, y) = φL(ξ, y) for all (ξ, y) ∈ R × T by uniqueness of vL. The proof of Theorem 1.2 is
thereby complete.

3.2 Small periods L: the instability of L-periodic steady states

In this section, we do the proof of Theorem 1.4. To obtain the existence result, we employ the abstract
theory in [22] by checking that the semiflow generated by the equation (1.17) satisfies the general
assumptions, including in particular some stability properties, for bistable monotone semiflows.

To do so, we first need to define precisely the notion of stability of periodic steady states (and,
actually, that of general steady states, since one will need this notion later in Theorem 4.3 below).
Namely, let L > 0 and let ū : R → [0, 1] denote a steady state of (1.1). For any R > 0, let λ1,R(L, ū)
be the unique real number λ such that there exists a C2([−R,R]) function ψ satisfying

(aL(x)ψ′)′ + ∂ufL(x, ū(x))ψ = λψ in [−R,R], ψ > 0 in (−R,R), ψ(−R) = ψ(R) = 0. (3.9)

The real number λ1,R(L, ū) is the principal eigenvalue of equation (3.9), and ψ is the (unique up to
multiplication) corresponding eigenfunction. It is well known that λ1,R(L, ū) exists uniquely, and that
λ1,R(L, ū) is increasing in R (see, e.g., [11, Lemma 2.5]).

Definition 3.5. Let λ1(L, ū) = limR→+∞ λ1,R(L, ū). One says that ū is unstable if λ1(L, ū) > 0, stable
if λ1(L, ū) < 0, and semistable if λ1(L, ū) ≤ 0.

By comparison, there holds infx∈R
(
∂ufL(x, ū(x))

)
≤ λ1(L, ū) ≤ supx∈R

(
∂ufL(x, ū(x))

)
. It also

follows from [11] that if ū is L-periodic, then λ1(L, ū) is the principal eigenvalue of the periodic eigenvalue
problem

(aL(x)ϕ′)′ + ∂ufL(x, ū(x))ϕ = λϕ in R, ϕ > 0 in R, ϕ is L-periodic. (3.10)

In particular, the steady state ū ≡ 0 is stable since ∂uf(x, 0) ≤ −γ. Similarly, the steady state ū ≡ 1
is stable. Then the Dancer-Hess connecting orbit theorem (see, e.g., [34, Proposition 9.1]) implies
that there exists at least one L-periodic steady state ū such that 0 < ū < 1 in R. In addition, it
turns out that for small L > 0, all such intermediate L-periodic steady states are unstable under the
assumption (1.12), as the following lemma shows.

Lemma 3.6. Under the assumption (1.12), there is L̃∗ > 0 such that λ1(L, ū) > 0 for every 0 < L < L̃∗
and for every L-periodic steady state ū of (1.1) with 0 < ū < 1.

3We point out that the uniqueness of the speed, that is c̃L = cL, can not be proved directly by the uniqueness of
the solution of G(vL, cL, L) = (0, 0). Actually, since the function G is defined on H1(R × T) × (0,+∞) × R, the implicit
function theorem only guarantees the uniqueness of positive speed, while it can not exclude the case where cL > 0 and
c̃L = 0.
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Proof. Assume by contradiction that there are some sequences (Ln)n∈N in (0,+∞), (ūn)n∈N and (ψn)n∈N
in C2(R) such that Ln → 0+ as n→ +∞ and, for each n ∈ N, ūn satisfies

(aLn ū
′
n)′ + fLn(x, ūn) = 0 in R, ūn is Ln-periodic, 0 < ūn < 1 in R, (3.11)

and ψn satisfies

(aLnψ
′
n)′ + ∂ufLn(x, ūn)ψn = λ1(Ln, ūn)ψn in R, ψn is Ln-periodic, ψn > 0 in R, (3.12)

with principal eigenvalue λ1(Ln, ūn) ≤ 0. Since

min
x∈R, u∈[0,1]

(
∂ufLn(x, u)

)
≤ λ1(Ln, ūn) ≤ max

x∈R, u∈[0,1]

(
∂ufLn(x, u)

)
, (3.13)

the sequence
(
λ1(Ln, ūn)

)
n∈N is then bounded. Up to extraction of some subsequence, there is a real

number λ̃1 ≤ 0 such that λ1(Ln, ūn) → λ̃1 as n → +∞. Now, denote vn(y) = ūn(Lny). Each function
vn is 1-periodic and obeys a(y)v′′n(y) + a′(y)v′n(y) + L2

nf(y, vn(y)) = 0 for all y ∈ R. It then follows
from standard elliptic estimates that there is a 1-periodic C2(R) function 0 ≤ v∞ ≤ 1 such that,
up to extraction of some subsequence, vn → v∞ in C2(R) as n → +∞, and the function v∞ solves
av′′∞+a′v′∞ = 0 in R. Thus, av′∞ is a constant function, and then v′∞ has a sign. Since v∞ is 1-periodic,
v∞ is then a constant function.

Next, one shows that v∞ = θ. Integrating (aLn ū
′
n)′ + fLn(x, ūn) = 0 over [0, Ln] yields

0 =
1

Ln

∫ Ln

0
fLn(x, ūn(x))dx =

∫ 1

0
f(y, vn(y))dy → f(v∞) as n→ +∞.

Therefore, f(v∞) = 0. If v∞ = 0, then the assumption (1.3) would imply that 0 < vn ≤ δ in R for n
large enough, whence f(y, vn(y)) ≤ −γvn(y) < 0 and (av′n)′ = −L2

nf(y, vn) > 0 in R for n large enough,
which contradicts the fact that av′n is 1-periodic. Similarly, one obtains that v∞ 6= 1. It then follows
from the assumption (1.12) that v∞ = θ.

Finally, for any n ∈ N, multiply the equation (3.12) by ψ−1
n and integrate by parts over [0, Ln].

It then follows that
∫ Ln

0

(
aLn(x)(ψ′n(x))2/(ψn(x))2 + ∂ufLn(x, ūn(x))

)
dx = Lnλ1(Ln, ūn). As a conse-

quence,

λ1(Ln, ūn) ≥ 1

Ln

∫ Ln

0
∂ufLn(x, ūn(x))dx =

∫ 1

0
∂uf(y, vn(y))dy.

Taking the limit as n→ +∞ yields that λ̃1 ≥ f
′
(θ) > 0, which contradicts the assumption that λ̃1 ≤ 0.

The proof of Lemma 3.6 is thereby complete.

A consequence of Lemma 3.6 is the following non-existence result. Before doing so, we first introduce
an important notation: in the sequel, for any u0 ∈ C(R, [0, 1]), u(t, x;u0) denotes the unique solution
of equation (1.1) with initial value u(0, x;u0) = u0(x).

Lemma 3.7. For every 0 < L < L̃∗ and for every L-periodic steady state 0 < ū < 1 of (1.1), there
is no steady state v of (1.1) such that 0 < v < ū and there is no steady state w of (1.1) such that
ū < w < 1.

Proof. We only prove the first conclusion, since the proof of the second one is similar. Thus, let
0 < L < L̃∗, let 0 < ū < 1 be an L-periodic steady state of (1.1) and let v be a steady state of (1.1)
such that 0 ≤ v < ū. Our goal is to show that v ≡ 0 in R. We emphasize that a difficulty comes from
the fact that v is not assumed to be periodic.
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Step 1: supx∈R
(
v(x) − ū(x)

)
< 0. First, since λ1(L, ū) > 0 by Lemma 3.6, it follows from Defini-

tion 3.5 that there is R > L/2 large enough such that λ1,R(L, ū) > 0, where λ1,R(L, ū) is the principal
eigenvalue of (3.9). For any ε > 0, define

vε(x) =

{
ū(x)− εψR(x) if |x| < R,

ū(x) if |x| ≥ R,
(3.14)

where ψR is the positive eigenfunction of (3.9) corresponding to λ1,R(L, ū) with normalization
‖ψR‖L∞((−R,R)) = 1. Choose ε0 > 0 small enough such that, for all 0 < ε ≤ ε0, 0 < vε ≤ ū in R
and

fL(x, vε)− fL(x, ū) ≤ −∂ufL(x, ū)× εψR +
λ1,R(L, ū)

2
× εψR in (−R,R).

It then follows that

(aL (vε)x)x + fL(x, vε) = (aLūx)x − (aL (εψR)x)x + fL(x, vε)− fL(x, ū) + fL(x, ū)

≤ −λ1,R(L, ū)× εψR +
λ1,R(L, ū)

2
× εψR < 0 in (−R,R)

(3.15)

for all 0 < ε ≤ ε0. Furthermore, since ū is a stationary solution of equation (1.1), and since v′ε(x−) ≥
v′ε(x+) at x = ±R, it follows that vε is a supersolution of equation (1.1).

Now, for any k ∈ Z and for any 0 < ε ≤ ε0, the function vε(· − kL) is also a supersolution of (1.1).
Since v < ū in R, it follows then from the strong elliptic maximum principle that, for every 0 < ε ≤ ε0,
there holds v(x) < vε(x− kL) for all x ∈ (kL−R, kL+R) and for all k ∈ Z. Since R > L/2 and ψR is
continuous and positive in (−R,R), one infers that supx∈R

(
v(x)− ū(x)

)
< 0.

Step 2: v ≡ 0 in R. Finally, let ϕ be a principal eigenfunction of the periodic problem (3.10),
associated with the principal eigenvalue λ1(L, ū). With calculations similar to the ones above, there
is η0 > 0 such that for all 0 < η ≤ η0, the L-periodic function ū− ηϕ satisfies v < ū− ηϕ < ū and

(aL (ū− ηϕ)x)x + fL(x, ū− ηϕ) < 0 in R, (3.16)

that is ū− ηϕ is a strict supersolution of (1.1). As a consequence, the solution u(t, x; ū− η0ϕ) of (1.1)
with initial condition ū−η0ϕ is decreasing in t > 0 and, from standard parabolic estimates, it converges
as t→ +∞ to an L-periodic steady state u∞(x) of (1.1) such that 0 ≤ v ≤ u∞ < ū−η0ϕ < ū < 1 in R.
If u∞ 6≡ 0 in R, then 0 < u∞ < 1 from the strong maximum principle, whence u∞ is unstable from
Lemma 3.6, in the sense that λ1(L, u∞) > 0. Therefore, as above, by calling ψ a principal periodic
eigenfunction of the periodic problem (3.10) associated with u∞, it follows that the functions u∞ + κψ
are subsolutions of (1.1) for all κ > 0 small enough. In particular, since u∞ < ū − η0ϕ in R and both
functions are L-periodic and continuous, there is κ0 > 0 such that u∞ + κ0ψ is a subsolution of (1.1)
and u∞+κ0ψ < ū−η0ϕ in R, whence u∞+κ0ψ < u(t, ·; ū−η0ϕ) in R for all t > 0, from the maximum
principle. Finally, passing to the limit as t → +∞ gives u∞ + κ0ψ ≤ u∞ in R, which is impossible.
Hence, u∞ ≡ 0 and v ≡ 0 in R, and the proof of Lemma 3.7 is complete.

As a consequence of Lemma 3.7, for every 0 < L < L̃∗ and for every L-periodic steady state
0 < ū < 1, equation (1.1) restricted to E1 = {u ∈ C(R, [0, 1]) | 0 ≤ u ≤ ū in R}, and to E2 = {u ∈
C(R, [0, 1]) | ū ≤ u ≤ 1 in R} respectively, has a monostable structure. In order to prove the existence
of pulsating fronts for (1.1), one will verify a counter-propagation condition on the spreading speeds of
these subsystems, as defined in [22]. To do so, denote

C−(0, ū) =
{
u ∈ C(R, [0, 1])

∣∣ 0 ≤ u ≤ ū, lim sup
x→+∞

(u(x)− ū(x)) < 0 and u(x) = ū(x) for x� −1
}
,

C+(ū, 1) =
{
u ∈ C(R, [0, 1])

∣∣ ū ≤ u ≤ 1, lim inf
x→−∞

(u(x)− ū(x)) > 0 and u(x) = ū(x) for x� 1
}
.
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Lemma 3.8. For every 0 < L < L̃∗ and for every L-periodic steady state 0 < ū < 1 of (1.1), there are
some real numbers c+ > 0 and c− > 0 such that

lim sup
t→+∞, x≥−c−t

u(t, x;u0) = 0 for all u0 ∈ C−(0, ū),

lim inf
t→+∞, x≤c+t

u(t, x; ũ0) = 1 for all ũ0 ∈ C+(ū, 1).
(3.17)

Proof. We only give the proof of the first assertion (3.17), since the arguments for the other one are
similar. First, one claims that for any u0 ∈ C−(0, ū) and any constant C ∈ R, there holds

lim
t→+∞

u(t, x;u0) = 0 uniformly for x ∈ [C,+∞). (3.18)

So, fix any u0 ∈ C−(0, ū), any real number C, any k0 ∈ N such that C ≥ −k0L, and let η > 0 be
arbitrary. There are then ε > 0 small enough and n0 ∈ N large enough such that u0(·+nL) ≤ vε for all
n ≥ n0, n ∈ N, where vε is defined in (3.14) and is a strict supersolution of (1.1), in the sense of (3.15).
It follows from the parabolic maximum principle that u(t, x; vε) < vε(x) and u(t, x; vε) is decreasing in
t > 0. By standard parabolic estimates, u(t, x; vε) converges as t → +∞ locally uniformly in x ∈ R
to a stationary solution vε,∞ of equation (1.1) with 0 ≤ vε,∞ < ū. Lemma 3.7 and the strong elliptic
maximum principle imply that vε,∞ ≡ 0. Therefore, there is T > 0 such that

0 ≤ u(t, y; vε) ≤ η for all t ≥ T and |y| ≤ (k0 + n0 + 1)L.

For any x ≥ C (≥ −k0L), there is lx ∈ Z such that lx ≥ −k0 and lxL ≤ x ≤ (lx + 1)L. With
nx = k0 + n0 + lx ≥ n0, one has |x− nxL| ≤ |x− lxL|+ (k0 + n0)L ≤ (k0 + n0 + 1)L. Hence, from the
maximum principle and the periodicity of (1.1), it follows that, for all t ≥ T ,

0 ≤ u(t, x;u0) = u(t, x− nxL;u0(·+ nxL)) ≤ u(t, x− nxL; vε) ≤ η.

The claim (3.18) is thereby proved.
Next, we fix a real number σ such that 0 < σ < minR ū and a function w0 ∈ C−(0, ū) such that

σ ≤ w0 ≤ ū in R and w0 = σ in R+. From (3.18) applied to w0, and since 0 ≤ u(t, x;w0) ≤ ū(x) for all
t ≥ 0 and x ∈ R, there is a time t1 > 0 such that 0 ≤ u(t1, x;w0) ≤ w0(x+ L) for all x ∈ R. From the
maximum principle, it follows by immediate induction that

0 ≤ u(nt1, x;w0) ≤ w0(x+ nL) for all n ∈ N and x ∈ R. (3.19)

Finally, one shows that the first assertion in (3.17) holds with any positive constant c− such that
0 < c− < L/t1. Fix any function u0 ∈ C−(0, ū). By (3.18) and u(t, ·;u0) ≤ ū, there is T > 0 such that
0 ≤ u(T, ·;u0) ≤ w0, whence

0 ≤ u(T + nt1, x;u0) ≤ u(nt1, x;w0) ≤ w0(x+ nL) for all n ∈ N and x ∈ R (3.20)

by (3.19) and the maximum principle. Let us now argue by contradiction and assume that
lim supt→+∞, x≥−c−tu(t, x;u0) > 0. Then there are some sequences (τk)k∈N in (0,+∞) and (xk)k∈N
in R such that xk ≥ −c−τk for all k ∈ N, τk → +∞ as k → +∞ and lim infk→+∞ u(τk, xk;u0) > 0.
For k large enough, one can write τk = T + nkt1 + τ̃k with nk ∈ N, 0 ≤ τ̃k ≤ t1 and nk → +∞ as
k → +∞. Write also xk = x′k + x′′k with x′k ∈ LZ and −L ≤ x′′k ≤ 0. Up to extraction of a subse-
quence, one can assume that τ̃k → τ ∈ R and x′′k → y ∈ R as k → +∞. For k large enough, denote
uk(t, x) = u(t+ τk, x+x′k;u0) for t ≥ −τk and x ∈ R. From standard parabolic estimates, the functions
uk converge locally uniformly in R2, up to extraction of a subsequence, to a solution u∞(t, x) of (1.1)
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defined for all (t, x) ∈ R2 and such that 0 ≤ u∞(t, x) ≤ ū(x) for all (t, x) ∈ R2, while u∞(0, y) > 0.
Furthermore, for any given m ∈ Z and x ∈ R, one has, for all k large enough,

0 ≤ uk(−mt1 − τ̃k, x) = u(T + nkt1 −mt1, x+ x′k;u0) ≤ w0(x+ x′k + (nk −m)L) (3.21)

by (3.20). But x′k = xk−x′′k ≥ xk ≥ −c−τk ≥ −c−(T +nkt1 + t1), whence x′k +nkL→ +∞ as k → +∞
since c− < L/t1 and nk → +∞. As a consequence, it follows from (3.21) and the definitions of u∞
and w0 that 0 ≤ u∞(−mt1 − τ, x) ≤ σ ≤ w0(x) for all m ∈ Z and x ∈ R. One infers that u∞ ≡ 0 in
R2. Indeed, for any (t, x) ∈ R2, one has, for all m ∈ N large enough,

0 ≤ u∞(t, x) = u(t+mt1 + τ, x;u∞(−mt1 − τ, ·)) ≤ u(t+mt1 + τ, x;w0).

The property (3.18) applied with w0 implies that u(t + mt1 + τ, x;w0) → 0 as m → +∞
whence u∞(t, x) = 0 for all (t, x) ∈ R2, which contradicts u∞(0, y) > 0. Therefore, the first asser-
tion of (3.17) is shown and the proof of Lemma 3.8 is complete.

Based on the above preparations, one is ready to prove Theorem 1.4.

Proof of Theorem 1.4. Fix a period L such that 0 < L < L̃∗. For any t ≥ 0, define Qt : C(R, [0, 1]) →
C(R, [0, 1]) by

Qt[u0] = u(t, ·;u0). (3.22)

By classical parabolic theory, together with Lemmas 3.6 and 3.8, the semiflow (Qt)t≥0 satisfies the
following properties:

(A1) (Periodicity) Ty
[
Qt[ϕ]

]
= Qt

[
Ty[ϕ]

]
for all ϕ ∈ C(R, [0, 1]), t > 0 and y ∈ LZ, where Ty :

C(R, [0, 1])→ C(R, [0, 1]) is the translation operator defined by Ty[ψ] = ψ(· − y).

(A2) (Continuity) For any t > 0, Qt is continuous with respect to the compact open topology.

(A3) (Monotonicity) For any t > 0, Qt is order preserving in the sense that Qt[ϕ1] ≥ Qt[ϕ2] whenever
ϕ1 ≥ ϕ2 in C(R, [0, 1]).

(A4) (Compactness) For any t > 0, Qt is compact with respect to the compact open topology.

(A5) (Bistability) Let Cper be the set of L-periodic functions in C(R, [0, 1]). For any t > 0, Qt maps Cper
to itself and is strongly monotone on Cper in the sense that infx∈R

(
Qt[ϕ1](x) − Qt[ϕ2](x)

)
> 0

whenever ϕ1 ≥ ϕ2 in Cper with ϕ1 6≡ ϕ2. Furthermore, the constant functions 0 and 1 (∈ Cper) are
stationary solutions of (1.1) and they are strongly stable from above and below, respectively, in
the sense of [22], namely, there is ε0 > 0 such that supx∈R

(
Qt[ε](x)− ε

)
< 0 and infx∈R

(
Qt[1−

ε](x) − (1 − ε)
)
> 0 for all 0 < ε ≤ ε0 and any t > 0, which follows from the assumption (1.3).

