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Abstract
We establish propagation and spreading properties for nonnegative solutions of non

homogeneous reaction-diffusion equations of the type:

∂tu−∇ · (A(t, x)∇u) + q(t, x) · ∇u = f(t, x, u)

with compactly supported initial conditions at t = 0. Here, A, q, f have a gen-
eral dependence in t ∈ R+ and x ∈ RN . We establish properties of families of
propagation sets which are defined as families of subsets (St)t≥0 of RN such that
lim inft→+∞ {infx∈St u(t, x)} > 0. The aim is to characterize such families as sharply
as possible. In particular, we give some conditions under which: 1) a given path
({ξ(t)})t≥0, where ξ(t) ∈ RN , forms a family of propagation sets, or 2) St ⊃ {x ∈
RN , |x| ≤ r(t)} and limt→+∞ r(t) = +∞. This second property is called here complete
spreading. Furthermore, in the case q ≡ 0 and inf(t,x)∈R+×RN f

′
u(t, x, 0) > 0, as well as

under some more general assumptions, we show that there is a positive spreading speed,
that is, r(t) can be chosen so that lim inft→+∞ r(t)/t > 0. In the general case, we also
show the existence of an explicit upper bound C > 0 such that lim supt→+∞ r(t)/t < C.
On the other hand, we provide explicit examples of reaction-diffusion equations such
that for an arbitrary ε > 0, any family of propagation sets (St)t≥0 has to satisfy
St ⊂ {x ∈ RN , |x| ≤ εt} for large t. In connection with spreading properties, we derive
some new uniqueness results for the entire solutions of this type of equations. Lastly, in
the case of space-time periodic media, we develop a new approach to characterize the
largest propagation sets in terms of eigenvalues associated with the linearized equation
in the neighborhood of zero.

Key-words: Propagation and spreading properties; Heterogeneous reaction-diffusion equa-
tions; Maximum principles; Principal eigenvalues.
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1 Introduction and main results

We are concerned here with qualitative properties of equations of the type:

∂tu−∇ · (A(t, x)∇u) + q(t, x) · ∇u = f(t, x, u), (1.1)

and more specifically with large time behavior of the solutions of the associated Cauchy
problem: {

∂tu−∇ · (A(t, x)∇u) + q(t, x) · ∇u = f(t, x, u) in R+ × RN ,
u(0, x) = u0(x) for all x ∈ RN (1.2)

with initial data u0 ≥ 0. This equation arises in a wide variety of contexts such as phase
transitions, combustion, ecology and many models of biology (for the original motivation in
population genetics, see [1, 14, 18]).
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The goal of this paper is to study propagation and spreading properties for this problem.
That is, for some classes of initial data u0, we want to characterize sets St ⊂ RN such that

lim inf
t→+∞

{
inf
x∈St

u(t, x)
}
> 0.

Such a family of sets will be termed a family of propagation sets (or propagation sets for
short) in the space variables, and the family of their boundaries a propagation surface. We
are interested in identifying - possibly in a sharp way - such propagation sets. As will be
made more precise below, spreading properties refer to propagation sets of the form

St = {x;x = re, e ∈ SN−1, 0 ≤ r ≤ re(t)}

where re(t) is a family of functions parameterized by e ∈ SN−1. In this case, we say that
re(t) is a spreading radius in the direction e. Naturally, the aim is to identify such functions
as sharply as possible. We say that complete spreading occurs if such a family (re(t))e can
be found such that re(t)→ +∞ uniformly with respect to e as t→ +∞. This is equivalent
to saying that lim inft→+∞ u(t, x) > 0 locally uniformly in x ∈ RN .

1.1 Known results in the homogeneous and periodic cases

Before going any further on the precise statements, let us first recall some known results
in the homogeneous and periodic cases. Equation (1.2) is indeed the generalization for
heterogeneous media of the classical homogeneous equation

∂tu−∆u = f(u), (1.3)

where f(0) = f(1) = 0 and f(s) > 0 if s ∈ (0, 1). This homogeneous equation has been
widely studied. One of its main properties is that there exists a minimal speed c∗ > 0 such
that equation (1.3) admits travelling waves solutions, that is, solutions of the form

u(t, x) = U(x · e− ct),

for all c ≥ c∗. Here e is the direction of propagation of the wave, |e| = 1 (we denote
by | · | the Euclidian norm in RN), c is its speed and U(+∞) = 0 < U < U(−∞) = 1.
A classical result in the homogeneous framework is that the waves with minimal speed
c∗ attract, in some sense, all the solutions of the Cauchy problem (1.2) with compactly
supported nonnegative initial data u0 6≡ 0 (see [30]). Furthermore, it was proved [1] that if
u is the solution of the Cauchy problem with a non-null compactly supported initial datum
and if lim infs→0+ f(s)/s1+2/N > 0, then

u(t, x+ cte)→ 1 locally uniformly in x ∈ RN as t→ +∞,

for all 0 ≤ c < c∗. On the other hand, u(t, x + cte) → 0 as t → +∞ if c > c∗. Thus, an
observer who moves with speed c ≥ 0 in direction e will only see at large times the steady
state 1 if c < c∗ and the steady state 0 if c > c∗. We refer to these results as spreading
properties. They were first proved for the homogeneous equation (1.3) by Aronson and
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Weinberger [1]. The minimal speed of travelling fronts c∗ may thus also be viewed as the
asymptotic directional spreading speed in any direction e. Lastly, for KPP nonlinearity, that
is a reaction term f such that f(s) ≤ f ′(0)s for all s ≥ 0, it is well known that c∗ = 2