Lastly, any stationary solution 0 < ū < 1 in Cper is strongly unstable from above and below in
the sense of [22], since there is ε0 > 0 such that infx∈R

(
Qt[u+ εϕ](x)− (u(x) + εϕ(x))

)
> 0 and

supx∈R
(
Qt[u−εϕ](x)−(u(x)−εϕ(x))

)
< 0 in R for all 0 < ε ≤ ε0 and any t > 0, where ϕ denotes

the periodic principal eigenfunction of (3.10) with λ = λ1(L, ū) > 0. Indeed, for every t > 0, the
inequalities Qt[u+εϕ] > u+εϕ and Qt[u−εϕ] < u−εϕ in R for all 0 < ε ≤ ε0 follow from the fact
that the L-periodic functions u+ εϕ and u− εϕ are respectively strict sub- and supersolutions of
the elliptic equation associated with (1.1), which can be verified by calculations similar to (3.16).

(A6) (Counter-propagation) For each stationary solution ū ∈ Cper with 0 < ū < 1, one has c−∗ (0, ū) +
c+
∗ (ū, 1) > 0, where c−∗ (0, ū) and c+

∗ (0, ū) are the spreading speeds defined by

c−∗ (0, ū) = sup
{
c ∈ R

∣∣ lim sup
t→+∞, x≥−ct

u(t, x;u0) = 0 for all u0 ∈ C−(0, ū)
}
,

c+
∗ (ū, 1) = sup

{
c ∈ R

∣∣ lim inf
t→+∞, x≤ct

u(t, x; ũ0) = 1 for all ũ0 ∈ C+(ū, 1)
}
.
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Indeed, Lemma 3.8 implies that c−∗ (0, ū) ≥ c− > 0 and c+
∗ (ū, 1) ≥ c+ > 0, with the notations of

Lemma 3.8. Following [22], c−∗ (0, ū) is called the leftward spreading speed of equation (1.1) on
C−(0, ū), and c+

∗ (ū, 1) the rightward spreading speed of equation (1.1) on C+(ū, 1) (Lemma 3.8 is
then stronger than the counter-propagation condition given in [22], which is just defined as the
positivity of the sum of these spreading speeds).

Having in hand the properties (A1)-(A6), we then see from [22, Proposition 3.1, Theorems 3.4
and 4.1, and Remark 4.1] that for any 0 < L < L̃∗, equation (1.1) admits a pulsating front uL(t, x) =
φL(x− cLt, x/L) with speed cL ∈ R such that φL(ξ, x) is nonincreasing in ξ.

Lastly, the assumption (1.12) yields the existence (and uniqueness) of a front (φ0, c0) for the homog-
enized equation (1.9). If c0 6= 0, then Theorem 1.2 implies that the speeds cL of the pulsating fronts
given in the previous paragraph, which exist for all 0 < L < L̃∗, are such that cL → c0 as L→ 0+. On
the other hand, if c0 = 0, then

∫ 1
0 f(u)du = 0 and Lemma 2.2 implies that cL = 0 for all 0 < L < L̃∗.

Hence, the proof of Theorem 1.4 is complete.

3.3 The case of large periods L

This section is devoted to the proof of Theorem 1.5. That is, under the assumption (1.13), we show
that the equation (1.1), for any period L > 0 large enough, admits a pulsating front with positive
speed. Firstly, as for the proof of Theorem 1.4, we will show that for L large enough, any L-periodic
intermediate steady state 0 < ū < 1 of (1.1) is unstable and, applying the abstract results in [22], we
will then obtain the existence of a pulsating front with nonnegative speed. To complete the proof, we
need to exclude the case of pulsating fronts with zero speed (stationary fronts), at least for L large
enough. This proof, as well as that of the instability of the intermediate steady states of equation (1.1),
will use a passage to the limit as L→ +∞ and the properties of the solutions to

a(y)(uy)′′(x) + fy(uy(x)) = 0 and 0 < uy(x) < 1 for all x ∈ R, (3.23)

where y is any real number and fy(u) = f(y, u).
We first begin with the instability of all intermediate steady states of equation (1.1) at large L.

Lemma 3.9. Under the assumption (1.13), there is L∗ > 0 such that λ1(L, ū) > 0 for every L > L∗ and
for every L-periodic steady state ū of (1.1) with 0 < ū < 1, where λ1(L, ū) is the principal eigenvalue
defined in (3.10).

Proof. Assume by contradiction that there are some sequences (Ln)n∈N in (0,+∞), (ūn)n∈N and (ψn)n∈N
in C2(R) such that Ln → +∞ as n → +∞ and, for each n ∈ N, ūn and ψn satisfy (3.11) and (3.12)
with principal eigenvalue λ1(Ln, ūn) ≤ 0. By (3.13), one can assume that, up to extraction of some
subsequence, λ1(Ln, ūn)→ λ̃1 ∈ (−∞, 0] as n→ +∞.

One first observes from the assumption (1.2) that, for any n ∈ N, there is xn ∈ [0, Ln] such that
ūn(xn) = θxn/Ln . Otherwise, by continuity and Ln-periodicity of ūn, one would have either θx/Ln <
ūn(x) < 1 for all x ∈ R or 0 < ūn(x) < θx/Ln for all x ∈ R (notice also that, by (1.2) and (1.3), the
function x 7→ θx is continuous), whence the function (aLn ū

′
n)′ would have a fixed strict sign; this last

property would contradict the fact that aLn ū
′
n is an Ln-periodic function.

Define now pn(x) = ūn(x + xn) for x ∈ R and n ∈ N. Each function pn is a solution to (aLn(x +
xn)p′n)′ + fLn(x+ xn, pn) = 0 in R with pn(0) = θxn/Ln and 0 < pn < 1 in R. Up to extraction of some
subsequence, one can assume that xn/Ln → x∞ ∈ [0, 1] as n → +∞ and that, from standard elliptic
estimates, there is a C2(R) function 0 ≤ p∞ ≤ 1 such that pn → p∞ in C2

loc(R) as n→ +∞. Moreover,
p∞ solves

a(x∞) p′′∞ + f(x∞, p∞) = 0 in R, p∞(0) = θx∞ and 0 < p∞ < 1 in R, (3.24)
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the strict inequalities following from the strong maximum principle. Similarly, by normalizing ψn in
such a way that ψn(xn) = 1, there is a nonnegative C2(R) function ψ∞ such that, up to extraction of
some subsequence, ψn(·+ xn)→ ψ∞ in C2

loc(R) as n→ +∞, and ψ∞ solves

a(x∞)ψ′′∞ + ∂uf(x∞, p∞)ψ∞ = λ̃1ψ∞ in R, ψ∞(0) = 1 and ψ∞ > 0 in R (3.25)

(notice here that the function ψ∞ may not be bounded or periodic, since the convergence is only local
as Ln → +∞).

By (1.2) and (1.13), according to phase diagrams of equation (3.24), the solution p∞ can only be of
one of the following three types: either a constant function, or a non-constant periodic function, or a
ground state solution such that p∞(±∞) = 0.4 In what follows, one will get a contradiction in each of
these three cases.

Case 1: p∞ is a constant solution, that is p∞ ≡ θx∞ in R. In this case, ψ∞ obeys the linear equation
ψ′′∞+βψ∞ = 0 in R with β = (∂uf(x∞, θ∞)− λ̃1)/a(x∞). Since ∂uf(x∞, θ∞) > 0 and λ̃1 ≤ 0, it follows
that β > 0 and that the positive function ψ∞ is strictly concave in R, which is impossible. Hence,
Case 1 is ruled out.

Case 2: p∞ is a non-constant L̃-periodic solution with L̃ > 0. In this case, p′∞ is a non-signed L̃-
periodic function satisfying

a(x∞)(p′∞)′′ + ∂uf(x∞, p∞)p′∞ = 0 in R, (3.26)

whereas ψ∞ solves a(x∞)ψ′′∞ +
(
∂uf(x∞, p∞) − λ̃1

)
ψ∞ = 0 in R. Since λ̃1 ≤ 0, it follows from Sturm

comparison theorem that ψ∞ must vanish somewhere, which is impossible since ψ∞ > 0 in R. Hence,
Case 2 is ruled out too.

Case 3: p∞ is a non-periodic solution and limx→±∞ p∞(x) = 0. Denote F (s) =
∫ s

0 f(x∞, u)du for

all s ∈ [0, 1]. From the assumptions (1.2) and
∫ 1

0 f(x∞, u) du > 0, there is a real number s̄ ∈ (θx∞ , 1)
such that F (0) = F (s̄) = 0, F (s) < 0 for all 0 < s < s̄ and F (s) > 0 for all s̄ < s ≤ 1. It then follows
that there is x̄ ∈ R such that p∞(x̄) = s̄, p′∞(x̄) = 0, p′∞ > 0 in (−∞, x̄) and p′∞ < 0 in [x̄,+∞). Notice
also by (1.2) that

p′′∞(x̄) = −f(x∞, p∞(x̄))

a(x∞)
= −f(x∞, s̄)

a(x∞)
< 0

and that there is x < x̄ such that p′′∞(x) = −f(x∞, p∞(x))/a(x∞) > 0 for all x ≤ x. Furthermore,
limx→−∞ p

′′
∞(x) = limx→−∞ p

′
∞(x) = 0. Denote q(x) = ψ′∞(x)p′∞(x) − ψ∞(x)p′′∞(x) for x ∈ R. It

follows from (3.25) and (3.26) that q′(x) = λ̃1ψ∞(x)p′∞(x)/a(x∞) ≤ 0 for all x ≤ x̄, whence

q(x) ≥ q(x̄) = −ψ∞(x̄)p′′∞(x̄) > 0 for all x ≤ x̄. (3.27)

Therefore, ψ′∞(x)p′∞(x) ≥ ψ∞(x)p′′∞(x) > 0 for all x ≤ x (< x̄). In particular, ψ′∞(x) > 0 for all x ≤ x
and, since ψ∞ is positive, the limit ψ∞(−∞) ∈ [0,+∞) exists. By (3.25), the function ψ′′∞ has a finite
limit as x→ −∞ and it follows then from elementary arguments that ψ′∞(x)→ 0 as x→ −∞. Lastly,
since p′∞(−∞) = p′′∞(−∞) = 0, one gets that q(x) → 0 as x → −∞, which contradicts (3.27). As a
consequence, Case 3 is ruled out too and the proof of Lemma 3.9 is complete.

4As a matter of fact, let p(x) = p∞(x) and q(x) = p′∞(x) for all x ∈ R. Then finding solutions of (3.24) is equivalent to
finding trajectories (p, q) to the system p′ = q, a(x∞)q2 + 2

∫ p
θx∞

f(x∞, s)ds = C for some constant C = a(x∞)q(0)2 ≥ 0

with 0 < p < 1 (see, e.g. [4, 23]). Furthermore, if C = 0, then the trajectory (p, q) is a single point (θx∞ , 0) in the

pq-phase; if 0 < C < 2
∫ 0

θx∞
f(x∞, s)ds = 2

∫ θx∞
0

|f(x∞, s)|ds, then the trajectory (p, q) is a smooth closed curve; if

C = 2
∫ 0

θx∞
f(x∞, s)ds, then the trajectory (p, q) is a smooth curve connecting from (0, 0) to (0, 0) but not including (0, 0);

while if C > 2
∫ 0

θx∞
f(x∞, s)ds, then such a trajectory does not exist.
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Proof of Theorem 1.5. For any fixed L > L∗, consider the semiflow (Qt)t≥0 generated by (3.22) with
the period L, that is, by the equation (1.1) with L-periodic coefficients. The properties (A1)-(A4)
used in the proof of Theorem 1.4 are easily verified. Because of Lemma 3.9, (Qt)t≥0 satisfies the
bistability condition (A5) and the same analysis as that in Lemma 3.8 implies that (Qt)t≥0 satisfies
the counter-propagation property (A6). Thus, it follows from [22] that for any L > L∗, equation (1.1)
admits a pulsating front uL(t, x) = φL(x − cLt, x/L) with speed cL. Furthermore, assumption (1.13)
and Lemma 2.2 imply that cL ≥ 0. To end the proof, even if it means redefining L∗, one needs to show
that cL > 0 for all L > L∗ (large enough).

Assume by contraction that there is a sequence (Ln)n∈N in (L∗,+∞) converging to +∞ and such
that cLn = 0 for all n ∈ N. Namely, for each n ∈ N, there is a C2(R) solution φn of

(aLnφ
′
n)′ + fLn(x, φn) = 0 in R, φn(−∞) = 1, φn(+∞) = 0 and 0 < φn < 1 in R. (3.28)

Since
∫ 1

0 f(x, u) du > 0 for all x ∈ R and f is bounded in R× [0, 1], there is τ ∈ R such that

1− δ < τ < 1 and

∫ s

0
f(x, u) du > 0 for all x ∈ R and s ∈ [τ, 1], (3.29)

where δ > 0 is the constant in (1.3). For every n ∈ N, there is yn ∈ R such that φn(yn) = τ .
Write yn = y′n + ỹn, with y′n ∈ LnZ and ỹn ∈ [0, Ln], and set vn(x) = φn(x+ yn) for x ∈ R and n ∈ N.
Since both aLn and fLn are Ln-periodic in x, each function vn obeys{

(aLn(x+ ỹn)v′n)′ + fLn(x+ ỹn, vn) = 0 in R,
vn(0) = τ, vn(−∞) = 1, vn(+∞) = 0 and 0 < vn < 1 in R.

Up to extraction of some subsequence, one can assume that ỹn/Ln → y∞ ∈ [0, 1] as n→ +∞ and that,
from standard elliptic estimates, vn → v∞ as n → +∞ in C2

loc(R), where the function 0 ≤ v∞ ≤ 1
solves

a(y∞) v′′∞ + f(y∞, v∞) = 0 in R (3.30)

and v∞(0) = τ , whence 0 < v∞ < 1 in R from the strong elliptic maximum principle. As for
equation (3.24) used in Lemma 3.9, it follows from (1.13) that there are three types of solutions to
equation (3.30): the constant solutions (equal to θy∞), the non-constant periodic solutions and the
non-periodic ground state solutions converging to 0 at ±∞. In all cases, by multiplying the equa-
tion (3.30) by v′∞ and integrating on suitable intervals, it follows easily that

∫ s̄
s f(y∞, u)du = 0, where

0 ≤ infR v∞ = s ≤ s = maxR v∞ < 1. It follows then from (1.2) and (3.30) that s ≤ θy∞ ≤ s̄ and that∫ s
0 f(y∞, u)du ≤ 0 for all 0 ≤ s ≤ s̄. In particular, since v∞(0) = τ ∈ [0, s̄], one gets

∫ τ
0 f(y∞, u)du ≤ 0.

One has then reached a contradiction with (3.29) and the proof of Theorem 1.5 is thereby complete.

4 The set E of periods L for which (1.1) admits pulsating fronts with
nonzero speed

This section is devoted to the proof of Theorem 1.8 and further results (see Theorem 4.3 below) on
the set E of periods L for which pulsating fronts with nonzero speed exist. Theorem 1.8 is similar to
Theorem 1.2 in the sense that they are both concerned with the existence and convergence of pulsating
fronts as L converges to a fixed L0 ≥ 0, given that (1.1) when L0 > 0 (resp. (1.9) when L0 = 0) admits a
non-stationary pulsating front. Namely, to prove Theorem 1.8, we apply the implicit function theorem
for some suitable function space as in Theorem 1.2, and the arguments are actually simpler since no
singularity occurs when L converges to L0 > 0. In Section 4.2, we prove further existence results at a
point L ∈ ∂E ∩ (0,+∞).
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4.1 Proof of Theorem 1.8

Throughout the proof, we assume that equation (1.1) with L = L0 > 0 admits a pulsating front

U(t, x) = φL0(x− cL0t, x/L0)

with a nonzero speed cL0 . From parabolic regularity applied to the equations satisfied by u and ut, the
function u is of class C2 in R2 and so is the function φL0 . As in the proof of Theorem 1.2, one can
assume without loss of generality that (φL0(ξ, y), cL0) solves (2.4) with cL0 > 0.

We use here the same notations DL, T, L2(R × T) and H1(R × T) as in Section 3.1. A positive
real number β > 0 is given. For any c > 0 and L > 0, the linear operator Mc,L : DL 7→ L2(R × T)
defined in (3.2) is invertible by Lemma 3.1. Now for v ∈ H1(R × T), c > 0 and L > 0, we define
K(v, c, L) = f(y, v + φL0) + βv + ∂̃L(a∂̃LφL0) + c∂ξφL0 , where ∂̃L = ∂ξ + L−1∂y, and

G̃(v, c, L) =
(
v +M−1

c,L(K(v, c, L)),

∫
R+×T

(
φL0(ξ, y) + v(ξ, y)

)2 − φ2
L0

(ξ, y)
)
.

Note that G̃(0, cL0 , L0) = (0, 0). Moreover, as done in the proof of Theorem 1.2 and using also parabolic
regularity, a pair (φL, cL) ∈

(
φL0 +H1(R×T)

)
× (0,+∞) solves (2.4) for L 6= 0 with the normalization∫

R+×T φ
2
L =

∫
R+×T φ

2
L0

if and only if G̃(φL − φL0 , cL, L) = (0, 0). On the other hand, using Lemma 3.3

and similar arguments as in the proof of Lemma 3.4, it follows that, in H1(R×T)× (0,+∞)× (0,+∞),
the function G̃ is continuous with respect to (v, c, L) and continuously differentiable with respect to
(v, c) with derivative given by

∂(v,c)G̃(v, c, L)(ṽ, c̃)

=
(
ṽ +M−1

c,L

(
(∂uf(y, v + φL0) + β)ṽ

)
− c̃M−1

c,L

(
∂ξ(M

−1
c,L(K(v, c, L))− φL0)

)
, 2

∫
R+×T

(φL0 + v)ṽ
)

for all (ṽ, c̃) ∈ H1(R× T)× R. In particular, Q̃ := ∂(v,c)G̃(0, cL0 , L0) is given by

Q̃(ṽ, c̃) =
(
ṽ +M−1

cL0
,L0

(
(∂uf(y, φL0) + β)ṽ

)
+ c̃M−1

cL0
,L0

(∂ξφL0), 2

∫
R+×T

φL0 ṽ
)
.

Now, in order to apply the implicit function theorem for G̃ around the point (0, cL0 , L0), one needs
to show that the operator Q̃ is invertible as a map from H1(R × T) × R to itself. The method used
in Lemma 3.4 can be adapted to prove this property under the condition that the linearization of
equation (2.4) at (φL0 , cL0) satisfies properties similar to the ones of the operators H and H∗ given
by (3.8). More precisely, let

HL0(u) = ∂̃L0(a∂̃L0u) + cL0∂ξu+ ∂uf(y, φL0)u for u ∈ DL0 (4.1)

and let the adjoint operator H∗L0
be defined by H∗L0

(u) = ∂̃L0(a∂̃L0u) − cL0∂ξu + ∂uf(y, φL0)u for
u ∈ DL0 . Let us now work with complex valued functions. Namely, for u = v+ iw with v, w ∈ DL0 and
i2 = −1, we set HL0(u) = HL0(v) + iHL0(w) and similarly for H∗L0

(u). One has
〈
H∗L0

(v), u
〉
L2(R×T,C)

=〈
v,HL0(u)

〉
L2(R×T,C)

for all u, v ∈ DL0 + iDL0 , with
〈
w, z

〉
L2(R×T,C)

=
∫
R×Twz for w, z ∈ L2(R×T,C).

Lemma 4.1. The operators HL0 and H∗L0
have algebraically simple eigenvalue 0 and the range of HL0

is closed in L2(R× T,C). Furthermore, if λ ∈ C∗ is an eigenvalue of HL0, then Re(λ) < 0.
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Notice that HL0 and H∗L0
are not elliptic operators in the variables (ξ, y), but by the change of

variable defined in (2.3) they are equivalent to standard parabolic operators in the variables (t, x) and
the parabolic theory helps overcome this degeneracy. As a matter of fact, the simplicity of the eigenvalue
0 is highly dependent on the following maximum principle for HL0 (similar results can be obtained for
H∗L0

).

Lemma 4.2. Let φ be a C2(R × T,R) solution of HL0(φ) ≤ 0 on R × T with φ ≥ 0 in R × T. Then
either φ ≡ 0 in R× T, or φ(ξ, y) > 0 for all (ξ, y) ∈ R× T.

Proof. This conclusion follows from the strong parabolic maximum principle applied to the function
u(t, x) = φ(x− cL0t, x/L0) and from the periodicity of φ(ξ, y) in the y-variable (see also Proposition 3.1
of [53]).

Now one is ready to prove Lemma 4.1. Note that similar conclusions were obtained in [51] for the
linearized operator of an equation with combustion nonlinearity. Special weighted spaces (requiring
functions to decay to zero at a certain exponential rate as |x| → ∞) are introduced in that paper,
whereas they are not needed here due to the bistable assumption (1.3). The strategy for the proof of
Lemma 4.1 is actually a little bit different from that used in Section 2 of [51].

Proof of Lemma 4.1. We proceed with five steps.
Step 1: 0 is a geometrically simple eigenvalue of HL0 in DL0 + iDL0. First, by parabolic regularity,

the time-derivative Ut of the function U(t, x) = φL0(x− cL0t, x/L0) is of class C1,2(R2). Thus, one can
differentiate the equation (2.4) (with L = L0) satisfied by φL0 with respect to ξ. More precisely, the
function ∂ξφL0 satisfies

∂̃L0

(
a(y)∂̃L0(∂ξφL0)

)
+ cL0∂ξ(∂ξφL0) + ∂uf(y, φL0)∂ξφL0 = 0 for all (ξ, y) ∈ R× T,

where ∂ξφL0(ξ, y) = −c−1
L0
Ut((L0y − ξ)/cL0 , L0y), ∂̃L0(∂ξφL0)(ξ, y) = −c−1

L0
Utx((L0y − ξ)/cL0 , L0y),

∂ξ(∂ξφL0)(ξ, y) = c−2
L0
Utt((L0y − ξ)/cL0 , L0y) and

∂̃L0

(
a(y)∂̃L0(∂ξφL0)

)
(ξ, y) = −a(y)

cL0

Utxx

(L0y − ξ
cL0

, L0y
)
− a′(y)

L0cL0

Utx

(L0y − ξ
cL0

, L0y
)
.

Therefore, it follows from Lemma 2.1 that ∂ξφL0 ∈ DL0 . On the other hand, Theorem 1.1 and the
strong parabolic maximum principle imply that Ut > 0 in R2, whence ∂ξφL0 is a negative eigenfunction
of HL0 for the eigenvalue 0.

Next, suppose that v ∈ DL0 + iDL0 satisfies HL0(v) = 0 and v 6≡ 0. Without loss of generality,
one can assume that v is real valued. By rewriting the equation HL0(v) = 0 in its weak form in the
variables (t, x), it follows from parabolic regularity theory and bootstrap arguments that v is of class
C2(R2) and is a bounded classical solution of HL0(v) = 0 such that v(±∞, ·) = 0 uniformly in T. For
any µ ∈ R and (ξ, y) ∈ R× T, let

wµ(ξ, y) = v(ξ, y)− µ∂ξφL0(ξ, y).

Each wµ is a classical solution of HL0(wµ) = ∂̃L0

(
a(y)∂̃L0wµ

)
+ cL0∂ξwµ + ∂uf(y, φL0)wµ = 0 in R× T

with wµ(±∞, ·) = 0 uniformly in T. One sees from (1.3) and the uniform continuity of ∂uf in R× [0, 1]
that there is N > 0 large enough such that

∂uf(y, φL0(ξ, y)) ≤ −γ
2
< 0 for all |ξ| ≥ N and y ∈ T. (4.2)

Since ∂ξφL0 is negative and continuous in R× T, it follows that, for this chosen N , there exists µ0 > 0
such that wµ > 0 in [−N,N ] × T for all µ ≥ µ0. We claim that, for such µ, wµ(ξ, y) > 0 for all
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(ξ, y) ∈ R× T. Indeed, otherwise, wµ achieves a nonpositive minimum at a point (ξ0, y0) ∈ R× T such
that |ξ0| > N . If wµ(ξ0, y0) < 0, then evaluating all terms of HL0(wµ) at (ξ0, y0) yields

∂̃L0(a∂̃L0wµ)(ξ0, y0) + cL0∂ξwµ(ξ0, y0) + ∂uf(y, φL0(ξ0, y0))wµ(ξ0, y0) ≥ ∂uf(y, φL0(ξ0, y0))wµ(ξ0, y0)

≥ −γ
2
wµ(ξ0, y0) > 0,

which contradicts the equation HL0(wµ) = 0 in R× T (notice here that HL0(wµ) ≤ 0 would have been
sufficient to conclude, that is HL0(v) ≤ 0 would have been sufficient). If wµ(ξ0, y0) = 0, then strong
maximum principle in Lemma 4.2 shows that wµ ≡ 0, which is also impossible. Thus, one gets that
wµ > 0 in R× T.

Now define ν = inf
{
µ ∈ R

∣∣wµ = v − µ∂ξφL0 ≥ 0 in R × T
}

. Obviously, −∞ < ν ≤ µ0 and
wν = v−ν∂ξφL0 ≥ 0 in R×T. If wν > 0 in the compact set [−N,N ]×T, then wν−ε > 0 in [−N,N ]×T
for ε > 0 small enough. Hence, as in the previous paragraph, it follows that wν−ε > 0 in R × T for
all ε > 0 small enough, which contradicts the definition of ν. Therefore, wν vanishes somewhere in
[−N,N ]×R and Lemma 4.2 again implies that v − ν∂ξφL0 = wν = 0 in R×T. That is, v = ν∂ξφL0 in
R× T (with ν 6= 0 since v 6≡ 0).

Step 2: 0 is an algebraically simple eigenvalue of HL0. Suppose that Hm
L0

(v) = 0 for some integer

m ≥ 2 and v ∈ DL0 + iDL0 such that HL0(v), . . . ,Hm−1
L0

(v) ∈ DL0 + iDL0 . Without loss of generality,
one can assume that v is real valued. Since ker(HL0) = C∂ξφL0 and v is real valued, it follows that
Hm−1
L0

(v) = C1∂ξφL0 with some constant C1 ∈ R. Without loss of generality, even if it means changing
v into −v, one can assume that C1 ≥ 0. On the other hand, parabolic regularity theory implies
that Hm−2

L0
(v) is a bounded C2(R × T) solution of HL0

(
Hm−2
L0

(v)
)

= C1∂ξφL0 ≤ 0 in R × T. By

considering functions of the type Hm−2
L0

(v) − µ∂ξφL0 with µ ∈ R, it follows then as in Step 1 that

Hm−2
L0

(v) = C2∂ξφL0 for some constant C2, whence Hm−1
L0

(v) = 0. By an immediate induction, one
concludes that v = C3∂ξφL0 for some constant C3.

Step 3: if λ ∈ C∗ is an eigenvalue of HL0, then Re(λ) < 0. Let λ ∈ C be an eigenvalue of HL0 ,
with an eigenfunction ψ ∈ DL0 + iDL0 , and assume that Re(λ) ≥ 0. By standard parabolic estimates
applied to its real and imaginary parts, the function u(t, x)=ψ(x−cL0t, x/L0) is a classical solution of

ut − (aL0(x)ux)x − ∂ufL0(x, U(t, x))u = −λu in R2. (4.3)

Furthermore, u ∈W 1,∞(R2,C) and then u(t, x)→ 0 as |x− cL0t| → +∞. Denote ρ = |u| the modulus
of u. In the open set Ω :=

{
(t, x) ∈ R2 | ρ(t, x) > 0

}
, one can write u(t, x) = ρ(t, x) eiϑ(t,x) where

the real-valued functions ρ and ϑ are of class C1 with respect to t and C2 with respect to x in Ω. By
putting u = ρ eiϑ in (4.3) and taking the real part, one infers that

ρt − (aL0(x)ρx)x − ∂ufL0(x, U(t, x))ρ = −(Re(λ) + aL0ϑ
2
x) ρ ≤ 0 in Ω. (4.4)

By (1.2-1.3), there is N > 0 such that ∂ufL0(x, U(t, x)) ≤ −γ/2 < 0 for all |x − cL0t| ≥ N .
Since Ut is positive and continuous in R2 and since Ut(t + L0/cL0 , x + L0) = Ut(t, x) in R2, one
has inf |x−cL0

t|≤N Ut(t, x) > 0 and there is σ > 0 such that

ρ ≤ σUt for all (t, x) ∈ R2 with |x− cL0t| ≤ N.

It follows then as in the end of the proof of Lemma 2.1 that ρ ≤ σUt for all x − cL0t ≥ N (otherwise,
there would exist ε∗ > 0 with z := σUt − ρ ≥ −ε∗ in {x − cL0t ≥ N} and a point (t∗, x∗) such
that x∗ − cL0t

∗ > N and z(t∗, x∗) = −ε∗; since ρ(t∗, x∗) = σUt(t
∗, x∗) + ε∗ > 0, there holds zt −

(aL0(x)zx)x − ∂ufL0(x, U(t, x))z ≥ 0 in a neighborhood of (t∗, x∗), and one gets a contradiction at
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(t∗, x∗), since −∂ufL0(x∗, U(t∗, x∗)) z(t∗, x∗) = ε∗∂ufL0(x∗, U(t∗, x∗))≤−ε∗γ/2< 0). Similarly, ρ ≤ σUt
for all x− cL0t ≤ −N , whence ρ ≤ σUt in R2.

Set now σ∗ = inf
{
ς ≥ 0 | ρ ≤ ςUt in R2

}
. One has σ∗ > 0 since ρ 6≡ 0, and ρ ≤ σ∗Ut in R2. If

inf |x−cL0
t|≤N

(
σ∗Ut(t, x)−ρ(t, x)

)
> 0, then there would exist σ∗ ∈ (0, σ∗) such that ρ(t, x) ≤ σ∗Ut(t, x)

for all |x−cL0t| ≤ N (since Ut is bounded) and it would follow as in the previous paragraph that ρ ≤ σ∗Ut
in R2, contradicting the minimality of σ∗. Consequently, inf |x−cL0

t|≤N
(
σ∗Ut(t, x) − ρ(t, x)

)
= 0. By

continuity and the properties

Ut(t+ L0/cL0 , x+ L0) = Ut(t, x), ρ(t+ L0/cL0 , x+ L0) = ρ(t, x) for all (t, x) ∈ R2, (4.5)

there is (t0, x0) ∈ R2 such that ρ(t0, x0) = σ∗Ut(t0, x0). Hence, ρ > 0 in (at least) a neighborhood of
(t0, x0) and the strong parabolic maximum principle implies actually that ρ = σ∗Ut > 0 in (−∞, t0]×R
and then in R2 by (4.5). Therefore, Re(λ) = 0 and ϑx = 0 in R2, by (4.4). On the other hand, by taking
the imaginary part of (4.3), one infers that ϑt = −Im(λ) in R2. Finally, since ϑ(t+ L0/cL0 , x+ L0) =
ϑ(t, x) in R2, one gets that ϑ is constant in R2 and that λ = 0. As a conclusion, Re(λ) < 0 if λ 6= 0.

Step 4: the range of HL0 is closed in L2(R × T,C). Let (vn)n∈N in DL0 + iDL0 and (gn)n∈N in
L2(R×T,C) be some sequences such that HL0(vn) = gn → g in L2(R×T,C) as n→ +∞. Without loss
of generality, one can assume that all functions vn, gn and g are real valued and that vn is orthogonal
to ∂ξφL0 in L2(R× T,R).

Let us now show that the sequence (‖vn‖L2(R×T))n∈N is bounded. Suppose the contrary, let wn =
vn/‖vn‖L2(R×T) with ‖wn‖L2(R×T) = 1 and observe that HL0(wn) = gn/‖vn‖L2(R×T) → 0 as n → +∞.
Notice that

McL0
,L0(wn) = HL0(wn)− (∂uf(y, φL0) + β)wn for all n ∈ N.

By Lemma 3.1, the sequence (wn)n∈N is then bounded in H1(R×T) and then a subsequence converges
in H1(R×T) weakly and in L2

loc(R×T) strongly to some w0 ∈ H1(R×T). Furthermore, w0 is orthogonal

to ∂ξφL0 in L2(R×T) and
∫
R×Ta(y)(∂̃L0w0)(∂̃L0ϕ)−cL0ϕ∂ξw0−∂uf(y, φL0)w0ϕ=0 for all ϕ ∈ H1(R×T),

whence w0 ∈ DL0 and HL0(w0) = 0. Since ker(HL0) = C(∂ξφL0), it follows that w0 = 0. Let N > 0
be as in (4.2) and let % : R → [0, 1] be the piecewise affine function defined by %(ξ) = 0 for all ξ ≤ N ,
%(ξ) = ξ −N for all ξ ∈ [N,N + 1] and %(ξ) = 1 for all ξ ≥ N + 1. Then, by integrating the equation
HL0(wn) = gn/‖vn‖L2(R×T) against wn%, one gets that

−
∫

(N,+∞)×T
a(y) %(ξ) (∂̃L0wn)2 −

∫
(N,N+1)×T

a(y)wn ∂̃L0wn

−
∫

(N,N+1)×T

cL0

2
w2
n +

∫
(N,+∞)×T

%(ξ) ∂uf(y, φL0)w2
n =

∫
(N,+∞)×T

%(ξ) gnwn
‖vn‖L2(R×T)

−→
n→+∞

0.

Since the sequence (wn)n∈N is bounded in H1(R × T), since wn → 0 in L2
loc(R × T) and since both

terms −
∫

(N,+∞)×T a(y) %(ξ) (∂̃L0wn)2 and
∫

(N,+∞)×T %(ξ) ∂uf(y, φL0)w2
n are nonpositive, it follows that

they both converge to 0 as n → +∞. In particular, by (4.2), ‖wn‖L2((N+1,+∞)×T) → 0 as n →
+∞. Using the same analysis over (−∞,−N) implies that ‖wn‖L2((−∞,−N−1)×T) → 0 as n → +∞.
Finally the sequence (wn)n∈N tends to 0 strongly in L2(R× T) as n→ +∞, which contradicts the fact
that ‖wn‖L2(R×T) = 1. Hence, the sequence (vn)n∈N is bounded in L2(R× T).

Since McL0
,L0(vn) = gn − (∂uf(y, φL0) + β)vn, Lemma 3.1 again implies that (vn)n∈N is bounded

in H1(R × T). Therefore, a subsequence converges weakly in H1(R × T) to some v ∈ DL0 such that
HL0(v) = g.

Step 5: 0 is an algebraically simple eigenvalue of H∗L0
. Choose a sufficient large real number λ0

such that λ0 > ∂uf(x, u) for all (x, u) ∈ R× [0, 1]. Denote H̃L0(v) = HL0(v)− λ0v for v ∈ DL0 + iDL0 .
The adjoint operator H̃∗L0

of H̃L0 is given by H̃∗L0
(v) = H∗L0

(v) − λ0v for v ∈ DL0 + iDL0 , in such

28



a way that
〈
H̃∗L0

(v), u
〉
L2(R×T,C)

=
〈
v, H̃L0(u)

〉
L2(R×T,C)

for all u, v ∈ DL0 + iDL0 . As in the proof of

Lemma 3.1, it is easy to see that the kernels of H̃L0 and H̃∗L0
are reduced to {0}. In addition, arguments

similar to the ones in Step 4 imply that the range of H̃L0 is closed in L2(R×T,C). Thus, the operator
H̃L0 : DL0 + iDL0 → L2(R× T,C) is invertible. Then the arguments in p. 220 of [51] imply that there
is a strictly positive function v∗ ∈ DL0 such that H∗L0

(v∗) = 0. That is, 0 is an eigenvalue of H∗L0

with a positive eigenfunction v∗. Applying the above analysis in Step 1-2 to H∗L0
provides the algebraic

simplicity of the eigenvalue 0. The proof of Lemma 4.1 is thereby complete.

Proof of Theorem 1.8. Given the above preparations, it follows as in Lemma 3.4 that the operator Q̃ =
∂(v,c)G̃(0, c0, L0) : H1(R × T) × R → H1(R × T) × R is invertible. The proof of Theorem 1.8 is then
almost the same as that of Theorem 1.2, so we omit the details.

4.2 The case L ∈ ∂E ∩ (0,+∞)

The following theorem gives some information about the existence of steady states or other pulsating
fronts of (1.1) at a positive boundary point of the set E. We first recall that if L ∈ ∂E ∩ (0,+∞),
then (1.1) cannot admit a pulsating front with a nonzero speed, as a consequence of Theorem 1.8.

Theorem 4.3. If
∫ 1

0 f(u)du 6= 0 and L ∈ ∂E ∩ (0,+∞), then one of the following cases occurs:

(i) either there is c > 0 such that equation (1.1) admits some L-periodic steady states 0 < ū(x), v̄(x) <
1, with ū being semistable, and some pulsating fronts{

0 < φ(x− ct, x/L) = u(t, x) < v(t, x) = ψ(x− ct, x/L) < 1,

φ(ξ, y) and ψ(ξ, y) are 1-periodic in y
(4.6)

with speed c and with limiting values{
φ(−∞, y) = ū(Ly), φ(+∞, y) = 0,

ψ(−∞, y) = 1, ψ(+∞, y) = v̄(Ly),
uniformly in y ∈ R; (4.7)

(ii) or there is c < 0 such that equation (1.1) admits some L-periodic steady states 0 < ū(x), v̄(x) < 1,
with v̄ being semistable, and some pulsating fronts 0 < u(t, x) < v(t, x) < 1, with speed c,
satisfying (4.6) and (4.7);

(iii) or equation (1.1) admits a semistable L-periodic steady state 0 < ū ≤ 1 and a semistable steady
state u such that 0 < u < ū, u(· + L) < u with the limiting values u(x) − ū(x) → 0 as x → −∞
and u(x)→ 0 as x→ +∞;

(iv) or equation (1.1) admits a semistable L-periodic steady state 0 ≤ v̄ < 1 and a semistable steady
state v such that v̄ < v < 1, v(· + L) < v with the limiting values v(x) → 1 as x → −∞ and
v(x)− v̄(x)→ 0 as x→ +∞.

Furthermore, if
∫ 1

0 f(u)du > 0, then only cases (i) and (iii) can occur, while only cases (ii) and (iv)

can occur if
∫ 1

0 f(u)du < 0.

Remark 4.4. It follows in particular that if L ∈ ∂E ∩ (0,+∞), then equation (1.1) admits either
at least one semistable L-periodic steady state 0 < ū < 1 or a stationary front connecting 0 and 1.
Cases (i), (ii), (iii) and (iv) have some similarities to the limiting behavior of homogeneous equations
of the type

ut = uxx + fn(u), (4.8)
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where (fn)n∈N is a family of C1([0, 1]) functions satisfying (1.3) uniformly in n with fn(0) = fn(1) = 0,
and converging uniformly in [0, 1] to a C1([0, 1]) function f . On the one hand, if, for instance, each
function fn has a unique zero θn in (0, 1), θn → θ ∈ (0, 1),

∫ 1
0 fn 6= 0, f < 0 in (0, θ), f > 0 in

(θ, 1) and
∫ 1

0 f = 0, then each equation (4.8) admits a traveling front φn(x − cnt) connecting 0 and
1, with cn 6= 0, while the limiting equation ut = uxx + f(u) admits a stationary front but does not
admit any non-stationary front connecting 0 and 1. The conclusion would then be in some sense
similar to that of cases (iii) and (iv) in Theorem 4.3. On the other hand, assume now that there are
0 < θ1,n < θ2,n < θ3,n < 1 such that fn(θ1,n) = fn(θ2,n) = fn(θ3,n) = 0, fn < 0 in (0, θ1,n) ∪ (θ2,n, θ3,n),
fn > 0 in (θ1,n, θ2,n)∪ (θ3,n, 1) and let c′n and c′′n be the speeds of the traveling fronts of (4.8) connecting
0 and θ2,n, and θ2,n and 1, respectively. If c′n < c′′n, then (4.8) admits a traveling front connecting 0 and
1, with a speed cn such that c′n < cn < c′′n, see [23]. Now, if the real numbers 0 < θ1,n < θ2,n < θ3,n < 1
converge to 0 < θ1 < θ2 < θ3 < 1, if f < 0 in (0, θ1)∪ (θ2, θ3), f > 0 in (θ1, θ2)∪ (θ3, 1), and if c′n and c′′n
converge to the same real number c, then the limiting equation ut = uxx + f(u) does not admit any
traveling front connecting 0 and 1 [23], but it admits some traveling fronts with speed c connecting 0
and θ2, and θ2 and 1, respectively. Furthermore, θ2 ∈ (0, 1) is necessarily a semistable steady state of
the limiting equation in the sense that f ′(θ2) ≤ 0. If c > 0 or c < 0, then the conclusion for this limiting
equation is similar to that of cases (i) or (ii) in Theorem 4.3.