√
f ′(0)

(see [1, 18] for example).
Freidlin and Gärtner [16] in 1979 and Freidlin [15] in 1984 extended the spreading prop-

erties to space periodic media and to some classes of random media using probabilistic tools.
Here and throughout the paper, when we say that the medium is homogeneous (respectively
space periodic, space-time periodic or heterogeneous), we mean that the coefficients (A, q, f)
are homogeneous, i.e. do not depend on (t, x) (respectively space periodic, space-time peri-
odic or heterogeneous). Note that in the space periodic case, the coefficients do not depend
on t. Periodicity is understood to mean the same period(s) for all the terms. If the reaction
term f is of KPP type, that is, if f(x, s) ≤ f ′u(x, 0)s for all (x, s) ∈ RN × R+ and under
further assumptions that will be specified below, it has been proved that there exists an
asymptotic directional spreading speed w∗(e) > 0 in each direction e, in the sense that lim inf

t→+∞
u(t, x+ cte) > 0 if 0 ≤ c < w∗(e),

lim
t→+∞

u(t, x+ cte) = 0 if c > w∗(e),
(1.4)

locally uniformly in x ∈ RN . Here, the initial data u0 are supposed to have compact support
and to satisfy u0 6≡ 0, u0 ≥ 0. Furthermore, w∗(e) is characterized by:

w∗(e) = min
e′∈SN−1, e′·e>0

c∗(e′)

e′ · e
(1.5)

where the quantity c∗(e′) has later been identified in [7, 31] as the minimal speed of pulsating
travelling fronts in direction e′.

In [31], H. Weinberger generalized the notion of waves to space-time periodic settings,
using a rather elaborate discrete formalism. It enabled him to extend the spreading properties
to these environments (see also [24] for related results in the case of media with a space-time
periodic drift). Since this discrete formalism seems to only fit periodic frameworks, it is of
interest to try to derive another approach to these properties, that relies on more general
PDE tools and sheds light on more general classes of heterogeneous media. This is one of
the goals of the present paper. In fact, in developing a new approach, we also obtain a new
way to derive the results regarding the periodic case. This will be presented later on here,
in section 4.

1.2 The general heterogeneous case and the scope of the paper

The investigation of the properties of solutions of reaction-diffusion equations in general
unbounded media is more recent. Berestycki, Hamel and Rossi [9] and Berestycki and Rossi
[11] established some existence and uniqueness results for the bounded entire solutions of
equation (1.1) in time-independent media, with a general dependence of the coefficients of the
equation on the space variable x ∈ RN . On the other hand, two definitions for fronts in non
homogeneous media have been given by Berestycki and Hamel in [4, 5] and by Matano in [20].
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Using Matano’s definition, Shen proved the existence of generalized fronts in one-dimensional
media with bistable nonlinearity in [29]. Using Berestycki and Hamel’s definition, it has been
proved by Nolen and Ryzhik in [25] and Mellet and Roquejoffre in [21] that such fronts exist
in one-dimensional and time-independent media with ignition-type nonlinearity. The case of
“random stationary” drifts has recently been investigated by Nolen and Xin in [26, 27, 28],
where the existence of a deterministic speeds is proved (see also Nolen and Ryzhik in [25]
for ignition-type nonlinearities).

Spreading properties in space general media have first been investigated by Berestycki,
Hamel and Nadirashvili in [6, 8] in the case where the coefficients in the equation are homoge-
neous but the equation is set in a general unbounded domain which is neither the space, nor
a periodic domain. In these articles, it was proved, among other things, that usual spreading
properties may not hold for some particular unbounded domains. That is, for instance, the
asymptotic spreading speed w∗(e) in a direction e, as characterized by (1.4), may be equal to
0 or to +∞. Actually, there are several natural notions of asymptotic directional spreading
speeds, defined in [0,+∞]. Their dependence on the geometry of the underlying domain is
rather intricate and the analysis of their properties is the purpose of the paper [8].

The scope of the present paper is complementary to [8]. It is to study propagation sets
and spreading properties for the solutions of the space-time heterogeneous Cauchy problem
(1.2) set in all of space RN . Our purpose here is to go far beyond the space, time or
space-time periodic cases. We give some conditions, depending on generalized eigenvalues
or on the coefficients of (1.2), under which complete spreading occurs for the solutions u
with non-null initial conditions, in the sense that lim inft→+∞

{
inf |x|≤r(t) u(t, x)

}
> 0, where

limt→+∞ r(t) = +∞ (see Theorem 1.3 and Corollary 1.4 below). We also get lower and upper
bounds, which are optimal in the homogeneous case, for the quantities r(t)/t as t → +∞
(see Theorems 1.5 and 1.10). In addition, we construct an explicit example for which any
such spreading radius r(t) satisfies limt→+∞ r(t)/t = 0 (see Theorem 1.11). The results
generalize and go beyond the previous ones. One of the main outcomes here with respect to
the homogeneous case is to show that certain conditions need only be imposed at infinity to
derive the spreading properties.