A key-step in the proof of Theorem 4.3 is to show that the speeds cLn are bounded when Ln ∈ E
approaches L ∈ ∂E ∩ (0,+∞) (see Lemma 4.6 below). This property could actually be viewed as a
consequence of the more general boundedness property (1.16), which follows from an even more general
boundedness result on the global mean speeds of transition fronts, see [17]. Here, for the sake of
completeness, Lemma 4.6 is proved. Then, the strategy of the proof of Theorem 4.3 is the following:
if for some sequence the speeds cLn converge to a nonzero real number as Ln → L with Ln ∈ E, then
equation (1.1) admits some pulsating fronts connecting 0, resp. 1, to some L-periodic steady states.
On the other hand, if the speeds cLn converge to 0, then equation (1.1) admits either a semistable
stationary front connecting 0 and 1, or some semistable stationary fronts connecting 0, resp. 1, to some
semistable L-periodic steady states.

Before doing so, we first state an elementary lemma which will be used several times.

Lemma 4.5. Let δ ∈ (0, 1/2) be as in (1.3) and let L > 0 be arbitrary. If u is a classical stationary
solution of (1.1) such that 0 ≤ u ≤ δ in R, then u ≡ 0 in R. Similarly, if u is a classical stationary
solution of (1.1) such that 1− δ ≤ u ≤ 1 in R, then u ≡ 1 in R.

Proof. We only prove the first assertion, since the second one is similar. Let u be a classical steady state
of (1.1) such that 0 ≤ u ≤ δ. From (1.3), the function aLu

′ is nondecreasing. Assume by contradiction
that u is not constant in R. Then there exists x0 ∈ R such that u′(x0) 6= 0. If u′(x0) > 0, then
aL(x0)u′(x0) ≤ aL(x)u′(x) for all x0 ≤ x and infx≥x0 u

′(x) > 0, contradicting the boundedness of u.
Similarly, if u′(x0) < 0, then supx≤x0 u

′(x) < 0, which is impossible too. Finally, u is a constant,
between 0 and δ, and assumption (1.3) yields u ≡ 0 in R.

Lemma 4.6. If (Ln)n∈N is a sequence in E such that 0 < infn∈N Ln ≤ supn∈N Ln < +∞, then the
sequence (cn)n∈N of the front speeds associated with (1.1) and the periods Ln is bounded.

Proof. Assume first by contradiction that, up to extraction of a subsequence, one has 0<cn→+∞ and
Ln → L ∈ (0,+∞) as n→ +∞. For each n ∈ N, let un(t, x) = φLn(x− cnt, x/Ln) be a pulsating front
associated with (1.1) and the period Ln. By Theorem 1.1, each function un is increasing in t. Since
un(t, ·) → 0 as t → −∞ and un(t, ·) → 1 as t → +∞, locally uniformly in R, there is by continuity a
unique tn ∈ R such that

max
[0,Ln]

un(tn, ·) = δ. (4.9)
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By standard parabolic estimates the functions (t, x) 7→ un(t+ tn, x) converge in C1,2
loc (R2), up to extrac-

tion of a subsequence, to a classical solution 0 ≤ u(t, x) ≤ 1 of (1.1) such that max[0,L] u(0, ·) = δ and
u is nondecreasing with respect to t. Furthermore, since

un

(
t+ tn +

Ln
cn
, x+ Ln

)
= un(t+ tn, x) for all (t, x) ∈ R2 and n ∈ N, (4.10)

one infers that u(t, x + L) = u(t, x) for all (t, x) ∈ R2. In other words, u is L-periodic in x. By
monotonicity in t and from standard parabolic estimates, one has u(t, x) → u−(x) as t → − ∞
uniformly in x ∈ R, where 0 ≤ u− ≤ 1 is an L-periodic steady state of (1.1) such that max[0,L] u

−(·) ≤
max[0,L] u(0, ·) = δ, whence u− ≤ δ in R by L-periodicity. Lemma 4.5 implies that u− = 0 in R. As a
consequence, there is t0 < 0 such that u(t0, ·) ≤ δ/2 in R and, since δ/2 is a supersolution of (1.1), it
follows necessarily that u(t, ·) ≤ δ/2 in R for all t ≥ t0, contradicting in particular max[0,L] u(0, ·) = δ.

Lastly, if there is a subsequence such that 0 > cn → −∞ and Ln → L ∈ (0,+∞), one reaches a
similar contradiction by changing the normalization condition (4.9) into

min
[0,Ln]

un(τn, ·) = 1− δ, (4.11)

with τn ∈ R. The proof of Lemma 4.6 is thereby complete.

Proof of Theorem 4.3. Let (Ln)n∈N be a sequence in E such that Ln → L ∈ ∂E ∩ (0,+∞) as n→ +∞.
Thus, for each n ∈ N, equation (1.1) with the period Ln admits a pulsating front un(t, x) = φLn(x −
cnt, x/Ln) with speed cn 6= 0. It follows from Lemma 4.6 that, up to extraction of a subsequence, there
is c ∈ R such that cn → c as n→ +∞. According to the sign of c, four cases may occur.

Case (i): c > 0. In that case, by Theorem 1.1, there holds necessarily cn > 0 for each n ∈ N and∫ 1
0 f(u)du > 0. Furthermore, each function un is increasing in t. As in the proof of Lemma 4.6, for each
n ∈ N, there is a unique tn ∈ R such that the normalization condition (4.9) holds. By standard parabolic
estimates, up to extraction of a subsequence, the functions (t, x) 7→ un(t + tn, x) converge in C1,2

loc (R2)
to a classical solution 0 ≤ u(t, x) ≤ 1 of (1.1) such that max[0,L] u(0, ·) = δ and u is nondecreasing with
respect to t. The strong maximum principle implies that 0<u(t, x)<1 for all (t, x) ∈ R2. Furthermore,
by passing to the limit as n→ +∞ in (4.10), one infers that

u
(
t+

L

c
, x+ L

)
= u(t, x) for all (t, x) ∈ R2, (4.12)

that is, u can be written as

u(t, x) = φ
(
x− ct, x

L

)
,

where φ(ξ, y) = u((Ly − ξ)/c, Ly) is 1-periodic in y. Furthermore, by monotonicity in t and standard
parabolic estimates, it follows by passing to the limit as t→ ±∞ in (4.12) that there exist two L-periodic
steady states 0 ≤ ũ(x) ≤ ū(x) ≤ 1 such that

u(t, x)→ ũ(x) as t→ −∞ and u(t, x)→ ū(x) as t→ +∞, locally uniformly in x ∈ R.

The steady state ũ ≥ 0 is L-periodic and satisfies max[0,L] ũ(·) ≤ max[0,L] u(0, ·) = δ, whence ũ = 0
by Lemma 4.5. In other words, φ(+∞, ·) = 0. Furthermore, the steady state ū(x) = φ(−∞, x/L) (≥
u(t, x) > 0) cannot be equal to 1, otherwise u would be a pulsating front (connecting 0 and 1) with
the speed c 6= 0 and L would then belong to E, contradicting Theorem 1.8 and the assumption L ∈
∂E ∩ (0,+∞). Therefore, from the strong elliptic maximum principle, 0 < ū < 1 is a non-trivial
L-periodic steady state of (1.1). Notice also, from the strong parabolic maximum principle, that the
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nonnegative function ut is positive in R2, whence φ(ξ, y) is decreasing in ξ and 0 < φ(ξ, y) < ū(Ly) for
all (ξ, y) ∈ R2.

Let us now show that ū is semistable. Suppose on the contrary that ū is unstable, that
is λ1(L, ū) > 0, where λ1(L, ū) is the principal eigenvalue of (3.10) corresponding to the steady state ū.
By Definition 3.5, one can choose R large enough such that λ1,R(L, ū) > 0, where λ1,R(L, ū) is the
principal eigenvalue in (3.9), associated with a positive principal eigenfunction ψR. For any ε > 0,
define vε as in (3.14). Since u(t, x) < ū(x) for all (t, x) ∈ R2 and both functions are continuous, one
can choose ε > 0 so small that u(0, x) < vε(x) for all x ∈ R and, as in (3.15), vε is a supersolution of
the elliptic equation associated with (1.1). It then follows from the parabolic maximum principle that
u(t, x) < vε(x) for all t ≥ 0 and x ∈ R. Hence, ū(x) ≤ vε(x) for all x ∈ R, which is clearly impossible.
Finally, 0 < ū < 1 is a semistable L-periodic steady state of (1.1).

Now, instead of the normalization (4.9), one can choose τn ∈ R such that (4.11) holds. Since
δ < 1− δ and each function un is increasing in t, one infers that tn < τn. As above, up to extraction of
a subsequence, the functions (t, x) 7→ un(t+ τn, x) (> un(t+ tn, x)) converge in C1,2

loc (R2) to a classical
solution 0 < v(t, x) < 1 of (1.1) such that min[0,L] v(0, ·) = 1− δ, v is nondecreasing with respect to t,
v ≥ u in R2, and v satisfies (4.12) that is v can be written as v(t, x) = ψ(x− ct, x/L), where ψ(ξ, y) =
v((Ly − ξ)/c, Ly) is 1-periodic in y. Furthermore, there are two L-periodic steady states 0 ≤ v̄(x) ≤
ṽ(x) ≤ 1 such that v(t, x)→ v̄(x) as t→ −∞ and v(t, x)→ ṽ(x) as t→ +∞ locally uniformly in x ∈ R.
The steady state ṽ ≤ 1 is L-periodic and satisfies min[0,L] ṽ(·) ≥ min[0,L] v(0, ·) = 1 − δ, whence ṽ = 1
by Lemma 4.5. In other words, ψ(−∞, ·) = 1. In particular, since ū(x) = u(+∞, x) < 1 = v(+∞, x)
and u ≤ v, it follows then from the strong maximum principle that

u(t, x) < v(t, x) for all (t, x) ∈ R2.

Lastly, the steady state v̄(x) = ψ(+∞, x/L) (≤ v(t, x) < 1) cannot be equal to 0, otherwise v would
be a pulsating front (connecting 0 and 1) with the speed c 6= 0, contradicting Theorem 1.8 and the
assumption L ∈ ∂E ∩ (0,+∞). Therefore, 0 < v̄ < 1 is a non-trivial L-periodic steady state of (1.1).
Notice that, in this case, v̄ may not be semistable in general, the maximum principle leading to no
obvious contradiction if v̄ were assumed to be unstable.

Case (ii): c < 0. The analysis is similar to that done in case (i), but now
∫ 1

0 f(u)du < 0 and the
functions un and their limits u and v are nonincreasing in t. One has limt→+∞ u(t, x) = 0 < ū(x) =
limt→−∞ u(t, x) < 1 and 0 < v̄(x) = limt→+∞ v(t, x) < 1 = limt→−∞ v(t, x). Lastly, the functions ū and
v̄ are L-periodic steady states of (1.1) and v̄ is semistable.

Case (iii): c = 0 and
∫ 1

0 f(u)du > 0. Hence, cn > 0 for all n ∈ N, by Theorem 1.1. Let tn ∈ R be as

in (4.9). Up to extraction of a subsequence, the functions (t, x) 7→ un(t+ tn, x) converge in C1,2
loc (R2) to

a classical solution 0 < u∞(t, x) < 1 of (1.1) such that max[0,L] u∞(0, ·) = δ and u∞ is nondecreasing
with respect to t. It also follows that u∞(t, x) → u(x) as t → +∞ locally uniformly in x ∈ R, where
0 ≤ u ≤ 1 is a steady state of (1.1). One has max[0,L] u ≥ max[0,L] u∞(0, ·) = δ, whence u > 0 in R from
the strong maximum principle. Furthermore, for every x ∈ R and t ∈ R, since un is increasing in time,
there holds un(t+ tn, x+ Ln) = un(t+ tn − Ln/cn, x) < un(t+ tn, x), whence u∞(t, x+ L) ≤ u∞(t, x)
and

u(x+ L) ≤ u(x) for all x ∈ R. (4.13)

Now, for any fixed t ∈ R and x > L, and for all n large enough, one has t− Ln/cn ≤ 0 and there is
kn ∈ N such that kn ≥ 1 and knLn ≤ x ≤ (kn + 1)Ln, whence t− knLn/cn ≤ 0 and

un(t+ tn, x) = un

(
t+ tn −

knLn
cn

, x− knLn
)
≤ un(tn, x− knLn) ≤ max

[0,Ln]
un(tn, ·) = δ

by (4.9) and the monotonicity of un with respect to t. Therefore, u∞(t, x) ≤ δ for all t ∈ R and x > L
(and x ≥ L by continuity), whence u(x) ≤ δ for all x ≥ L. In particular, the strong maximum principle
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yields u < 1 in R. Furthermore, by (4.13) and standard elliptic estimates, the functions x 7→ u(x+ kL)
(with parameter k ∈ N) converge decreasingly as k → +∞ in C2

loc(R) to an L-periodic steady state u(x)
of (1.1) such that 0 ≤ u(x) ≤ δ for all x ∈ R. Lemma 4.5 implies that u ≡ 0 in R, whence u(x) → 0
as x → +∞. Since u is (strictly) positive in R, it then follows from (4.13) and the strong maximum
principle that

u(x+ L) < u(x) for all x ∈ R. (4.14)

Similarly, the functions x 7→ u(x − kL) (with parameter k ∈ N) converge increasingly as k → +∞
in C2

loc(R) to an L-periodic steady state ū(x) of (1.1) such that 0 < ū(x) ≤ 1 in R. In particular,

u(x)− ū(x)→ 0 as x→ −∞. (4.15)

Notice that (4.14) and (4.15), together with the L-periodicity of ū, imply that u(x) < ū(x) for all x ∈ R.
We also point out that, if ū is equal to 1, then u is a stationary front (connecting 0 and 1).

Let us now prove that, whether ū be equal to 1 or less than 1, both steady states 0 < u(x) < 1
and 0 < ū(x) ≤ 1 are semistable. We will actually first prove that u is semistable, and ū will then
immediately be semistable too by (4.15). So, assume first by contradiction that u is unstable. By
Definition 3.5, there is R > 0 large enough such that R > L and λ1,R(L, u) > 0, where λ1,R(L, u)
denotes the principal eigenvalue of (3.9) in [−R,R], associated with a principal eigenfunction ψ. As
in (3.15), there is then ε0 > 0 such that, for all ε ∈ (0, ε0], the function

vε(x) =

{
u(x)− εψ(x) if |x| < R,

u(x) if |x| ≥ R,

satisfies 0 < vε ≤ u in R and is a supersolution of the elliptic equation associated with (1.1). On the
other hand, since u∞(t, x) ≤ u(x) for all (t, x) ∈ R2, the strong parabolic maximum principle implies
that either u∞(t, x) = u(x) for all (t, x) ∈ R2, or u∞(t, x) < u(x) for all (t, x) ∈ R2. In the latter case, by
continuity, there would be ε ∈ (0, ε0] such that u∞(0, x) ≤ vε(x) for all x ∈ R, whence u∞(t, x) ≤ vε(x)
for all t ≥ 0 and x ∈ R from the maximum principle. By passing to the limit as t → +∞, one would
infer that u ≤ vε in R2, which is clearly impossible. Therefore, u∞(t, x) = u(x) for all (t, x) ∈ R2. Now,
since 0 < vε0 < 1 is continuous and since, for each n ∈ N, un is continuous and increasing in t with
un(−∞, ·) = 0 and un(+∞, ·) = 1, there is a unique t′n ∈ R such that un(t′n, ·) ≤ vε0 in [−R,R] with
equality somewhere in [−R,R], that is

max
[−R,R]

(
un(t′n, ·)− vε0

)
= 0.

Since R > L and vε0 − u = −ε0ψ is continuous and negative in (−R,R), one has Ln < (R+ L)/2 < R
for n large enough, and there is η > 0 such that

max
[0,Ln]

un(t′n, ·) ≤ max
[0,Ln]

vε0 < max
[0,Ln]

u − η = max
[0,Ln]

u∞(0, ·) − η,

for n large enough, whence max[0,Ln] un(t′n, ·) < max[0,Ln] un(tn, ·). Therefore, t′n < tn for n large enough

and the functions (t, x) 7→ un(t + t′n, x) converge in C1,2
loc (R2), up to extraction of a subsequence, to a

classical solution ũ∞ of (1.1) such that 0 ≤ ũ∞(t, x) ≤ u∞(t, x) = u(x) < 1 for all (t, x) ∈ R2 and
max[−R,R]

(
ũ∞(0, ·)− vε0

)
= 0. In particular, ũ∞(0, ·) ≤ vε0 in R with equality somewhere in [−R,R].

The maximum principle yields ũ∞(t, x) ≤ vε0(x) for all t ≥ 0 and x ∈ R and since ũ∞ is nondecreasing
in t, the function ũ(x) = limt→+∞ ũ∞(t, x) is a classical steady state of (1.1) such that ũ ≤ vε0 in R with
equality at a point x0 ∈ [−R,R]. If |x0| = R, one has ũ ≤ u in R with equality at x0, whence ũ ≡ u in R
by the strong maximum principle which is clearly impossible since ũ ≤ vε0 < u in (−R,R). If |x0| < R,
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then ũ ≡ vε0 in (−R,R) from the strong maximum principle, whence ũ(±R) = vε0(±R) = u(±R)
by continuity, which is again impossible. Finally, one has reached a contradiction and one has shown
that 0 < u < 1 is a semistable steady state of (1.1).

Let us now conclude that the L-periodic steady state 0 < ū ≤ 1 is also semistable. Remember
that 0 < u < ū in R. Actually, if ū were unstable, then the arguments of Step 1 of the proof of
Lemma 3.7 would imply that supx∈R

(
u(x)− ū(x)

)
< 0. This is clearly impossible by (4.15). Therefore,

ū is semistable.
Case (iv): c = 0 and

∫ 1
0 f(u)du < 0. Here, cn < 0. For each n ∈ N, let τn be the unique

real number such that (4.11) holds. As in case (iii), up to extraction of a subsequence, the functions
(t, x) 7→ un(t + τn, x) converge in C1,2

loc (R2) to a classical solution 0 < v∞(t, x) < 1 of (1.1) such that
min[0,L] v∞(0, ·) = 1 − δ and v∞ is nonincreasing with respect to t. Therefore, v∞(t, x) → v(x) as
t → +∞ locally uniformly in x ∈ R, where 0 ≤ v < 1 is a steady state of (1.1). As in case (iii), there
holds v∞(t, x+L) ≤ v∞(t, x) and v(x+L) ≤ v(x) for all (t, x) ∈ R2, while v∞(t, x) ≥ 1− δ for all t ∈ R
and x ≤ 0. As a consequence, v(x) ≥ 1− δ for all x ≤ 0 and v(x)→ 1 as x→ −∞ by using Lemma 4.5.
Hence v(x + L) < v(x) for all x ∈ R by the strong maximum principle. Lastly, there is an L-periodic
steady state 0 ≤ v̄(x) < 1 of (1.1) such that v̄(x) < v(x) < 1 for all x ∈ R and v(x) − v̄(x) → 0 as
x→ +∞. The semistability of v and v̄ can then be proved as it was done in case (iii) for u and ū. The
proof of Theorem 4.3 is thereby complete.

5 Exponential stability of pulsating fronts

In this section, we first prove Theorem 1.9 on the exponential stability of the non-stationary pulsating
fronts of (1.1). The proof is divided into two parts. In the first part, in Section 5.1, we present a
dynamical systems approach to the global stability of the fronts. Namely, the solution of the Cauchy
problem (1.17) with an initial value satisfying (1.18) converges at large time to a translate of the pulsat-
ing front. In the second part, in Section 5.2, by using spectral analysis we show that this convergence
admits an exponential rate that is independent of the initial values. Lastly, in Section 5.3, initial condi-
tions satisfying assumptions of the type (1.20) are considered and Theorem 1.10 is proved. For the sake
of simplicity, throughout this section, even if it means rescaling the variables and renormalizing the
reaction, one assumes that L = 1 and that equation (1.1) admits a pulsating front U(t, x) = φ(x−ct, x)
with a nonzero speed c. Without loss of generality, as explained in Sections 3 and 4, one can assume
that c > 0.

5.1 Global stability of pulsating fronts

Consider the moving coordinates
(ξ, t) = (x− ct, t), (5.1)

and write the solution of (1.1) as v(t, ξ) = u(t, x), so that v(t, ξ) satisfies the following T -periodic
parabolic equation with T = 1/c:

vt = (a(ξ + ct)vξ)ξ + cvξ + f(ξ + ct, v). (5.2)

Clearly, the assumption (1.3) implies that 0 and 1 are two stable T -periodic solutions of (5.2). Note
that for any τ ∈ R,

V τ (t, ξ) := φ(ξ + τ, ξ + ct) (5.3)

is also a T -periodic solution of (5.2). Let P be the Poincaré map of the T -periodic equation (5.2), that
is,

P (g) = v(T, ·; g), (5.4)
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where v(t, ξ; g) is the unique solution of the Cauchy problem of (5.2) with initial condition v(0, ·; g) = g ∈
C(R, [0, 1]). Throughout this section, we denote ‖ ·‖ = ‖ ·‖L∞(R). It easily follows that 0, 1 and V τ (0, ·)
(for any τ ∈ R) are fixed points of P in C(R, [0, 1]). Since φ(ξ, x) is decreasing in ξ by Theorem 1.1,
there holds V τ1(0, ξ) > V τ2(0, ξ) for all τ1 < τ2 and ξ ∈ R. Hence, the set {V τ (0, ·)

∣∣ τ ∈ R} is totally
ordered in C(R, [0, 1]). In order to prove the global stability of the pulsating front U(t, x) = φ(x− ct, x)
with phase shift in time, we will apply the following convergence theorem to the Poincaré map P
(Lemma 5.1 will be applied later with E = C(R,R) and C = C(R, [0, 1])).

Lemma 5.1. ([57, Theorem 2.2.4]) Let C be a closed and partially ordered convex subset of a partially
ordered Banach space E and let F : C → C be a continuous and monotone map. Assume that there
exists an increasing homeomorphism h from [0, 1] onto a subset of C such that

(1) for each s ∈ [0, 1], h(s) is a stable fixed point of F ;

(2) for each x ∈ [h(0), h(1)]E =
{
x ∈ E | h(0) ≤E x ≤E h(1)

}
⊂ C, the forward orbit γ+(x) ={

Fn(x) |n ∈ N
}

is precompact;

(3) if ω(x) >E h(s0) for some x ∈ [h(0), h(1)]E and s0 ∈ [0, 1), then there exists s1 ∈ (s0, 1) such that

ω(x) ≥E h(s1). Here ω(x) = ∩k∈Nγ+(F k(x)) denotes the ω-limit set of {x} for F .

Then for any precompact forward orbit γ+(y) of F in C with ω(y)∩ [h(0), h(1)]E 6= ∅, there is s∗ ∈ [0, 1]
such that ω(y) = {h(s∗)}.

This abstract convergence result and its continuous-time analog were used, respectively, to prove
the global attractiveness and uniqueness of bistable traveling waves for two classes of time-periodic
reaction-diffusion equations in [57, 56] and an autonomous reaction-diffusion system in [55]. Here we
should point out that the arguments used there are dependent on the property that both planar and
time-periodic traveling fronts are monotone in the spatial variable. For equation (1.1), a pulsating front
φ(x − ct, x) is no longer monotone in x in general, but it is in the first variable ξ = x − ct. Thus, to
make use of this monotonicity, we introduced the new variable τ in (5.3). In what follows, we provide
a series of lemmas to verify that the strategy in [57] works for the functions V τ (0, ·).

Lemma 5.2. For any g ∈ C(R, [0, 1]) satisfying (1.18) and any ε > 0, there exist some integers

k̃ = k̃(g, ε) and m̃ = m̃(g, ε) such that V k̃(0, ξ)− ε ≤ v(m̃T, ξ; g) ≤ V −k̃(0, ξ) + ε for all ξ ∈ R.

Proof. Let us first set a few notations. Recall that δ ∈ (0, 1/2) and γ > 0 are given in (1.3). Denote
w+

1 (t) = 1 + (1 − δ)e−γt and w+
2 (t) = δe−γt for t ≥ 0, and notice that (w+

1 )′(t) = γ(1 − w+
1 (t)),

(w+
2 )′(t) = −γw+

2 (t) and 0 < w+
2 (t) < w+

1 (t) ≤ 2 − δ for all t ≥ 0. Set η(ξ) = (1 + tanh(−ξ/2))/2
for ξ ∈ R and notice that η′ = −η(1 − η) and η′′ = η(1 − η)(1 − 2η) in R. Furthermore, since the
function f(x, u) is of class C1,1 in u uniformly for x ∈ R, there exists K > 0 such that

|f(x, s1)− f(x, s2)|+ |∂uf(x, s1)− ∂uf(x, s2)| ≤ K|s1 − s2| for all x, s1, s2 ∈ R. (5.5)

Lastly, define c+ = c− ‖a‖ − ‖a′‖ − 2K and

w+(t, ξ) = w+
1 (t) η(ξ + c+t) + w+

2 (t) (1− η(ξ + c+t)) for t ≥ 0 and ξ ∈ R.

Let now g ∈ C(R, [0, 1]) satisfy (1.18). There is ξ0 ∈ N such that g(ξ + ξ0) ≤ δ for all ξ ≥ 0.
Without loss of generality, even if it means working with the shifted function g(·+ ξ0), one can assume
that ξ0 = 0. Next, one shows that w+ is a supersolution of (5.2). To do so, observe first that
v(0, ξ; g) = g(ξ) ≤ w+(0, ξ) for all ξ ∈ R. On the other hand, for all t > 0 and ξ ∈ R,

L(w+) : = w+
t − cw

+
ξ − (a(ξ + ct)w+

ξ )ξ − f(ξ + ct, w+)

= γ(1− w+
1 )η − γw+

2 (1− η)− f(ξ + ct, w+) + c+(w+
1 η
′ − w+

2 η
′)

− c(w+
1 η
′ − w+

2 η
′)− a′(ξ + ct)(w+

1 η
′ − w+

2 η
′)− a(ξ + ct)(w+

1 η
′′ − w+

2 η
′′),
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where η, η′ and η′′ are taken at ξ + ct, while w+
1 and w+

2 are taken at t. Remember that f(x, u) =
∂uf(x, 1) (u− 1) for all u ≥ 1 and x ∈ R, with ∂uf(x, 1) ≤ −γ. It follows from (1.3) and (5.5) that

γ(1− w+
1 )η − γw+

2 (1− η)− f(ξ + ct, w+)

≥ f(ξ + ct, w+
1 )η + f(ξ + ct, w+

2 )(1− η)− f(ξ + ct, w+)η − f(ξ + ct, w+)(1− η)

=
(
∂uf(ξ + ct, ϑ1w

+
1 + (1− ϑ1)w+)− ∂uf(ξ + ct, ϑ2w

+
2 + (1− ϑ2)w+)

)
(w+

1 − w
+
2 )η(1− η)

≥ −K(w+
1 − w

+
2 )2η(1− η),

where ϑ1 = ϑ1(t, ξ), ϑ2 = ϑ2(t, ξ) ∈ [0, 1]. Then, owing to the definitions of η and c+, one has

L(w+) ≥ −K(w+
1 − w

+
2 )2η(1− η) + (−c+ + c+ a′(ξ + ct))(w+

1 − w
+
2 )η(1− η)

− a(ξ + ct)(w+
1 − w

+
2 )η(1− η)(1− 2η)

=
(
2K −K(w+

1 − w
+
2 )
)
(w+

1 − w
+
2 )η(1− η) +

(
‖a′‖+ a′(ξ + ct)

)
(w+

1 − w
+
2 )η(1− η)

+
(
‖a‖ − a(ξ + ct)(1− 2η)

)
(w+

1 − w
+
2 )η(1− η)

≥ 0

in (0,+∞) × R. The parabolic maximum principle implies that v(t, ξ; g) ≤ w+(t, ξ) for all (t, ξ) ∈
[0,+∞)× R.

Finally, let ε > 0 be any positive real number. There exist an integer m̃ = m̃(g, ε) and a positive
real number C = C(g, ε) such that 1 < w+

1 (m̃T ) ≤ 1 + ε/2, 0 < w+
2 (m̃T ) ≤ ε/2 and (w+

1 (m̃T ) −
w+

2 (m̃T ))η(ξ + c+m̃T ) ≤ ε/2 for all ξ ≥ C. Thus, it follows that, for all ξ ≥ C,

v(m̃T, ξ; g) ≤ w+(m̃T, ξ) = (w+
1 (m̃T )− w+

2 (m̃T ))η(ξ + c+m̃T ) + w+
2 (m̃T ) ≤ ε ≤ V 0(0, ξ) + ε.

In the case where ξ < C, since lims→+∞ V
0(0, ξ − s) = 1 uniformly for ξ < C, there exists an integer

k̃ = k̃(g, ε) such that v(m̃T, ξ; g) ≤ 1 ≤ V 0(0, ξ − k̃) + ε = V −k̃(0, ξ) + ε for all ξ < C. Since

V 0(0, ξ) = φ(ξ, ξ) ≤ φ(ξ − k̃, ξ) = V −k̃(0, ξ) for all ξ ∈ R by Theorem 1.1, one finally gets that

v(m̃T, ξ; g) ≤ V −k̃(0, ξ) + ε for all ξ ∈ R.

Similarly, even if it means increasing the integers m̃ and k̃, one can show that V k̃(0, ξ) − ε ≤
v(m̃T, ξ; g) for all ξ ∈ R, by constructing an analogous subsolution of equation (5.2). More precisely,
letting w−1 (t) = 1− δe−γt, w−2 (t) = −(1 + δ)e−γt and c− = c+ ‖a‖+ ‖a′‖+ 2K, the function w−(t, ξ) =
w−1 (t)η(ξ + c−t) + w−2 (t)(1 − η(ξ + c−t)) defined in [0,+∞) × R is a subsolution of (5.2) and one can
conclude as in the previous paragraph. Therefore, the proof of Lemma 5.2 is complete.

The above lemma reveals that a “vaguely resembling wave initial condition” (i.e. g satisfying (1.18))
evolves into a “resembling wave front” (i.e. close to 0 and 1 as ξ → ±∞) after a certain time. Next by
constructing similar super- and subsolutions of (5.2) as in [23, 52], one shows that a “resembling wave
front” preserves its structure uniformly at later times.

Lemma 5.3. (i) There exist some positive real numbers ε0 and k0 such that for any g ∈ C(R, [0, 1])
satisfying g ≤ V τ0(0, ·) + ε (resp. g ≥ V τ0(0, ·) − ε) in R for some ε ∈ (0, ε0] and τ0 ∈ R, then
v(t, ξ; g) ≤ V τ0−k0ε(t, ξ) + εe−γt/2 (resp. v(t, ξ; g) ≥ V τ0+k0ε(t, ξ)− εe−γt/2) for all t ≥ 0 and ξ ∈ R.
(ii) There exists a positive real number k1 such that if ‖g−V τ0(0, ·)‖ ≤ ε for some ε ∈ (0, ε0] and τ0 ∈ R,
then ‖v(t, ·; g)− V τ0(t, ·)‖ ≤ k1ε for all t ≥ 0.

Proof. (i) We only consider the case g ≤ V τ0(0, ·) + ε, since the case g ≥ V τ0(0, ·) − ε can be treated
similarly. The general strategy can be described as follows. We set

V (t, ξ) := V τ(t)(t, ξ) + q(t) for t ≥ 0 and ξ ∈ R,
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where τ and q are C1([0,+∞)) functions such that τ(0) = τ0, τ ′(t) < 0 for all t ≥ 0, q(0) = ε
and 0 < q(t) ≤ ε for all t ≥ 0. Here ε > 0 will be chosen small enough and τ0 ∈ R is arbitrary. The
assumption g ≤ V τ0(0, ·) + ε in R means that g ≤ V (0, ·) in R. By choosing appropriate functions τ(t)
and q(t), one will actually show that V (t, ξ) is a supersolution of equation (5.2).

To do so, let ζ(t, ξ) = ξ + τ(t) and x(t, ξ) = ξ + ct, so that V (t, ξ) = φ(ζ(t, ξ), x(t, ξ)) + q(t). To
avoid any confusion, let us denote here ∂1φ and ∂2φ the partial derivatives of φ with respect to its first
and second arguments. A straightforward calculation gives, for all t > 0 and ξ ∈ R,

LV = V t − cV ξ − (a(ξ + ct)V ξ)ξ − f(ξ + ct, V )

= τ ′(t)∂1φ+ c∂2φ+ q′(t)− c(∂1φ+∂2φ)− a′(x)(∂1φ+∂2φ)− a(x)(∂1+∂2)2φ− f(x, φ+q(t))

= τ ′(t)∂1φ+ q′(t)− f(x, φ+ q(t)) + f(x, φ)

−
(
c∂1φ+ a′(x)(∂1φ+ ∂2φ) + a(x)(∂1 + ∂2)2φ+ f(x, φ)

)
,

where φ, ∂1φ and ∂2φ are taken at (ζ(t, ξ), x(t, ξ)), while x = x(t, ξ). Since (φ, c) is a pulsating front of
equation (1.1), it follows that, for all t > 0 and ξ ∈ R,

LV = τ ′(t)∂1φ+ q′(t) + f(x, φ)− f(x, φ+ q(t)). (5.6)

Now, since f(y, u) satisfies (1.3) and is of class C1,1 in u uniformly in y ∈ R, there exists a positive
real number ε0 such that, if (ε, t, ξ) ∈ (0, ε0] × [0,+∞) × R and φ(ζ(t, ξ), x(t, ξ)) ∈ [0, ε0] ∪ [1 − ε0, 1],
then

f(x(t, ξ), φ(ζ(t, ξ), x(t, ξ)))− f(x(t, ξ), φ(ζ(t, ξ), x(t, ξ))+q(t)) ≥ γq(t)

2
. (5.7)

On the other hand, since the derivative ∂1φ is continuous and negative in R × T from Theorem 1.1
and the strong parabolic maximum principle applied to the function Ut, there is β > 0 such that, if
(ε, t, ξ) ∈ (0, ε0]× [0,+∞)× R and φ(ζ(t, ξ), x(t, ξ)) ∈ [ε0, 1− ε0], then

∂1φ(ζ(t, ξ), x(t, ξ)) ≤ −β. (5.8)

Given these positive parameters ε0 and β, let us now consider ε ∈ (0, ε0], g ∈ C(R, [0, 1]) and τ0 ∈ R
such that g ≤ V τ0(0, ·) + ε in R, and let us then choose q(t) and τ(t) so that

q(0) = ε, q′(t) = −γq(t)
2

for all t ≥ 0, τ(0) = τ0 and τ ′(t) = −2K + γ

2β
q(t) for all t ≥ 0, (5.9)

that is q(t) = εe−γt/2 and τ(t) = τ0 − ε(2K + γ)(1− e−γt/2)/(γβ) for all t ≥ 0. It is then easy to check
from (5.5-5.9) that LV ≥ 0 for all t > 0 and ξ ∈ R, while g ≤ V (0, ·) in R. That is, V is a supersolution
of (5.2). As a consequence, by the comparison principle, one infers that

v(t, ξ; g) ≤ V τ(t)(t, ξ) + q(t) for all t ≥ 0 and ξ ∈ R.

Since V s(t, ξ) is decreasing in s ∈ R, letting k0 = (2K + γ)/(γβ) > 0, one has τ(t) ≥ τ0 − k0ε for all
t ≥ 0, whence v(t, ξ; g) ≤ V τ0−k0ε(t, ξ) + εe−γt/2 for all t ≥ 0 and ξ ∈ R. The proof of assertion (i) is
thereby complete.

(ii) Since V τ0(0, ξ) − ε ≤ g(ξ) ≤ V τ0(0, ξ) + ε for all ξ ∈ R, one sees from assertion (i) that
V τ0+k0ε(t, ξ)− εe−γt/2 ≤ v(t, ξ; g) ≤ V τ0−k0ε(t, ξ) + εe−γt/2 for all t ≥ 0 and ξ ∈ R. Therefore,

v(t, ξ; g)−V τ0(t, ξ) ≤ V τ0−k0ε(t, ξ)−V τ0(t, ξ)+εe−γt/2 = φ(ξ+τ0−k0ε, ξ+ct)−φ(ξ+τ0, ξ+ct)+εe−γt/2,

and, similarly, v(t, ξ; g) − V τ0(t, ξ) ≥ φ(ξ + τ0 + k0ε, ξ + ct) − φ(ξ + τ0, ξ + ct) − εe−γt/2 for all t ≥ 0
and ξ ∈ R. Since φ is globally Lipschitz-continuous, there exists a positive real number k1 depending
only on φ and k0 such that ‖v(t, ·; g)−V τ0(t, ·)‖ ≤ k1ε for all t ≥ 0. The proof of Lemma 5.3 is thereby
complete.

37



Lemma 5.3 implies in particular that for each τ ∈ R, V τ (0, ·) is a Lyapunov stable fixed point of the
Poincaré map P defined in (5.4). Now we are in a position to employ Lemma 5.1 to prove that the non-
stationary pulsating fronts of (1.1) are globally stable. Due to Lemmas 5.2-5.3 and the monotonicity
of V τ (t, ξ) in τ , the arguments in [57, Theorem 10.2.1] carry through with minor modification. For the
sake of completeness, we include the details below.

Proposition 5.4. Let φ(x − ct, x) be a pulsating front of equation (1.1) with L = 1, c 6= 0 and let
u(t, x; g) be the solution of (1.17) with u(0, ·; g) = g ∈ L∞(R, [0, 1]) satisfying (1.18). Then there exists
τg ∈ R such that

sup
x∈R

∣∣u(t, x; g)− U(t+ τg, x)
∣∣ = sup

x∈R

∣∣u(t, x; g)− φ(x− ct− cτg, x)
∣∣→ 0 as t→ +∞,

that is, ‖v(t, ·; g)− V −cτg(t, ·)‖ → 0 as t→ +∞.

Proof. Recall that P : C(R, [0, 1]) → C(R, [0, 1]) is the Poincaré map defined in (5.4), that is, P (ϕ) =
v(T, ·;ϕ) for all ϕ ∈ C(R, [0, 1]). We are going to apply Lemma 5.1 with E = C(R,R) endowed with
the norm ‖ ‖ = ‖ ‖L∞(R) and the standard order between real-valued functions, C = C(R, [0, 1]) and
F = P . We first notice that C is a closed and ordered convex subset of E and that the map P : C → C
is monotone and continuous, by the parabolic maximum principle.