We also get new types of results which deal with the more general notion of family of
propagation sets (St)t≥0, that is sets for which lim inft→+∞ {infx∈St u(t, x)} > 0. Furthermore,
under some additional assumptions, we derive the existence and the uniqueness of the limit
of u(t, x) in the propagation sets as t→ +∞ (see Theorem 1.6 and Propositions 1.7 and 1.8).
It is important to have in mind that the sets St may not be balls centered at the origin. As
a matter of fact, we first give in Theorem 1.2 some sufficient conditions for a given family of
singletons ({ξ(t)})t≥0 to be propagation sets.

In the last part of the paper, we show how the ideas developed for general non ho-
mogeneous media yield a new approach to the precise description of directional asymptotic
spreading speeds in space-time periodic media (see Theorem 1.13 and Corollary 1.15). These
results had been established by Freidlin [15] for space periodic settings and by Weinberger
[31] in space-time periodic media. Our approach relies on classical PDE techniques. In order
to extend these properties from one-dimensional media to multidimensional media, we prove
a new approximation result for the spreading speed, that also enables us to go back to the
case of straight infinite cylinder with bounded cross section. Before the space-time periodic
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case, we will first present the argument in the space-periodic framework where our method
provides a simplified and more transparent approach.

1.3 General hypotheses

Some regularity assumptions will be required on f , A, q throughout the paper. For pro-
blem (1.2), these quantities only need to be defined for t ≥ 0. But in some results we will
consider solutions of (1.1) which are defined for all t ∈ R. This is why, for the sake of
simplicity, all functions f , A and q will from now on be defined for all t ∈ R.

The function f : R × RN × R+ → R is assumed to be of class C
δ
2
,δ in (t, x), locally in

s, for a given 0 < δ < 1. We also assume f to be locally Lipschitz-continuous in s and of
class C1 in s for s ∈ [0, β] with β > 0 uniformly with respect to (t, x) ∈ R× RN . Lastly, we
assume that for all (t, x) ∈ R× RN , one has f(t, x, 0) = 0.

The drift term q : R × RN → RN is in the class C
δ
2
,δ(R × RN) ∩ L∞(R × RN). The

matrix field A : R × RN → SN(R) is of class C
δ
2
,1+δ(R × RN). We also assume that A is

uniformly elliptic and continuous. There exist some positive constants γ and Γ such that for
all ξ ∈ RN , (t, x) ∈ R× RN :

γ(t, x)|ξ|2 ≤
∑

1≤i,j≤N ai,j(t, x)ξiξj ≤ Γ(t, x)|ξ|2,

and 0 < inf(t,x)∈R×RN γ(t, x) ≤ sup(t,x)∈R×RN Γ(t, x) <∞.
(1.6)

From the parabolic maximum principle, it follows that, for any measurable non-null and
nonnegative function u0 ∈ L∞(RN) – from now on, we only consider such initial conditions –,
the solution u of (1.2) is of class C1,2((0,+∞)× RN) and it is nonnegative.

Throughout the paper, for any s > 0 and y ∈ RN , we denote by Bs(y) the open euclidean
ball of centre y and radius s. We set Bs = Bs(0).

1.4 Propagation sets and local propagation along a path

Our first goal is to find some paths t 7→ ξ(t) ∈ RN along which a solution of the Cauchy
problem (1.2) does not converge to 0, that is the family of singletons ({ξ(t)})t≥0 is a family
of propagation sets. We call such a property local propagation along a path, as read in
the definition below. We first define the general definition of propagation sets, and then we
consider the particular case of local propagation along a path.

Definition 1 We say that a family (St)t≥0 of subsets of RN is a (family of) propagation
sets for the solution u of equation (1.2) if

lim inf
t→+∞

{
inf
x∈St

u(t, x)
}
> 0.

Definition 2 1) We say that t ∈ R+ 7→ ξ(t) ∈ RN is an admissible path if t 7→ ξ(t) ∈
C1+δ/2(R+; RN) and supt≥0 |ξ′(t)| < +∞.
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2) We say that there is local propagation of a solution u of equation (1.2) along an
admissible path ξ if the family ({ξ(t)})t≥0 is a family of propagation sets, that is

lim inf
t→+∞

u(t, ξ(t)) > 0. (1.7)

The limit (1.7) is in fact locally uniform in RN and thus, the path ξ can be thought of
as defined up to some bounded perturbation. This is made precise in the next statement.

Lemma 1.1 Assume that there is local propagation of a solution u of (1.2) along an admis-

sible path ξ, then for all admissible path ξ̃ such that supt≥0 |ξ(t)− ξ̃(t)| < +∞, there is local

propagation of the solution u along the path ξ̃. More generally, for all R > 0 and x0 ∈ RN ,
the family (BR(ξ(t) + x0))t≥0 is a family of propagation sets, that is:

lim inf
t→+∞

{
inf

y∈BR(x0)
u(t, ξ(t) + y)

}
> 0.

Proof. Observe first that u is a solution of a linear parabolic equations. Indeed, it suffices to
write f(x, u) = c(t, x)u where c(t, x) = f(t, x, u(t, x))/u(t, x). Assume that |ξ(t)− ξ̃(t)| ≤ R

for all t ≥ 0. As ξ̃′ is uniformly bounded in R+, there exists a constant C > 0 such that for
all t ≥ 0, |ξ̃(t+ 1)− ξ̃(t)| ≤ C. From the Harnack inequality, there exists a positive constant
α such that

∀ x ∈ BR+C , ∀ t ≥ 1, u(t+ 1, x+ ξ(t)) ≥ αu(t, ξ(t)).