Consider now any g ∈ L∞(R, [0, 1]) satisfying (1.18). Since v(t, ·; g) ∈ C(R, [0, 1]) for all t >
0 and since lim supξ→−∞(1 − v(t, ξ; g)) ≤

(
lim supξ→−∞(1 − g(ξ))

)
eKt and lim supξ→+∞ v(t, ξ; g) ≤(

lim supξ→+∞ g(ξ)
)
eKt for all t > 0 with K as in (5.5), one can assume without loss of generality that

g ∈ C(R, [0, 1]) satisfies (1.18), even if it means replacing g by v(ρ, ·; g) for some small enough ρ > 0.
Under the notations ε0 and k0 of Lemma 5.3 (i), fix any ε ∈ (0, ε0]. Lemmas 5.2 and 5.3 provide the
existence of some integers k̃ = k̃(g, ε) and m̃ = m̃(g, ε) such that

V k̃+k0ε(t, ξ)− εe−γt/2 ≤ v(m̃T + t, ξ; g) ≤ V −k̃−k0ε(t, ξ) + εe−γt/2 for all t ≥ 0 and ξ ∈ R. (5.10)

Since the sequence (Pn(g))n≥1 = (v(nT, ·; g))n≥1 is bounded in C1(R,R) by standard parabolic esti-
mates and since V τ (t,−∞) = 1 and V τ (t,+∞) = 0 uniformly in t ∈ R, it then follows from (5.10) that
the forward orbit γ+(g) = {Pn(g) | n ∈ N} is precompact in C(R, [0, 1]). Hence, the ω-limit set ω(g)
is nonempty, compact and invariant by P . Letting p = k̃ + k0ε > 0 and t = nT in (5.10), one then
concludes that

ω(g) ⊂ I :=
{
ϕ ∈ C(R, [0, 1]) | V p(0, ·) ≤ ϕ ≤ V −p(0, ·) in R

}
⊂ C.

Now define h(s) = V p−2ps(0, ·) for s ∈ [0, 1]. Thus, I = [h(0), h(1)]E and h is an increasing homeomor-
phism from [0, 1] onto a subset of C. On the other hand, by Lemma 5.3 (ii), h(s) is a stable fixed point
for P for each s ∈ [0, 1]. As done for g, one can also observe that for each ϕ ∈ I = [h(0), h(1)]E , the
forward orbit γ+(ϕ) is included in I and precompact in C(R, [0, 1]).

Let us finally check the last condition in Lemma 5.1. To do so, assume that h(s0) <E ω(ϕ0) for
some s0 ∈ [0, 1) and ϕ0 ∈ I. In other words, one has h(s0) <E ϕ, that is, V p−2ps0(0, ·) ≤ ϕ in R and
V p−2ps0(0, ·) 6≡ ϕ, for all ϕ ∈ ω(ϕ0). By the strong maximum principle, there holds V p−2ps0(t, ξ) <
v(t, ξ;ϕ) for all t > 0 and ξ ∈ R, whence V p−2ps0(T, ·) < P (ϕ) in R. By the T -periodicity of V p−2ps0

and the invariance of ω(ϕ0) for P , it then follows that

V p−2ps0(0, ·) < ϕ in R for all ϕ ∈ ω(ϕ0). (5.11)

Furthermore, since V τ (0, ξ) = φ(ξ+τ, ξ) and limξ→±∞ ∂ξφ(ξ, x) = 0 uniformly in x ∈ R, there is M > 0
such that

0 < δ̃ := sup
s,s′∈[0,3/2], s 6=s′, |ξ|≥M

|V p−2ps(0, ξ)− V p−2ps′(0, ξ)|
|s− s′|

≤ min
(2ε0

5
,

2p

5k0

)
. (5.12)
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On the other hand, since ω(ϕ0) is compact, it follows then from (5.11) that there exists a real number
s1 ∈ (s0, 1) such that V p−p(3s1−s0)(0, ξ) < ϕ(ξ) for all ξ ∈ [−M,M ] and ϕ ∈ ω(ϕ0).

Let ϕ ∈ ω(ϕ0) be given. Then there is a sequence nj → +∞ such that ‖Pnj (ϕ0) − ϕ‖ → 0

as j → +∞. Let nk ∈ N be such that ‖Pnk(ϕ0)− ϕ‖ ≤ δ̃ (s1 − s0). Since ϕ(ξ)− V p−p(3s1−s0)(0, ξ) > 0
for all ξ ∈ [−M,M ] and ϕ(ξ) − V p−p(3s1−s0)(0, ξ) > V p−2ps0(0, ξ) − V p−p(3s1−s0)(ξ) for all ξ ∈ R, one
infers that

Pnk(ϕ0)(ξ)− V p−p(3s1−s0)(0, ξ) ≥ −‖Pnk(ϕ0)− ϕ‖+ ϕ(ξ)− V p−p(3s1−s0)(0, ξ)

≥ −δ̃ (s1 − s0)− sup
|ξ|≥M

|V p−2ps0(0, ξ)− V p−p(3s1−s0)(0, ξ)|

≥ −5δ̃ (s1 − s0)

2
≥ − ε0

for all ξ ∈ R, by (5.12). Thus, by Lemma 5.3 (i), there holds

v(t, ξ;Pnk(ϕ0)) ≥ V p−p(3s1−s0)+5k0δ̃(s1−s0)/2(t, ξ)− 5δ̃(s1 − s0)

2
e−γt/2 for all t > 0 and ξ ∈ R.

Letting t = (nj − nk)T and j → +∞ yields ϕ ≥ V p−p(3s1−s0)+5k0δ̃(s1−s0)/2(0, ·) ≥ V p−2ps1(0, ·) in R
since p − p(3s1 − s0) + 5k0δ̃(s1 − s0)/2 ≤ p − 2ps1 by (5.12) and V τ is decreasing with respect to τ .
Hence, ω(ϕ0) ≥E V p−2ps1(0, ·) = h(s1).

Finally, since ∅ 6= ω(g) ⊂ I = [h(0), h(1)]E , it follows from Lemma 5.1 that there is sg ∈ [0, 1]
such that ω(g) = {h(sg)} = {V p−2psg(0, ·)}. That is, limn→+∞ ‖Pn(g) − V p−2psg(0, ·)‖ = 0. It then
follows from Lemma 5.3 (ii) that limt→+∞ ‖v(t, ·; g)−V p−2psg(t, ·)‖ = 0. Since v(t, x− ct; g) = u(t, x; g)
and V p−2psg(t, x − ct) = φ(x − ct + p − 2psg, x) for all t ≥ 0 and x ∈ R, one gets the conclusion of
Proposition 5.4 with τg = (2psg − p)/c.

Remark 5.5. Proposition 5.4 gives the global stability of non-stationary pulsating fronts for equa-
tion (1.1), if they exist. The proof only relies on the assumption (1.3) and that f(x, 0) = f(x, 1) = 0
for all x ∈ R, as well as the time-monotonicity property of non-stationary pulsating fronts stated in
Theorem 1.1. Furthermore, the uniqueness results stated in Theorem 1.1 can be viewed as consequences
of Proposition 5.4 (see the proof of Theorem 1.1 in Section 2.2).

5.2 Exponential stability of pulsating fronts

Here, we prove Theorem 1.9 by using the general theory of exponential stability of invariant manifolds
with asymptotic phase. This theory was first established by Henry [33] in the context of reaction-
diffusion equations, and then applied to bistable time-periodic equations in [2]. Once again, one assumes
that L = 1 and that (1.1) admits a pulsating front U(t, x) = φ(x− ct, x) with a speed c > 0. Consider
the moving coordinates (ξ, t) defined in (5.1) and the resulting time-periodic parabolic equation (5.2).
One uses the notations T = 1/c and V τ given in (5.3), and P : C(R, [0, 1])→ C(R, [0, 1]) is the Poincaré

map defined in (5.4). Note that M̃ := {V τ | τ ∈ R} ⊂ C(R2, [0, 1]) is a one-dimensional manifold of

special solutions of (5.2). By Proposition 5.4, M̃ attracts the solutions of the Cauchy problem of (5.2)
with initial values g satisfying (1.18). In order to show that this convergence is also exponential in time,
it is sufficient to prove the local exponential stability of the manifold

M := {V τ (0, ·) | τ ∈ R} ⊂ C(R, [0, 1]).

Notice that since each element in M is a fixed point of P , the manifold M is invariant under P .
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One is thus interested in the linearization of P around the points ofM. Without loss of generality,
consider the point V0 := V 0(0, ·). Let X = BUC(R,C) be the Banach space of bounded and uniformly
continuous functions on R, with the norm ‖ ‖ = ‖ ‖L∞(R,C). It is easy to check that the derivative of P
at V0 is given by P ′(V0)(w) = W (T, ·;w) for w ∈ X , where W (t, ξ;w) obeys{

Wt = (a(ξ + ct)Wξ)ξ + cWξ + ∂uf(ξ + ct, V 0(t, ξ))W, t > 0, ξ ∈ R,
W (0, ξ) = w(ξ), ξ ∈ R.

Denote W 0(t, ξ) := ∂τV
τ (t, ξ)|τ=0 = ∂1φ(ξ, ξ + ct) and notice that 1 is an eigenvalue of P ′(V0) with

eigenfunction w0 := W 0(0, ·) ∈ X . As in [2], in order to prove the local exponential stability of M, we
need to show that 1 is algebraically simple, and that the rest of the spectrum is contained in a disk of
radius strictly less than 1. Namely, we prove the following two lemmas.

Lemma 5.6. The value 1 is an algebraically simple eigenvalue of P ′(V0) with eigenfunction w0 and, if
λ ∈ C is an eigenvalue of P ′(V0) with eigenfunction w 6∈ Cw0, then |λ| < 1.

Proof. Assume that λ ∈ C∗ is an eigenvalue of P ′(V0) with eigenfunction w ∈ X . Let µ ∈ C be such
that eµT = 1/λ and set h(t, ξ) = eµtW (t, ξ;w) for t ≥ 0 and ξ ∈ R. The function h satisfies{

ht − (a(ξ + ct)hξ)ξ − chξ − ∂uf(ξ + ct, V 0(t, ξ))h = µh for all t > 0 and ξ ∈ R,
h(0, ξ) = h(T, ξ) for all ξ ∈ R.

(5.13)

Hence, the eigenvalue problem P ′(V0)(w) = λw can be recast as the spectral problem (5.13) in the space
of time periodic functions

{
h ∈ C(R2,C) | h(t, ·) = h(t+ T, ·) for all t ∈ R

}
. Clearly, W 0 solves (5.13)

with µ = 0. In addition, following arguments similar to the ones in Step 3 of the proof of Lemma 4.1
or in [2, Lemma A.2], one infers that if h 6∈ CW 0 solves (5.13) with some µ ∈ C, then Re(µ) > 0. In
other words, if w 6∈ Cw0, then |λ| < 1.

On the other hand, since t = (x− ξ)/c, setting ψ(ξ, x) = h(t, ξ) in (5.13) yields

∂̃(a(x)∂̃ψ)+c∂ξψ+∂uf
(
x, φ(ξ, x)

)
ψ = −µψ for all (ξ, x) ∈ R2, ψ(ξ, x+1) = ψ(ξ, x) for all (ξ, x) ∈ R2,

where ∂̃ = ∂ξ + ∂x. But, from Lemma 4.1 and standard parabolic estimates, it follows that 0 is an
algebraically simple eigenvalue of the operator H1 defined in (4.1) with L0 = 1 in the space of spatially
periodic functions E :=

{
ψ ∈ BUC(R2,C) | ψ(ξ, x) = ψ(ξ, x + 1) for all (ξ, x) ∈ R2

}
. 5 Thus, 1 is an

algebraically simple eigenvalue of P ′(V0) and the proof of Lemma 5.6 is complete.

Lemma 5.7. The essential spectrum of P ′(V0) is contained in the disk
{
λ ∈ C | |λ| ≤ e−γT/2

}
. Thus,

if λ is in the spectrum of P ′(V0) and |λ| > e−γT/2, then λ is an eigenvalue, and for any r > e−γT/2,
there are only finitely many eigenvalues of P ′(V0) in {λ ∈ C | |λ| ≥ r}.

Proof. Firstly, (1.3) yields the existence of N > 0 such that ∂uf(ξ + ct, V 0(t, ξ)) ≤ −γ/2 for all t ∈ R
and |ξ| ≥ N . Let κ1(t, ξ) and κ2(t, ξ) be the continuous T -periodic functions defined by

κ1(t, ξ) =

{
∂uf(ξ + ct, V 0(t, ξ)) if ξ ≤ −N,
∂uf(−N + ct, V 0(t,−N)) if ξ > −N,

κ2(t, ξ) =

{
∂uf(ξ + ct, V 0(t, ξ)) if ξ ≥ N,
∂uf(N + ct, V 0(t,N)) if ξ < N.

5We point out that for any ψ ∈ E such that H1(ψ) = 0 in the sense of distributions, one can assume without loss of
generality that ψ is real valued, and the function ψ is a classical solution by parabolic estimates. Hence ψ(±∞, x) = 0
uniformly in x ∈ R because of (1.3) and ψ and its derivatives decay exponentially as ξ → ±∞, as in Lemma 2.1. Thus,
ψ ∈ D1.
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Let ς ∈ C(R, [0, 1]) be a function satisfying ς(ξ) = 0 for ξ ≤ −N and ς(ξ) = 1 for ξ ≥ N , and define
κ(t, ξ) = (1 − ς(ξ))κ1(t, ξ) + ς(ξ)κ2(t, ξ) for (t, ξ) ∈ R2. The function κ is continuous in R2, bounded,
T -periodic with respect to t, and κ ≤ −γ/2 in R2. Consider now the operator K defined on X by

K(w) = Ŵ (T, ξ;w) for w ∈ X , where Ŵ (t, ξ;w) solves the equation{
Ŵt = (a(ξ + ct)Ŵξ)ξ + cŴξ + κ(t, ξ)Ŵ , t > 0, ξ ∈ R
Ŵ (0, ·;w) = w.

By the maximum principle, ‖Ŵ (t, ·;w)‖ ≤ e−γt/2‖w‖ for all t > 0, whence ‖K(w)‖ ≤ e−γT/2‖w‖ for all
w ∈ X . Thus, the spectral radius of K is at most e−γT/2.

Next, one shows that K − P ′(V0) : X → X is a compact operator. To do so, consider a bounded
sequence (wn)n∈N in X and denote ηn = (K−P ′(V0))(wn) for n ∈ N. From standard parabolic estimates,
up to extraction of some subsequence, the functions ηn converge to a function η∞, locally uniformly as
n → +∞, with η∞ ∈ X . To show the uniform convergence in R, one needs to estimate the values of
ηn(ξ) for |ξ| ≥ N uniformly in n ∈ N. Without loss of generality, one can assume that the functions
wn (and ηn) are real-valued and one only considers the case ξ ≤ −N since the case ξ ≥ N can be dealt

with similarly. For each n ∈ N, let Φn(t, ξ) := Ŵ (t, ξ;wn)−W (t, ξ;wn) for t ≥ 0 and ξ ≤ −N . Owing
to the definition of κ, each function Φn solves{

(Φn)t = (a(ξ + ct)(Φn)ξ)ξ + c(Φn)ξ + κ(t, ξ)Φn, t > 0, ξ ≤ −N,
Φn(0, ξ) = 0, ξ ≤ −N.

(5.14)

As in Lemma 2.1, for any ν ∈ R, the linear operator Tν defined on
{
ϕ ∈ C2(R) | ϕ = ϕ(· + 1)

in R
}

by Tν [ϕ] := (aϕ′)′ + 2νaϕ′ + (νa′ + cν + aν2 − γ/2)ϕ admits a principal eigenvalue λ1(ν),
and there is ν1 > 0 such that λ1(ν1) = 0. Let ϕν1 be a positive corresponding eigenfunction.
Since supt∈[0,T ], n∈N ‖Φn(t, ·)‖ < +∞ by the parabolic maximum principle and the boundedness of
the sequence (wn)n∈N in X , there is a constant A > 0 such that

Ae−ν1Nϕν1(−N + ct) ≥ |Φn(t,−N)| for all t ∈ [0, T ] and n ∈ N.

An immediate computation shows that Aeν1ξϕν1(ξ+ct) is a supersolution of (5.14) in [0, T ]×(−∞,−N ],
whence |ηn(ξ)| = |Φn(T, ξ)| ≤ Aeν1ξϕν1(ξ + cT ) for all ξ ≤ −N and n ∈ N by the maximum principle.
Thus, ηn(ξ) converges to 0 as ξ → ±∞ uniformly in n ∈ N. Together with the local convergence of the
functions ηn to η∞, one concludes that ‖ηn − η∞‖ → 0 as n→ +∞.

Finally, there are then finitely many eigenvalues of P ′(V0) in {λ ∈ C | |λ| ≥ r} for any r > e−γT/2

and the essential spectrum of P ′(V0) is the same as that of K, whence the radius of essential spectrum
of P ′(V0) is not larger than e−γT/2.

End of the proof of Theorem 1.9. Consider any g ∈ L∞(R, [0, 1]) satisfying (1.18). As in the proof of
Proposition 5.4, one can assume that g ∈ C(R, [0, 1]). By Proposition 5.4, there is τg ∈ R such that
‖u(t, ·; g)−U(t+ τg, ·)‖ = ‖v(t, ·; g)−V −cτg(t, ·)‖ → 0 as t→ +∞. Without loss of generality, even if it
means shifting U in time, one can assume that τg = 0. From Lemmas 5.6 and 5.7, 1 is an algebraically
simple eigenvalue of P ′(V0) and the rest of the spectrum of P ′(V0) is contained in a disk with radius
r̃(P ′(V0)) ∈ (0, 1). Therefore, the manifold M is locally exponentially stable with asymptotic phase
for P , see [33, Chapter 9]. Since P (V0)=V0 =V 0(0, ·) and ‖Pn(g)−V0‖ = ‖v(nT, ·; g)−V 0(nT, ·)‖ → 0
as n→ +∞, there are then some real numbers µ = − ln((r̃(P ′(V0))+1)/2) > 0 independent of g, and C
depending on g, such that

‖v(nT, ·; g)− V0‖ = ‖Pn(g)− V0‖ ≤ Ce−µTn for all n ∈ N.
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Under the notations of Lemma 5.3, there is then n0 ∈ N such that ‖v(nT, ·; g)−V0‖ ≤ Ce−µTn ≤ ε0 for
all n ∈ N with n ≥ n0, whence ‖v(nT +t, ·; g)−V 0(t, ·)‖ ≤ k1Ce−µTn for all n ≥ n0 and t ∈ [0, T ]. Since
V 0 is T -periodic in t, one infers that ‖v(t, ·; g)− V 0(t, ·)‖ ≤ k1CeµT e−µt for all t ≥ n0T . Finally, since
0 ≤ v(·, ·; g), V 0 ≤ 1 in [0,+∞) × R, there is a constant Cg (depending on g and on the parameters
of (1.1)) such that ‖v(t, ·; g) − V 0(t, ·)‖ ≤ Cge

−µt for all t ≥ 0. Since v(t, x − ct; g) = u(t, x; g) and
V 0(t, x− ct) = φ(x− ct, x) = U(t, x), one concludes that ‖u(t, ·; g)−U(t, ·)‖ ≤ Cge−µt for all t ≥ 0 and
the proof of Theorem 1.9 is thereby complete.

5.3 Proof of Theorem 1.10

This section is devoted to the proof of Theorem 1.10. That is, we show that any solution of (1.17) with
initial value satisfying (1.20) converges to a translate (in time) of the pulsating front of equation (1.1),
and this convergence is exponential in time. Thanks to the assumption that all L-periodic stationary
states of equation (1.1) are unstable, we will prove that such solution of (1.17) will evolve into a “front-
like” wave (i.e., satisfying (1.18)) after a certain time. Then the conclusion of Theorem 1.10 will follow
easily from Theorem 1.9.

Proof of Theorem 1.10. Since the initial value g satisfies (1.20), there is σ > 0 such that

lim inf
x→−∞

(
g(x)− ū−(x)

)
≥ 2σ, ū− + 2σ < 1 in R, (5.15)

and lim supx→+∞
(
g(x) − ū+(x)

)
≤ −2σ with ū+ − 2σ > 0 in R. Let u±(t, x) denote the solutions of

the Cauchy problems {
u±t = (aL(x)u±x )x + fL(x, u±), t > 0, x ∈ R,
u±(0, x) = ū± ∓ σ, x ∈ R.

Since by assumption ū± are unstable, it follows as in Step 2 of Lemma 3.7 that u−(t, x) → 1
and u+(t, x)→ 0 as t→ +∞ uniformly in x ∈ R.

Next, one shows that lim infx→−∞
(
u(t, x) − u−(t, x)

)
> 0 for all t > 0. Assume by contradiction

that there are t0 > 0 and a sequence (xn)n∈N with limn→+∞ xn = −∞ and

lim
n→+∞

(
u(t0, xn)− u−(t0, xn)

)
≤ 0. (5.16)

By (5.15) and since g ranges in [0, 1], there is a C2,α(R, [0, 1]) function u0 such that u0 ≤ g in R, u0(x) = 0
for x� 1 and u0(x) = ū−(x) + 3σ/2 for x� −1. Let u be the solution of the Cauchy problem (1.17)
with initial condition u(0, ·) = u0. The maximum principle yields 0 ≤ u(t, x) ≤ u(t, x) ≤ 1 for all t > 0
and x ∈ R. Write now xn = x′n + x′′n with x′n ∈ LZ and x′′n ∈ [0, L], and set un(t, x) = u(t, x + x′n).
Since aL and fL are L-periodic in x, the functions un obey (1.1) for t ≥ 0 and x ∈ R. Up to extraction
of some subsequence, one can assume that x′′n → x∞ ∈ [0, L] as n → +∞ and that, from standard
parabolic estimates, un(t, x) → u∞(t, x) as n → +∞ locally uniformly in [0,+∞) × R, where u∞
solves (1.1).6 In particular, for any x ∈ R, u∞(0, x) = limn→+∞ un(0, x) = ū−(x) + 3σ/2 > u−(0, x),
whence u∞(t, x) > u−(t, x) for all t ≥ 0 and x ∈ R by the maximum principle. On the other hand,
since u ≤ u and u− is L-periodic in x, (5.16) yields

u∞(t0, x∞)= lim
n→+∞

un(t0, x
′′
n)= lim

n→+∞
u(t0, xn)≤ lim sup

n→+∞
u(t0, xn)≤ lim sup

n→+∞
u−(t0, xn)=u−(t0, x∞).

This contradicts u∞(t0, x∞) > u−(t0, x∞). Hence lim infx→−∞
(
u(t, x)− u−(t, x)

)
> 0 for every t > 0.

Similarly, there holds limt→+∞ u
+(t, x) = 0 uniformly in x ∈ R and lim supx→+∞

(
u(t, x)−u+(t, x)

)
< 0

6The reason why we introduced u is that u(0, ·) is smooth and thus the functions un converge locally in space up to
time t = 0, while the translations of u do not in general if g is not smooth enough.
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for every t > 0. Thus, there is T > 0 such that lim infx→−∞ u(T, x) > 1−δ and lim supx→+∞ u(T, x) < δ,
where δ is the constant given in (1.3). By Theorem 1.9, as applied to initial value u(T, ·), the conclusion
of Theorem 1.10 follows.

6 Appendix

The appendix is devoted to the proof of some technical auxiliary lemmas which were stated in Section 3
and used in the proofs of Theorems 1.2 and 1.8. We first begin with the proofs of the properties of the
operators Mc,L and Mc,0 stated in Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 3.1. Consider only the case L 6= 0, since the case L = 0 follows the same lines, and
is actually simpler. Let β > 0, c > 0 and L > 0 be fixed, and let v be in the kernel of Mc,L. Integra-

ting Mc,L(v) = 0 against v in L2(R×T) gives
∫
R×T

(
a(y)(∂̃Lv)2 + βv2

)
= 0, whence v = 0. The adjoint

operator M∗c,L of Mc,L is defined as M∗c,L(v) = ∂̃L(a∂̃Lv)−c∂ξv−βv with domain DL, in such a way that
(M∗c,L(v), u)L2(R×T) = (v,Mc,L(u))L2(R×T) for any u, v ∈ DL. The same arguments yield that the kernel
of the operator M∗c,L is reduced to {0}. Then in order to get the invertibility of the linear operator

Mc,L, it is sufficient to show that the range R(Mc,L) is closed in L2(R×T). To do so, let Mc,L(vn) = gn
with vn ∈ DL and gn → g in L2(R × T) as n → +∞. Integrating Mc,L(vn) = gn against vn gives∫
R×T

(
(a(y)(∂̃Lvn)2 + βv2

n)
)

= −
∫
R×T gnvn, whence∫

R×T
a(y) (∂̃Lvn)2 +

β

2
v2
n ≤

1

2β

∫
R×T

g2
n. (6.1)

For any h > 0, let us define the symmetric difference quotient in ξ-direction as follows: Dhvn(ξ, y) =
(vn(ξ + h, y)− vn(ξ − h, y))/(2h) for (ξ, y) ∈ R× T and notice that Dhvn ∈ H1(R× T). Taking it as a
test function in Mc,L(vn) = gn, one gets that∫

R×T
a(y)∂̃Lvn∂̃LDhvn − c∂̃LvnDhvn + βvnDhvn = −

∫
R×T

gnDhvn.

Observe that
∫
R×T a(y)(∂̃LDhvn)∂̃Lvn =

∫
R×T β(Dhvn)vn = 0, and that Dhvn ⇀ ∂ξvn in L2(R × T)

weakly as h→ 0+. Hence, by letting h→ 0, one concludes that∫
R×T

c(∂ξvn)2 =

∫
R×T

gn∂ξvn, (6.2)

and then, by the Cauchy-Schwarz inequality,

‖∂ξvn‖L2(R×T) ≤
‖gn‖L2(R×T)

c
. (6.3)

The uniform L2-estimate for ∂yvn can be obtained from (6.1) and (6.3) as follows:

‖∂yvn‖L2(R×T) = ‖L(∂̃Lvn − ∂ξvn)‖L2(R×T) ≤ |L|
(
‖∂̃Lvn‖L2(R×T) + ‖∂ξvn‖L2(R×T)

)
≤ |L|‖gn‖L2(R×T)

(1

c
+

1√
2βa−

) (6.4)

with a− := miny∈R a(y) > 0. Hence, there is a subsequence (vni)i∈N such that vni ⇀ v in H1(R × T)

weakly as i→ +∞. This implies that
∫
R×T a(y)∂̃Lv∂̃Lϕ−c(∂ξv)ϕ+βvϕ = −

∫
R×T gϕ for all ϕ∈H1(R×T).

It follows that ∂̃L(a∂̃Lv) ∈ L2(R× T). It follows that v ∈ DL, Mc,L(v) = g and g ∈ R(Mc,L). Since the
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kernel of Mc,L is trivial, the limit v is unique and the whole sequence (vn)n∈N converges to v weakly
in H1(R× T) as n→ +∞. Finally, the calculations in (6.1), (6.3) and (6.4) imply that

‖v‖2H1(R×T) ≤
( 1

β2
+

1

c2
+ |L|2

(1

c
+

1√
2βa−

)2)‖g‖2L2(R×T) (6.5)

and the proof of Lemma 3.1 is thereby complete.

Proof of Lemma 3.2. We only give the proof of the first assertion in (3.3), the second one being obtained
similarly and being actually simpler. For the proof, we first begin with the special case where the
sequences (cn)n∈N and (gn)n∈N are constant, and we then deal with the general case.

Step 1: the case cn = c and gn = g. Consider any sequence (Ln)n∈N in R∗ converging to 0 and
let vn = M−1

c,Ln
(g) ∈ H1(R × T). By the estimate (6.5) and the Sobolev injections, the functions vn

converge, up to extraction of a subsequence, strongly in L2
loc(R × T) and weakly in H1(R × T), to

some v0 ∈ H1(R × T) as n → +∞. Note that ∂yv0 = 0 because of the estimate (6.4). Then the
function v0 can be viewed as an H1(R) function and we can set v′0 = ∂ξv0. For any φ ∈ H2(R),
taking ψ(ξ, y) = φ(ξ) + Lnχ(y)φ′(ξ) ∈ H1(R × T) (where χ ∈ C2(R) solves (3.5)) as a test function
in Mc,Ln(vn) = g gives∫

R×T
a ((χ′ + 1)φ′ + Lnχφ

′′) ∂̃Lnvn +

∫
R×T

(−c∂ξvn + βvn)(φ+ Lnχφ
′) = −

∫
R×T

g(φ+ Lnχφ
′),

where a, χ and χ′ are evaluated at y, while φ, φ′ and φ′′ are evaluated at ξ. The second term of the
left hand side clearly converges to

∫
R(−cv′0 + βv0)φ as n → +∞, and so does the right hand side to

−
∫
R×T gφ = −

∫
R gφ. The first term can be written as∫

R×T
a ((χ′ + 1)φ′ + Lnχφ

′′) ∂̃Lnvn =

∫
R×T
−vn∂̃Ln(a (χ′ + 1)φ′) + Lnaχφ

′′∂̃Lnvn

=

∫
R×T

a (χ′ + 1)φ′∂ξvn + (∂yvn + Ln∂ξvn) aχφ′′,

which converges to
∫
R×T v

′
0a (χ′ + 1)φ′ = aH

∫
R v
′
0φ
′ as n→ +∞, since ∂yv0 = 0. Hence,

∫
R
(
aHv

′
0φ
′ −

cv′0φ + βv0φ
)

= −
∫
R gφ for all φ ∈ H2(R) and then for all φ ∈ H1(R) by density. This implies that

v0 ∈ H2(R) and that Mc,0(v0) = g.
Next we show that vn converges to v0 in L2(R × T) as n → +∞ (the convergence has only been

known in L2
loc(R × T) so far). Let ζn(ξ, y) = vn(ξ, y) − v0(ξ) − Lnχ(y)v′0(ξ). By Lemma 3.1, the

sequence (vn)n∈N is bounded in H1(R×T) and so is the sequence (ζn)n∈N. Taking ζn as a test function
in Mc,Ln(vn) = g gives

∫
R×T a ∂̃Lnvn∂̃Lnζn − cζn∂ξvn + βvnζn = −

∫
R×T g ζn. Observe that∫

R×T
a ∂̃Lnvn∂̃Lnζn =

∫
R×T

a (∂̃Lnζn)2 + av′0∂̃Lnζn + aχ′v′0∂̃Lnζn + Lnaχv
′′
0 ∂̃Lnζn

=

∫
R×T

a(∂̃Lnζn)2 + aHv
′
0∂̃Lnζn + Lnaχv

′′
0 ∂̃Lnζn

=

∫
R×T

a(∂̃Lnζn)2 − aHv′′0ζn + Lnaχv
′′
0∂ξζn − (aχ)′v′′0ζn,

and that
∫
R×T cζn∂ξvn =

∫
R×T cv

′
0ζn+Lncχv

′′
0ζn since

∫
R×T ζn∂̃Lnζn = 0, while

∫
R×T βvnζn =

∫
R×T βζ

2
n+
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βv0ζn + Lnβχv
′
0ζn. Since Mc,0(v0) = g, one obtains that∫

R×T
a (∂̃Lnζn)2 + βζ2

n =

∫
R×T

(g − g)ζn + (aχ)′v′′0ζn − Ln(aχv′′0∂ξζn − cχv′′0ζn + βχv′0ζn)

=

∫
R×T

(g − g)(vn − v0) + (aχ)′v′′0(vn − v0)

−Ln
∫
R×T

aχv′′0∂ξζn − cχv′′0ζn + βχv′0ζn + (g − g)χv′0 + (aχ)′v′′0χv
′
0.

Since vn ⇀ v0 in L2(R×T) weakly as n→ +∞, and since the sequence (ζn)n∈N is bounded in H1(R×T)
and v0 ∈ H2(R), it follows that ζn → 0 in L2(R× T) and hence vn → v0 in L2(R× T).

Finally, we prove that the sequence (vn)n∈N converges to v0 in H1(R × T). Now by using the
symmetric difference quotient in ξ-direction for vn and v0 as in (6.2) and the weak convergence of ∂ξvn
to v′0 as n→ +∞ in L2(R× T), one concludes that

c

∫
R×T

(∂ξvn)2 =

∫
R×T

g∂ξvn −→
n→+∞

∫
R×T

gv′0 =

∫
R
gv′0 = c

∫
R

(v′0)2. (6.6)

By the weak convergence of ∂ξvn again, this implies that ∂ξvn converges to v′0 strongly in L2(R × T)
as n → +∞. From arguments similar to (6.4), one has ∂yvn → 0 in L2(R × T) as n → +∞. As a
conclusion, vn converges to v0 in H1(R × T) as n → +∞ and this holds for the whole sequence by
uniqueness of the limit. Lastly, once one knows the convergence of (vn)n∈N to v0 in the strong sense
in H1(R× T), it is easy to see that the above estimates show that the convergence is actually uniform
with respect to g in the ball BA =

{
g ∈ L2(R× T) | ‖g‖L2(R×T) ≤ A

}
, for every A > 0.

Step 2: the general case. We first claim that for any r > 0 and any ω ∈ L2(R × T) such
that ‖ω‖L2(R×T) ≤ r, there holds

‖M−1
cn,Ln

(ω)−M−1
c,Ln

(ω)‖H1(R×T) ≤ C|cn − c|r for all n ∈ N, (6.7)

where C is a constant independent of n and r. In fact, let pn = M−1
cn,Ln

(ω) and qn = M−1
c,Ln

(ω). Then

Mc,Ln(pn− qn) = (c− cn)∂ξpn. Testing it with the function (pn− qn) ∈ H1(R×T) and using arguments
similar to the ones used (6.1), one obtains that∫

R×T
a (∂̃Lnpn − ∂̃Lnqn)2 +

β

2
(pn − qn)2 ≤ (cn − c)2

2β

∫
R×T

(∂ξpn)2.

Similar arguments to (6.3) and (6.4) yield{
‖∂ξ(pn − qn)‖L2(R×T) ≤ |cn − c| c−1‖∂ξpn‖L2(R×T),

‖∂y(pn − qn)‖L2(R×T) ≤ |Ln||cn − c|
(
c−1 + (2βa−)−1/2

)
‖∂ξpn‖L2(R×T).

Note also that ‖∂ξpn‖L2(R×T) ≤ (1/cn)‖ω‖L2(R×T) from the estimate (6.3). Then the proof of our claim
(6.7) is finished, since the sequences (Ln)n∈N and (1/cn)n∈N are bounded.

Next, we observe that

‖M−1
cn,Ln

(gn)−M−1
c,0 (g)‖H1(R×T) ≤ ‖M−1

cn,Ln
(gn)−M−1

c,Ln
(gn)‖H1(R×T)

+ ‖M−1
c,Ln

(gn)−M−1
c,Ln

(g)‖H1(R×T) + ‖M−1
c,Ln

(g)−M−1
c,0 (g)‖H1(R×T).

From (6.7), the first term of the right hand side converges to 0 as n → +∞, and this holds uniformly
with respect to g ∈ BA, for every A > 0. By Lemma 3.1 and the boundedness of the sequences (Ln)n∈N
and (1/cn)n∈N, one has ‖M−1

c,Ln
(gn − g)‖H1(R×T) → 0 as n → +∞, uniformly with respect to g ∈ BA

for every A > 0. Lastly, the convergence of the last term to 0 follows from Step 1. Hence, the proof of
Lemma 3.2 is finished.
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Proof of Lemma 3.3. By Lemma 3.1 and (6.7), one only needs to prove that

M−1
c,Ln

(g)→M−1
c,L(g) in H1(R× T) as n→ +∞, (6.8)

uniformly for g ∈ BA, for every A > 0, and for every sequence (Ln)n∈N ∈ R∗ such that Ln → L as
n → +∞. Given any g ∈ L2(R× T), let wn = M−1

c,Ln
(g) and w = M−1

c,L(g). Then, by similar estimates

in Lemma 3.1, the functions wn converge to w strongly in L2
loc(R × T) and weakly in H1(R × T) as

n→ +∞. Note that

Mc,Ln(wn − w) = Mc,Ln(wn)︸ ︷︷ ︸
=g

−Mc,L(w)︸ ︷︷ ︸
=g

−
(
Mc,Ln(w)−Mc,L(w)

)
= −∂̃Ln(a∂̃Lnw) + ∂̃L(a∂̃Lw).

Integrating the above equation against wn − w yields∫
R×T

a (∂̃Lnwn − ∂̃Lnw)2 + β(wn − w)2 =

∫
R×T

(
∂̃L(a∂̃Lw)− ∂̃Ln(a∂̃Lnw)

)
(wn − w)

=

∫
R×T

(wn − w) ∂̃L(a∂̃Lw) +
a ∂yw (∂̃Lnwn − ∂̃Lnw)

Ln

+

∫
R×T

a ∂ξw (∂̃Lnwn − ∂̃Lnw),

which converges to 0 as n→ +∞, since ∂̃L(a∂̃Lw) ∈ L2(R×T) and w ∈ H1(R×T), and since wn ⇀ w
and ∂̃Lnwn ⇀ ∂̃Lnw weakly in L2(R×T). Thus, ‖wn−w‖L2(R×T) → 0 and ‖∂̃Lnwn− ∂̃Lnw‖L2(R×T) → 0
as n→ +∞. The convergence ∂ξwn → ∂ξw in L2(R× T) follows then from the weak convergence and
the fact that ‖∂ξwn‖2L2(R×T) = (1/cn)

∫
R×T g∂ξwn → (1/c)

∫
R×T g∂ξw = ‖∂ξw‖2L2(R×T), as in (6.6). On

the other hand, observe that

‖∂y(wn − w)‖L2(R×T) = ‖Ln(∂̃Lnwn − ∂ξwn)− L(∂̃Lw − ∂ξw)‖L2(R×T)

≤‖Ln∂̃Lnwn − L∂̃Lnw‖L2(R×T) + |L|‖∂̃Lnw − ∂̃Lw‖L2(R×T)

+ |Ln|‖∂ξwn − ∂ξw‖L2(R×T) + |Ln − L|‖∂ξw‖L2(R×T),

which converges to 0 as n → +∞. Hence, the proof of the convergence (6.8) is complete. Lastly,
the above calculations together with Lemma 3.1 imply that (6.8) holds uniformly with respect to the
functions g such that ‖g‖L2(R×T) ≤ A, for every A > 0.

Next, we do the proof of the continuity and differentiability properties of the function G defined
in (3.6), which were stated in Lemma 3.4.