Thus, as ξ̃(t+ 1) ∈ BR+C(ξ(t)) for all t ≥ 0, one has

lim inf
t→+∞

u(t+ 1, ξ̃(t+ 1)) ≥ α lim inf
t→+∞

u(t, ξ(t)) > 0,

which yields the result. �

When the path t 7→ ξ(t) along which propagation occurs is bounded (that is, when ξ(t)
can be assumed to be constant thanks to Lemma 1.1), then we say that there is persistence
in the stationary frame. This is equivalent to saying that

lim inf
t→+∞

{
inf
|x|≤R

u(t, x)
}
> 0 for all R > 0.

Some conditions for persistence in the stationary frame are given in [9] for time-
independent media. On the other hand, there may be propagation along an unbounded
path but not persistence in the stationary frame (see [12, 13]).

Let us now look for conditions that guarantee propagation along a given path t 7→ ξ(t).
In this paper, we will derive such conditions in two different contexts: that of general media
with a positivity condition on the coefficients in the neighborhood of the path and that of
space-time periodic coefficients.

Theorem 1.2 Assume that t 7→ ξ(t) is an admissible path such that:

lim inf
R→+∞

{
lim inf
t→+∞

[
inf
|x|≤R

(
4γ(t, x+ ξ(t))f ′u(t, x+ ξ(t), 0)− |q(t, x+ ξ(t))− ξ′(t)|2

)]}
> 0. (1.8)

Then, for any solution u of the Cauchy problem (1.2) associated with an initial datum u0,
then there is local propagation of the solution u along the path ξ.
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A few words of discussion of condition (1.8) may be useful to grasp its meaning. If the
path ξ is constant or is bounded, (1.8) means that there is δ > 0 such that, for each R > 0,
there holds 4γ(t, ·)f ′u(t, ·, 0) − |q(t, ·)|2 ≥ δ in BR for t large enough. However, here, we are
mostly interested in the general case where |ξ(t)| → +∞ as t → +∞, in which case (1.8)
means that there is δ > 0 such that, for each R > 0, there holds

4γ(t, ·+ ξ(t))f ′u(t, ·+ ξ(t), 0)− |q(t, ·+ ξ(t))− ξ′(t)|2 ≥ δ in BR

for t large enough.
Actually, in Theorem 1.2, it is not possible to go further and to prove that the function

t 7→ u(t, x + ξ(t)) converges in general as t → +∞ for a given x ∈ RN . It has been
proved recently in [2] that such a function may oscillate between two travelling fronts in
homogeneous media.

1.5 Spreading properties

We now discuss spreading properties. We first define the notion of complete spreading.

Definition 3 We say that complete spreading occurs for a solution u of (1.2) if there is a
function t 7→ r(t) > 0 such that r(t)→ +∞ as t→ +∞ and the family (Br(t))t≥0 is a family
of propagation sets for u, that is

lim inf
t→+∞

{
inf

x∈Br(t)
u(t, x)

}
> 0.

This definition corresponds to the natural notion of uniform spreading in all directions
from the origin (or equivalently from any point in RN). However, it is of interest to introduce
a more precise notion of spreading radius along a given direction e.

Definition 4 Let e ∈ SN−1 be given. We say that a family (re(t))t≥0 of nonnegative real
numbers is a family of asymptotic spreading radii in the direction e for a solution u of (1.2)
if the family of segments ([0, re(t)e])t≥0 is a family of propagation sets for u, that is

lim inf
t→+∞

{
inf

0≤s≤re(t)
u(t, se)

}
> 0.

Lastly, we define the class of admissible radii (re)e∈SN−1 that will be considered in the
sequel.

Definition 5 We say that a family (re)e∈SN−1 is a family of admissible radii if re ∈
C1+ δ

2 (R+,R+) for all e ∈ SN−1 and sup
e∈SN−1, t∈R+

|r′e(t)| < +∞,

∀ (e, e′) ∈ SN−1 × SN−1, ∀ t ∈ R+, re(t)e · ξ ≤ re′(t).

For all t ∈ R+, we define the set associated with these radii as

St = {x ∈ RN ; x · e ≤ re(t) for all e ∈ SN−1}.
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The hypothesis re(t)e · e′ ≤ re′(t) is equivalent to re(t)e ∈ St for all e and t. Thus this
hypothesis guarantees that ∂St = {re(t)e, e ∈ SN−1}. We can remark that if re(t) does not
depend on e, then this hypothesis is always true, but we will see in the sequel that it may
be relevant to consider radii that depend on the direction e.

We shall use here the generalized principal eigenvalue associated with the linearization
in the neighborhood of 0 of equation (1.1). This generalized principal eigenvalue is defined as

λ′1 = inf{λ ∈ R, ∃ φ ∈ C1,2(R× RN) ∩W 1,∞(R× RN), inf
R×RN

φ > 0, Lφ ≤ λφ}, (1.9)

where for all φ ∈ C1,2(R× RN):

Lφ = ∂tφ−∇ · (A(t, x)∇φ) + q(t, x) · ∇φ− f ′u(t, x, 0)φ.

Related notions were defined in [9, 10, 11] for time-independent problems.
With the assumption λ′1 < 0, that is, in a sense, that the equilibrium 0 is unstable, our

first main result in general media is the following one:

Theorem 1.3 Let u be the solution of the Cauchy problem (1.2) associated with an initial
datum u0. Assume that λ′1 < 0 and that there exists a family (re)e of admissible radii such
that:

lim inf
t→+∞

{
inf

e∈SN−1
u(t, re(t)e)

}
> 0. (1.10)

Then
lim inf
t→+∞

{
inf
x∈St

u(t, x)
}
> 0, (1.11)

where St is the set associated with the family (re)e as in Definition 5. In other words, the
family (St)t≥0 is a family of propagation sets for the solution u.

Gathering Theorems 1.2 and 1.3, one immediately gets:

Corollary 1.4 Assume that λ′1 < 0 and that there exists a family of admissible radii (re)e
such that

lim inf
R→+∞

{
lim inf
t→+∞

[
inf

x∈BR e∈SN−1

(
4γ(t, x+ re(t)e)f

′
u(t, x+ re(t)e, 0)−|q(t, x+ re(t)e)− r′e(t)e|2

)]}
> 0.

Let u be the solution of the Cauchy problem (1.2) associated with an initial datum u0. Then,
property (1.11) holds for u, where St is the set associated with the family (re)e as in Defini-
tion 5.

The difficulty with this corollary is that its hypothesis depends on the family of admissible
vectors re(t)e along which propagation occurs. Under an appropriate hypothesis of the
coefficients at infinity, we get our second main result on spreading properties in general
media:
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Theorem 1.5 Assume that λ′1 < 0 and that

lim inf
|x|→+∞

{
inf
t∈R+

(
4γ(t, x)f ′u(t, x, 0).− |q(t, x)|2

)}
> 0, (1.12)

Set
c∗ = lim inf

|x|→+∞

{
inf
t∈R+

(
2
√
γ(t, x)f ′u(t, x, 0)− |q(t, x)|

)}
> 0.

Then for all speed 0 ≤ c < c∗ and for any solution u of the Cauchy problem (1.2) associated
with an initial datum u0, the family (Bct)t≥0 is a family of propagation sets, that is

lim inf
t→+∞

{
inf
|x|≤ct

u(t, x)
}
> 0.

Note that hypothesis (1.12) is checked when q ≡ 0 and

lim inf
|x|→+∞

{
inf
t∈R+

f ′u(t, x, 0)
}
> 0.

In homogeneous media, if q ≡ 0 and A = γIN (where IN is the identity matrix), the pre-
vious theorem yields the speed c∗ = 2

√
γf ′(0), which is the minimal speed of existence

of planar travelling waves for KPP nonlinearities. This speed is optimal for KPP nonlin-
earities, but not for other nonlinearities. Neither is it optimal in space periodic media, as
it has been observed in [7]: there exist some speeds c > 2

√
γ infx∈RN f ′u(x, 0) such that

lim inft→+∞ sup|x|≤ct u(t, x) > 0, even for KPP nonlinearities.

1.6 Convergence to an entire solution

The next result state that if equation (1.1) admits a unique (in some sense) uniformly positive
entire solution, then the spreading properties not only imply the instability of 0 along a given
surface, but also the convergence to this entire solution. We thus assume that there exists
an entire solution p ∈ C1,2(R × RN) of equation (1.1) which is uniformly positive, that is,
that infR×RN p > 0. We will need some uniqueness hypotheses for the entire solutions of all
the translations of equation (1.1).

Hypothesis 1 Consider any coefficients (B, r, g) such that there exists some sequence
(tn, xn) ∈ R× RN such that for some 0 < δ′ < δ, one has:

A(t+ tn, x+ xn) → B(t, x) as n→ +∞ in C
δ′
2
,1+δ′

loc (R× RN),

q(t+ tn, x+ xn) → r(t, x) as n→ +∞ in C
δ′
2
,δ′

loc (R× RN),

f(t+ tn, x+ xn, s) → g(t, x, s) as n→ +∞ in C
δ′
2
,δ′,0

loc (R× RN × R+),

(1.13)

locally uniformly with respect to s. Consider any positive entire solution v ∈ C1,2(R×RN) of

∂tv −∇ · (B∇v) + r · ∇v = g(t, x, v) in R× RN ,

such that:
inf

(t,x)∈R×RN
v(t, x) > 0.

10



We assume that for all such (B, r, g) and v, one has

p(t+ tn, x+ xn)→ v(t, x) as n→ +∞ in C1,2
loc (R× RN).

Under this hypothesis, we are able to improve the result of Theorem 1.2:

Theorem 1.6 Assume that there exists an entire solution p ∈ C1,2(R×RN) of equation (1.1)
which is uniformly positive and satisfies Hypothesis 1. Let u be the solution of the Cauchy
problem (1.2) associated with an initial datum u0. Assume that λ′1 < 0, where λ′1 is defined
by (1.9), and that there exists a family of admissible radii (re)e as in Definition 5 such that

lim inf
t→+∞

{
inf

e∈SN−1
re(t)

}
= +∞

and
lim inf
t→+∞

{
inf
x∈St

u(t, x)
}
> 0.

Then, for all ε ∈ (0, 1), there holds:

lim
t→+∞

{
sup

x∈Sε(t)
|u(t, x)− p(t, x)|

}
= 0,

where Sε(t) = {x ∈ RN , x · e ≤ (1− ε)re(t) for all e ∈ SN−1}.