Proof of Lemma 3.4. Step 1: the continuity of G. The continuity of G2 is obvious from Cauchy-Schwarz
inequality. Next we consider the continuity of G1 at (v, c, 0) with (v, c) ∈ H1(R × T) × (0,+∞). To
do so, we first prove that M−1

cn,Ln

(
K(vn, cn, Ln)

)
→M−1

c,0

(
K(v, c, 0)

)
in H1(R× T) as n→ +∞ for any

sequences (vn)n∈N in L2(R×T), (cn)n∈N in (0,+∞) and (Ln)n∈N in R∗ such that vn → v in L2(R×T),
cn → c and Ln → 0. By Lemma 3.2, it is sufficient to show that K(vn, cn, Ln)→ K(v, c, 0) in L2(R×T)
as n → +∞. Since the function f(y, u) is globally Lipschitz-continuous in u uniformly for y ∈ T, one
has that

‖Kcn,Ln(vn)−K(v, c, 0)‖L2(R×T)

=
∥∥Lnaχφ(3)

0 + (cn−c)φ′0 + cnLnχφ
′′
0 + β(vn−v) + f(y, vn+φ0+Lnχφ

′
0)− f(y, v+φ0)

∥∥
L2(R×T)

≤ |Ln|‖aχφ(3)
0 ‖L2(R×T) + |cn − c|‖φ′0‖L2(R) + |cnLn|‖χφ′′0‖L2(R×T) + β‖vn − v‖L2(R×T)

+ C‖vn − v‖L2(R×T) + C |Ln|‖χφ′0‖L2(R×T),
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where C is a constant depending only on f . Thus, K(vn, cn, Ln)→ K(v, c, 0) in L2(R×T) as n→ +∞.
Similarly, the fact that K(vn, cn, 0)→ K(v, c, 0) in L2(R) as n→ +∞ together with Lemma 3.2 implies
that M−1

cn,0

(
K(vn, cn, 0)

)
→ M−1

c,0

(
K(v, c, 0)

)
in H1(R) as n → +∞. Therefore, the arguments of this

paragraph show that G1 is continuous at (v, c, 0).
For the continuity of G1 at (v, c, L) ∈ H1(R×T)× (0,+∞)×R∗, the arguments are similar to those

for L = 0, the only additional fact being the use of Lemma 3.3 instead of Lemma 3.2.
Step 2: G is continuously Fréchet differentiable with respect to (v, c). First, for v ∈ H1(R× T), we

set g[v](ξ, y) = f
(
y, φ0(ξ) + v(ξ, y)

)
in R× T and we prove that the function g is continuously Fréchet

differentiable from H1(R×T) to L2(R×T). Since the function f(y, u) is globally Lipschitz-continuous
in u uniformly for y ∈ T, and since φ0 ∈ L2(R+) and 1 − φ0 ∈ L2(R−), there is constant C1 > 0
independent of v such that

‖g[v]‖2L2(R×T) =

∫
R−×T

|f(y, φ0 + v)− f(y, 1)|2 +

∫
R+×T

|f(y, φ0 + v)− f(y, 0)|2

≤ C1

(
‖1− φ0‖2L2(R−) + ‖φ0‖2L2(R+) + ‖v‖2L2(R×T)

)
.

Hence, g : v 7→ g[v] is a map from H1(R × T) to L2(R × T). Since f(y, u) is of class C1,1 in u ∈ R
uniformly for y ∈ T, it follows from Sobolev injections and Cauchy-Schwarz inequality that for any
v, h ∈ H1(R× T) and t ∈ (0, 1],∥∥∥g[v + th]− g[v]

t
− ∂uf(y, φ0 + v)h

∥∥∥
L2(R×T)

= ‖∂uf(y, φ0 + v + tηh)h− ∂uf(y, φ0 + v)h‖L2(R×T)

≤ ‖∂uf(y, φ0 + v + tηh)− ∂uf(y, φ0 + v)‖L4(R×T)‖h‖L4(R×T) ≤ C2t‖h‖2H1(R×T),

(6.9)

where η is a function from R× T to [0, 1], and C2 > 0 is independent on t. Thus,

g[v + th]− g[v]

t
→ ∂uf(y, φ0 + v)h in L2(R× T) as t→ 0+,

which implies that g is Gâteaux differentiable at any point v ∈ H1(R× T) with its derivative given by
A(v)h = ∂uf(y, φ0 + v)h for any h ∈ H1(R×T). Actually, (6.9) implies that g is Fréchet differentiable
and since the map v 7→ A(v) from H1(R× T) to L(H1(R× T), L2(R× T)) is continuous, the function
g is continuously Fréchet differentiable in H1(R× T).

In order to show the Fréchet differentiability of G with respect to (v, c), pick now any point (v, c, L) ∈
H1(R×T)×(0,+∞)×R. Consider first the case L 6= 0. Since g is Fréchet differentiable at v, K(v, c, L)
is also Fréchet differentiable with respect to v with

∂vK(v, c, L)(ṽ) =
(
∂uf(y, v + φ0 + Lχφ′0) + β

)
ṽ for all ṽ ∈ H1(R× T).

Since the linear operator M−1
c,L : L2(R×T)→ DL ⊂ H1(R×T ) is bounded, one has ∂w

(
M−1
c,L(w)

)
= M−1

c,L.
Then, by the chain rule,

∂v
(
M−1
c,L(K(v, c, L))

)
(ṽ) = M−1

c,L

(
(∂uf(y, v + φ0 + Lχφ′0) + β)ṽ

)
for all ṽ ∈ H1(R× T).

On the other hand, ∂cK(v, c, L)(c̃) = (φ′0 + Lχφ′′0)c̃ for all c̃ ∈ R while, by Lemma 3.3,

∂cM
−1
c,L(v)(c̃) = lim

d→c
M−1
c,L

(Mc,L(M−1
d,L(v))− v
d− c

)
c̃ = −M−1

c,L

(
∂ξM

−1
c,L(v)

)
c̃ for all c̃ ∈ R.
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As a consequence,

∂c
(
M−1
c,L(K(v, c, L))

)
(c̃) =−M−1

c,L

(
∂ξM

−1
c,L(K(v, c, L))

)
c̃+M−1

c,L(φ′0 + Lχφ′′0)c̃

=− c̃M−1
c,L

(
∂ξ
(
M−1
c,L(K(v, c, L))− φ0 − Lχφ′0

))
for all c̃ ∈ R.

Hence, the function G(v, c, L) is Fréchet differentiable with respect to (v, c) with derivative

∂(v,c)G(v, c, L)(ṽ, c̃)

=

ṽ +M−1
c,L

(
(∂uf(y, v+φ0+Lχφ′0)+β)ṽ

)
− c̃M−1

c,L

(
∂ξ
(
M−1
c,L(K(v, c, L))−φ0−Lχφ′0

))
2

∫
R+×T

(φ0 + v + Lχφ′0)ṽ

. (6.10)

Similarly, for L = 0, G is Fréchet differentiable with respect to (v, c) and for every (v, c) ∈ H1(R×T)×
(0,+∞) and (ṽ, c̃) ∈ H1(R× T)× R,

∂(v,c)G(v, c, 0)(ṽ, c̃)=

ṽ+M−1
c,0

(
(∂uf(y, v+φ0)+β)ṽ

)
−c̃M−1

c,0

(
∂ξ
(
M−1
c,0

(
K(v, c, 0)

)
−φ0

))
2

∫
R+×T

(φ0 + v)ṽ

. (6.11)

Finally, we prove that ∂(v,c)G : H1(R × T) × (0,+∞) × R → L(H1(R × T) × R, H1(R × T) × R)
is continuous. Since the continuity of ∂(v,c)G2 is obvious from the Cauchy-Schwarz inequality, we only
need to show that ∂(v,c)G1 is continuous. Let (v, c, L) be any point in H1(R×T)× (0,+∞)×R and let
(vn)n∈N in H1(R×T), (cn)n∈N in (0,+∞) and (Ln)n∈N in R be such that ‖vn− v‖H1(R×T) → 0, cn → c
and Ln → L as n→ +∞. In the case L = 0, by Lemma 3.2 and by (6.10) and (6.11), for the continuity
of ∂cG1 at (v, c, 0), it is sufficient to prove that, whether Ln be 0 or not,

∂ξ

(
M−1
cn,Ln

(
K(vn, cn, Ln)

)
− φ0 − Lnχφ′0

)
−→

n→+∞
∂ξ

(
M−1
c,0

(
K(v, c, 0)

)
− φ0

)
in L2(R× T),

∂ξ

(
M−1
cn,0

(
K(vn, cn, 0)

)
− φ0

)
−→

n→+∞
∂ξ

(
M−1
c,0

(
K(v, c, 0)

)
− φ0

)
in L2(R).

In fact, these limits follow from Lemma 3.2 and the fact that K(vn, cn, Ln) → K(v, c, 0) in L2(R × T)
(whence K(vn, cn, Ln)→ K(v, c, 0) in L2(R)) as n→ +∞. By Lemmas 3.1, 3.2 and by (6.10) and (6.11),
for the continuity of ∂vG1 at (v, c, 0), it is sufficient to show that(

∂uf(y, vn + φ0 + Lnχφ
′
0) + β

)
ṽ −→
n→+∞

(
∂uf(y, v + φ0) + β

)
ṽ in L2(R× T)

(whence the same property for the averaged functions with respect to y), uniformly with respect to
‖ṽ‖H1(R×T) ≤ 1. Since the function f(y, u) is of class C1,1 in u ∈ R uniformly for y ∈ T, these
convergences follow from similar arguments as (6.9).

In the case L 6= 0, as in the previous paragraph, one has ∂ξ
(
M−1
cn,Ln

(K(vn, cn, Ln))− φ0 − Lnχφ′0
)
−→

n→+∞
∂ξ
(
M−1
c,L(K(v, c, L))− φ0 − Lχφ′0

)
(
∂uf(y, vn + φ0 + Lnχφ

′
0) + β

)
ṽ −→

n→+∞

(
∂uf(y, v + φ0 + Lχφ′0) + β

)
ṽ

in L2(R × T), uniformly with respect to ‖ṽ‖H1(R×T) ≤ 1. Thus, the continuity of ∂(v,c)G1 at (v, c, L)
with L 6= 0 follows from Lemma 3.3.
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Step 3: the invertibility of Q = ∂(v,c)G(0, c0, 0). We first observe that, from (6.11) and K(0, c0, 0) =
0, the operator Q is given by

Q(ṽ, c̃)=
(
ṽ+M−1

c0,0

(
(∂uf(y, φ0)+β)ṽ

)
+ c̃M−1

c0,0
(φ′0), 2

∫
R+×T
φ0ṽ
)

for all (ṽ, c̃)∈H1(R×T)×R. (6.12)

Let us now show that Q has a closed range R(Q). Let (ṽn)n∈N, (g̃n)n∈N in H1(R × T)
and (c̃n)n∈N, (d̃n)n∈N in R be such that Q(ṽn, c̃n) = (g̃n, d̃n)→ (g̃, d̃) in H1(R×T)×R as n→ +∞. De-
fine vn = ṽn−g̃n. One can see from (6.12) that vn = −M−1

c0,0

(
(∂uf(y, φ0) + β)ṽn

)
−c̃nM−1

c0,0
(φ′0) ∈ H2(R).

Then, by definition of H and since vn is independent of y, it follows that

H(vn) = Mc0,0vn +
(
f
′
(φ0) + β

)
vn = −

(
∂uf(y, φ0) + β

)
ṽn − c̃nφ′0 +

(
∂uf(y, φ0) + β

)
vn

= −
(
∂uf(y, φ0) + β

)
g̃n − c̃nφ′0

(6.13)

Testing it with 0 6= w ∈ ker(H∗) implies that c̃n
∫
Rwφ

′
0 = −

∫
R×T

(
∂uf(y, φ0)+β

)
wg̃n. Notice now that∫

Rwφ
′
0 6= 0. Indeed, otherwise, φ′0 would be in the orthogonal of Rw = ker(H∗), that is in the closed

range R(H). But the property φ′0 ∈ R(H) is impossible since ker(H) = Rφ′0 and 0 is an algebraically
simple eigenvalue of H. Then, since g̃n → g̃ in H1(R× T) as n→ +∞, it follows that c̃n converges to
some c̃ ∈ R and then, by (6.13), H(vn) converges to some g in L2(R) with

−
(
∂uf(y, φ0) + β

)
g̃ − c̃φ′0 = g. (6.14)

Since R(H) is closed, there is v ∈ H2(R) such that H(v) = g. Set ṽ = v+ ηφ′0 + g̃ ∈ H1(R×T), where

η ∈ R is chosen as the unique real number satisfying 2
∫
R+×T φ0ṽ = d̃. Since ṽ−g̃ = v+ηφ′0 ∈ H2(R) and

H(ṽ − g̃) = H(v + ηφ′0) = g, one has Mc0,0(ṽ − g̃) +
(
∂uf(y, φ0) + β

)
(ṽ − g̃) = g. Then, by composing

by M−1
c0,0

and using (6.14), one gets that ṽ+M−1
c0,0

(
(∂uf(y, φ0)+β)ṽ

)
+ c̃M−1

c0,0
(φ′0) = g̃. Therefore,

(g̃, d̃) = Q(ṽ, c̃), and R(Q) is closed.
Next, we prove that Q has a trivial kernel. Suppose that Q(ṽ, c̃) = (0, 0) for some (ṽ, c̃) ∈ H1(R×

T)×R. Since M−1
c0,0

is a map from L2(R) to H2(R), then ∂yṽ = 0 and ṽ ∈ H2(R) by (6.11). Furthermore,

Mc0,0(ṽ)+(∂uf(y, φ0) + β)ṽ = −c̃φ′0, that is, H(ṽ) = −c̃φ′0. Since 0 is an algebraically simple eigenvalue
of H with kernel Rφ′0, it follows that c̃ = 0 and ṽ = σφ′0 with σ ∈ R. Since 0 = 2σ

∫
R+×T φ0φ

′
0 =

−σ(φ0(0))2 and φ0(0) 6= 0, one infers that σ = 0. Thus, the kernel of Q is reduced to {(0, 0)}.
Finally, we prove that the kernel of the adjoint operator Q∗ is also reduced to {(0, 0)}. Let (ṽ, c̃) ∈

H1(R× T)× R such that Q∗(ṽ, c̃) = 0, that is,

0 =
〈
Q(w̃, d̃), (ṽ, c̃)

〉
H1(R×T)×R

=
(
w̃ +M−1

c0,0

(
∂uf(y, φ0) + β)w̃

)
+ d̃M−1

c0,0
(φ′0), ṽ

)
H1(R×T)

+ 2c̃

∫
R+×T

φ0w̃
(6.15)

for all (w̃, d̃) ∈ H1(R × T) × R, where
(
v1, v2

)
H1(R×T)

=
∫
R×T v1v2 + ∂ξv1∂ξv2 + ∂yv1∂yv2 for all

v1, v2 ∈ H1(R× T). We notice that

φ′0 +M−1
c0,0

(
(∂uf(y, φ0) + β)φ′0

)
= φ′0 +M−1

c0,0

(
(f
′
(φ0) + β)φ′0

)
= M−1

c0,0
(H(φ′0)) = 0.

Therefore, taking (w̃, d̃) = (φ′0, 0) in (6.15) yields 0 = 2c̃
∫
R+×T φ0φ

′
0 = −c̃(φ0(0))2, whence c̃ = 0. Next,

by choosing (w̃, d̃) = (0, 1) in (6.15), it follows that

0 =
(
M−1
c0,0

(φ′0), ṽ
)
H1(R×T)

=
(
M−1
c0,0

(φ′0), ṽ
)
H1(R)

(6.16)

49



since M−1
c0,0

(φ′0) ∈ H1(R). On the other hand, if w̃ ∈ H2(R) is independent of y ∈ T and d̃ = 0 in (6.15),
then

0 =
(
w̃ +M−1

c0,0

(
(∂uf(y, φ0) + β)w̃

)
, ṽ
)
H1(R×T)

=
(
M−1
c0,0

(
Mc0,0(w̃) + (f

′
(φ0) + β)w̃

)
, ṽ
)
H1(R)

=
(
M−1
c0,0

(H(w̃)), ṽ
)
H1(R)

.
(6.17)

Since the closed image R(H) of H is orthogonal to ker(H∗) and since φ′0 6∈ R(H) (as already em-
phasized), it follows from (6.16) and (6.17) that

(
M−1
c0,0

(P (φ′0)), ṽ
)
H1(R)

= 0, where P (φ′0) 6= 0 is

the orthogonal projection of φ′0 onto ker(H∗). Since 0 is an algebraically simple whence geomet-
rically simple eigenvalue of H∗, it follows that ker(H∗) = RP (φ′0) and

(
M−1
c0,0

(w), ṽ
)
H1(R)

= 0 for

all w ∈ ker(H∗). This together with (6.17) and the fact that R(H) is orthogonal to ker(H∗) implies
that

(
M−1
c0,0

(w), ṽ
)
H1(R)

= 0 for all w ∈ L2(R). Then, back to equation (6.15), one gets that

0 =
(
w̃, ṽ

)
H1(R×T)

+
(
M−1
c0,0

(
(∂uf(y, φ0) + β)w̃

)
, ṽ
)
H1(R×T)

=
(
w̃, ṽ

)
H1(R×T)

+
(
M−1
c0,0

(
(∂uf(y, φ0) + β)w̃

)
, ṽ
)
H1(R)

=
(
w̃, ṽ

)
H1(R×T)

,

for all w̃ ∈ H1(R × T). Thus, ṽ = 0 and Q∗ has a trivial kernel. The proof of Lemma 3.4 is thereby
complete.
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[24] J. Gärtner, Bistable reaction-diffusion equations and excitable media, Math. Nachr. 112 (1983), 125-152.

[25] F. Hamel, Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math.
Pures Appl. 89 (2008), 355-399

[26] F. Hamel, J. Fayard, L. Roques, Spreading speeds in slowly oscillating environments, Bull. Math. Biol. 72 (2010),
1166-1191.

[27] F. Hamel, G. Nadin, L. Roques, A viscosity solution method for the spreading speed formula in slowly varying
media, Indiana Univ. Math. J. 60 (2011), 1229-1247.

[28] F. Hamel, L. Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Europ. Math. Soc. 13
(2011), 345-390.

[29] F. Hamel, L. Roques, Persistence and propagation in periodic reaction-diffusion models, Tamkang J. Math. 45
(2014), 217-228.

[30] S. Heinze, Homogenization of flame fronts, preprint IWR, Heidelberg, 1993.

[31] S. Heinze, Wave solutions to reaction-diffusion systems in perforated domains, Z. Anal. Anwendungen 20 (2001),
661-670.

[32] S. Heinze, G. Papanicolaou, A. Stevens, Variational principles for propagation speeds in inhomogeneous media,
SIAM J. Appl. Math. 62 (2001), 129-148.

51



[33] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-
Verlag, 1981.

[34] P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, 1991.

[35] W. Hudson, B. Zinner, Existence of travelling waves for reaction-diffusion equations of Fisher type in periodic
media, In: Boundary Value Problems for Functional-Differential Equations, J. Henderson (ed.), World Scientific,
1995, 187-199.

[36] J.P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math. 47
(1987), 556-572.

[37] T.J. Lewis, J.P. Keener, Wave-block in excitable media due to regions of depressed excitability, SIAM J. Appl.
Math. 61 (2000), 293-316.

[38] X. Liang, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,
Comm. Pure Appl. Math. 60 (2007), 1-40.

[39] X. Liang, X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct.
Anal. 259 (2010), 857-903.

[40] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dyn. Diff.
Equations 11 (1999), 49-127.

[41] G. Nadin, The effect of Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator,
SIAM J. Math. Anal. 41 (2010), 2388-2406.

[42] G. Nadin, Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations, Ann.
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Non Linéaire 26 (2009), 1021-1047.

[44] J.P. Pauwelussen, Nerve impulse propagation in a branching nerve system: A simple model, Physica D 4 (1981),
67-88.

[45] W. Shen, Traveling waves in time almost periodic structures governed by bistable nonlinearities, I. Stability and
uniqueness, J. Diff. Equations 159 (1999), 1-54.

[46] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Pop.
Bio. 30 (1986), 143-160.

[47] S. Vakulenko, V. Volpert, Generalized travelling waves for perturbed monotone reaction-diffusion systems, Non-
linear Anal. 46 (2001), 757-776.

[48] H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,
J. Math. Biol. 45 (2002), 511-548.

[49] X. Xin, Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity,
Indiana Univ. Math. J. 40 (1991), 985-1008.

[50] J.X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dyn.
Diff. Equations 3 (1991), 541-573.

[51] J.X. Xin, Existence of planar flame fronts in convective-diffusive-periodic media, Arch. Ration. Mech. Anal. 121
(1992), 205-233.

[52] J.X. Xin, Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media,
J. Stat. Phys. 73 (1993), 893-926.

[53] J.X. Xin, Front propagation in heterogeneous media, SIAM Review 42 (2000), 161-230.

[54] J.X. Xin, J. Zhu, Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic
media, Physica D 81 (1995), 94-110.

52



[55] D. Xu, X.-Q. Zhao, Bistable waves in an epidemic model, J. Dyn. Diff. Equations, 16 (2004), 679-707.

[56] Y. Zhang, X.-Q. Zhao, Bistable travelling waves for a reaction and diffusion model with seasonal succession,
Nonlinearity 26 (2013), 691-709.

[57] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York, 2003.
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