If Hypothesis 1 is not satisfied, then this theorem is not true anymore. The translated
function (t, x) 7→ u(t, x + (1 − ε)re(t)e) may a priori oscillate between two entire solutions.
In subsection 1.7, we give some conditions which guarantee that Hypothesis 1 is satisfied.

It is straightforward to see that, even under Hypothesis 1, the convergence of u to p as
t → +∞ may not hold in the whole set St. For example, if N = 1, A = 1, q = 0 and
f(u) = u(1− u), for all initial datum u0 with compact support, the solution u converges to
1 locally in x as t→ +∞, while u(t,±∞) = 0 for each time t ≥ 0. Set

r(t) = inf{x ∈ R, ∀ y ≥ x, u(t, y) ≤ 1/2}.

Then r(t)→ +∞ as t→ +∞ and there is local propagation of the solution u along the path
t 7→ r(t) since u(t, r(t)) = 1/2 for all t ≥ 0. Furthermore, the unique entire solution p of (1.1)
which is uniformly positive is identically equal to 1 (this will be stated in Subsection 1.7).
But u(t, r(t)) 6→ 1 as t→ +∞.

1.7 Uniqueness of the entire solutions

Hypothesis 1 is far from being easy to check. We now give two sets of easily checkable
hypotheses that guarantee these existence and uniqueness hypotheses. Our first set of hy-
potheses is:

∀ s2 > s1 > 0, inf
(t,x)∈R×RN

(
f(t, x, s1)

s1

− f(t, x, s2)

s2

)
> 0, (1.14)

∃ M > 0, ∀ (t, x) ∈ R× RN , ∀ s ≥M, f(t, x, s) ≤ 0. (1.15)

11



These hypotheses are relevant for biological models. The first hypothesis means that the
intrinsic growth rate uniformly decreases when the population density increases. This is the
result of the intraspecific competition for resources. The second hypothesis means that there
is a saturation effect: when the population is very important, the mortality rate is higher
than the birth rate and the population decreases.

Under these two hypotheses, the following existence and uniqueness results hold:

Proposition 1.7 1) Assume that λ′1 < 0, where λ′1 is defined by (1.9), and that (1.15) is
satisfied, then there exists at least one positive bounded entire solution p ∈ C1,2(R × RN)
of (1.1) such that

inf
(t,x)∈R×RN

p(t, x) > 0. (1.16)

2) If (1.14) holds, there exists at most one nonnegative bounded entire solution p ∈
C1,2(R× RN) of (1.1) satisfying (1.16).

3) If (1.14) and (1.15) hold and if λ′1 < 0, then Hypothesis 1 is satisfied.

Our second set of hypotheses is relevant for combustion models. Namely, we assume that
for all (t, x) ∈ R× RN ,

f(t, x, 1) = 0,
inf(t,x)∈R×RN f(t, x, s) > 0 if 0 < s < 1,

sup(t,x)∈R×RN f(t, x, s) < 0 if s > 1.
(1.17)

Proposition 1.8 Assume that (1.17) is satisfied. If p ∈ C1,2(R × RN) is a nonnegative
bounded entire solution of (1.1) such that inf(t,x)∈R×RN p(t, x) > 0, then p ≡ 1. Furthermore,
Hypothesis 1 is satisfied.

1.8 Upper bounds for the spreading speeds

We now give some upper bounds for the asymptotic directional spreading speeds, that is,
for the ratios lim supt→+∞ re(t)/t, where e is any given direction and t 7→ re(t)e is any path
of local propagation of a solution u of (1.2) with compactly supported initial condition. We
assume here that:

sup
(t,x,s)∈R×RN×(0,+∞)

f(t, x, s)

s
<∞. (1.18)

Set

η(t, x) = sup
s>0

f(t, x, s)

s
(1.19)

and Pλφ = eλ·xP(e−λ·xφ) for any φ ∈ C1,2(R× RN) and λ ∈ RN , where

Pψ = ∂tψ −∇ · (A(t, x)∇ψ) + q(t, x) · ∇ψ − η(t, x)ψ.

In this subsection, we use the following notion of generalized principal eigenvalue for the
operator Pλ, which is slightly different from (1.9). Namely, we set

kλ(η) = sup{k > 0, ∃φ ∈ C1,2(R× RN) ∩W 1,∞(R× RN), inf
R×RN

φ > 0, Pλφ ≥ kφ}. (1.20)
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As we shall see in Subsection 1.10, in the space-time periodic case, it is possible to identify
this eigenvalue as the space-time periodic principal eigenvalue associated with the coefficients
(A, q, η). However, in the general case, the following results still hold:

Proposition 1.9 Assume that (1.18) holds. Then, for each λ ∈ RN , the quantity kλ(η) is a
real number.

Theorem 1.10 Assume that (1.18) holds and that kλ(η) < 0 for all λ ∈ RN . Set

w∗∗(e) = inf
λ∈RN , λ·e>0

−kλ(η)

λ · e

Then, for all solution u of (1.2) with a compactly supported initial condition u0, and for all
w > w∗∗(e), there holds:

lim
t→+∞

u(t, wte) = 0.

1.9 Complete spreading in sublinearly growing balls

In this subsection, we give an example of an equation for which the spreading speed is 0
in all directions but for which complete spreading occurs. More precisely, we prove that
for all map t 7→ r(t) such that limt→+∞ r

′(t) = 0, there exist some equations for which the
balls (B(1−ε)r(t))t≥0 are a family of propagation sets for all 0 < ε ≤ 1, while the solutions u
converge to 0 as t→ +∞ outside the balls Bct for all c > 0.

Theorem 1.11 Assume that N = 1, A ≡ 1, q ≡ 0 and f(t, x, s) = g(r(t) − |x|)s(1 − s),
where g is a Hölder-continuous function such that g(−∞) < 0, g(+∞) > 0 and r is a
Lipschitz-continuous function such that limt→+∞ r(t) = +∞ and limt→+∞ r

′(t) = 0. Let u be
the solution of (1.2) with a compactly supported initial datum u0 such that 0 ≤ u0 ≤ 1. Then

lim sup
t→+∞

{
sup
|x|≥ct

|u(t, x)|
}

= 0 for all c > 0

and
lim inf
t→+∞

{
inf

|x|≤(1−ε)r(t)
u(t, x)

}
> 0 for all 0 < ε ≤ 1.

1.10 The periodic case

In space periodic and space-time periodic media, more precise estimates on the propagation
sets and asympotic spreading speeds of the solutions u of (1.2) are available.

We first define what we mean by periodicity. We say that f , A and q are space-time
periodic if there exist a positive constant T and some vectors L1, ..., LN , where Li 6= 0 is
colinear to the axis of coordinates ei, such that for all i ∈ [1, N ], for all (t, x, u) ∈ R×RN×R+,
one has: 

A(t, x+ Li) = A(t+ T, x) = A(t, x),
f(t, x+ Li, u) = f(t+ T, x, u) = f(t, x, u),
q(t, x+ Li) = q(t+ T, x) = q(t, x).

(1.21)
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In the sequel, space-time periodicity will always refer to these fixed space-time periods. We
will say that the coefficients (A, q, f) are space periodic if they satisfy (1.21) and if they do
not depend on the time variable t. We set

µ(t, x) = f ′u(t, x, 0)

and, for all λ ∈ RN and ψ ∈ C1,2
per(R× RN), we define:

Lλψ = ∂tψ −∇ · (A∇ψ) + 2λA∇ψ + q · ∇ψ − (λAλ−∇ · (Aλ) + µ+ q · λ)ψ. (1.22)

Definition 6 A space-time periodic principal eigenfunction of the operator Lλ is a function
ψ ∈ C1,2(R× RN) such that there exists k ∈ R with:

Lλψ = kψ in R× RN ,
ψ > 0 in R× RN ,
ψ is space-time periodic.

(1.23)

Such a real number k is called a principal eigenvalue.

This family of eigenvalues has been investigated in [23], where it is proved that there
exists a couple (k, ψ) that satisfies (1.23). Furthermore, k is unique and ψ is unique up
to multiplication by a positive constant and we define kλ(µ) = k the space-time periodic
principal eigenvalue associated with Lλ. Thus, if the coefficients are only space periodic, the
principal eigenfunction ψ does not depend on t and is only space periodic.

In Subsection 1.8, we defined the notion of generalized principal eigenvalue kλ(η) for
some operators Pλ, as defined by (1.20) – with η instead of µ. Actually, in the space-time
periodic case, these generalized eigenvalues coincide with the space-time periodic principal
eigenvalues:

Proposition 1.12 If A, q and µ are space-time periodic, then, for each λ ∈ RN , the space-
time periodic principal eigenvalue kλ(µ) defined by formula (1.23) is equal to the generalized
principal eigenvalue defined in (1.20) – with µ instead of η.

The next result gives an estimate of the asymptotic spreading radii in all directions e in
the space-time periodic case.

Theorem 1.13 Assume that A, q and µ are space-time periodic and that kλ(µ) < 0 for all
λ ∈ RN . Define

w∗(e) = inf
λ∈RN , λ·e>0

−kλ(µ)

λ · e
(1.24)

for all e ∈ SN−1, and

S = {x ∈ RN , e · x < w∗(e) for all e ∈ SN−1}.

Then the infimum in (1.24) is reached and w∗(e) > 0 for all e ∈ SN−1. Furthemore, for
any solution u of the Cauchy problem (1.2) and for any compact subset K of S, the family
(tK)t≥0 is a family of propagation sets for u, that is

lim inf
t→+∞

{
inf
x∈tK

u(t, x)
}
> 0. (1.25)
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This theorem has first been proved in space periodic media by Freidlin and Gärtner [16]
and Freidlin [15]. It has been extended to space-time periodic media by Weinberger in [31].
The set S describes the shape of the invasion. We give here two alternative proofs of this
result. We first prove this result for space periodic media. The method that is used may
be extended to space-time periodic media but we choose to give still another proof for such
media, that includes auxiliary results of independent interest.

Theorem 1.13 implies that, for each solution u of (1.2), for each direction e and for each
w ∈ R such that 0 ≤ w < w∗(e), the family (wt)t≥0 is a family of asymptotic spreading radii
in the direction e, in the sense of Definition 4. In particular, there is local propagation of the
solution u along the path t 7→ wte as soon as 0 ≤ w < w∗(e), that is lim inft→+∞ u(t, wte) > 0.

We now assume that N = 1. In this case, the notion of spreading speeds can still be
defined, as stated in the result below, provided that k0(µ) < 0, but the speeds may not be
positive. We can thus weaken the hypotheses of the previous theorem.

Theorem 1.14 Assume that N = 1, that A, q and µ are space-time periodic and that
k0(µ) < 0. Then, for any solution u of the Cauchy problem (1.2) and for any compact subset
K ⊂ (−w∗(−e1), w∗(e1)), property (1.25) holds.

The main difference here is that one can have kλ(µ) > 0 for some λ ∈ R. Assume that
such a λ is positive, then one gets w∗(e1) < 0. Furthermore, for KPP nonlinearities such that
f(t, x, s) ≤ f ′u(t, x, 0)s, it easily follows, as in the proof of Theorem 1.10, that u(t, x)→ 0 as
t→ +∞ locally in x ∈ RN . This means that the population is blown away. In other words,
a standing observer sees the extinction of the population and one really has to follow the
population in order to see the growing effect.

If N ≥ 2 and kαe(µ) > 0 for some α > 0 and e ∈ SN−1, then the quantity w∗(e′) is not
a real number for each direction e′ such that e′ · e = 0. Indeed, take a sequence (en)n∈N in
SN−1 such that en → e as n → +∞ and en · e′ > 0 for all n. For n large enough, one has
kαen(µ) > kαe(µ)/2 > 0, whence

w∗(e′) ≤ −kαen(µ)

α en · e′
→ −∞.

Lastly, in the KPP case, as a corollary of Proposition 1.12 and Theorems 1.10 and 1.13,
we get that the speed w∗(e) is the optimal asymptotic spreading speed in the direction e, in
the sense that:

Corollary 1.15 If A, q and µ are space-time periodic, if f is of KPP type, that is,
f(t, x, s) ≤ f ′u(t, x, 0)s for all (t, x, s) ∈ R+ × RN × R+, and if kλ(µ) < 0 for all λ ∈ RN ,
then

w∗(e) = w∗∗(e) = min
λ∈RN , λ·e>0

−kλ(µ)

λ · e
is such that, for any solution u of (1.2) with a compactly supported initial condition u0,
there holds: lim inft→+∞ u(t, wte) > 0 for all 0 ≤ w < w∗(e), and limt→+∞ u(t, wte) = 0
for all w > w∗(e). In other words, w∗(e) is the optimal asymptotic spreading speed in the
direction e.
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2 Description of the method and general results

The proof of propagation relies on the construction of subsolutions of the evolution equation
that can initially be made arbitrarily small on compact sets and that remain bounded away
from zero at later times. Indeed, as will be seen here, then, after some initial time, the
solution will lie above such a subsolution. Hence by the comparison principle, it will stay
bounded away form zero. To illustrate this approach, we write these results in a separate
subsection. Then, we prove Theorems 1.3 and 1.6.

2.1 The method

The method we use to prove the propagation of a solution along a path relies on the next
proposition:

Proposition 2.1 Consider some admissible path t 7→ ξ(t). Assume that there exists a
function φ ∈ C1,2(R× RN) ∩ L∞(R× RN), two radii R > r > 0 and a constant κ0 > 0 such
that for all κ ∈ (0, κ0]:

φ(t, x) = 0 for all t ∈ R if |x| ≥ R,
inf(t,x)∈R×Br φ(t, x) > 0,
∂tκφ−∇ · (A(t, x+ ξ(t))∇κφ) + (q(t, x+ ξ(t))− ξ′(t)) · ∇(κφ) ≤ f(t, x, κφ) in R×BR.

(2.26)
Then for all bounded measurable nonnegative non-null initial datum u0, there is propagation
of the solution u of the Cauchy problem (1.2) along the path t 7→ ξ(t).

Proof. Up to some shift in time, we can assume that the initial datum u0 is continuous
and positive. Set κ1 = min{κ0, infx∈Br

u(0,x)
φ(0,x)

} so that 0 < κ1 ≤ κ0. Next, define v(t, x) =

u(t, x+ ξ(t)). This function satisfies:{
∂tv −∇ · (A(t, x+ ξ(t))∇v) + (q(t, x+ ξ(t))− ξ′(t)) · ∇v = f(t, x, v) in R× RN ,
v(0, x) = u(0, x) in RN .

(2.27)
As κ1φ is a subsolution, in the generalized sense, of the Cauchy problem (2.27), we infer
from the weak maximum principle that

v(t, x) ≥ κ1φ(t, x).

Thus
lim inf
t→+∞

u(t, ξ(t)) = lim inf
t→+∞

v(t, 0) ≥ κ1 inf
t∈R

φ(t, 0) > 0.

�
In view of this proposition, we only need to search for a function satisfying the inequalities

of (2.26) in order to get the propagation of a solution. In fact, there lies the main difficulty.
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2.2 Proof of the general propagation and convergence results

Proof of Theorem 1.3. From the hypothesis, there exists some κ1 > 0 and t1 > 0 such
that for all e ∈ SN−1:

inf
t≥t1

u(t, re(t)e) ≥ κ1.

Even if it means decreasing κ1, we can assume that infx∈S(t1) u(t1, x) ≥ κ1 since S(t1) is
bounded. We know from Definition 5 that re(t)e ∈ ∂St for all e and t and thus

∂St = {re(t)e, e ∈ SN−1}.

Define now Q = {(t, x) ∈ [t1,+∞)× RN , x ∈ St}. One has

inf
(t,x)∈∂Q

u(t, x) ≥ κ1.

We need a modified maximum principle in order to get an estimate in the whole set Q.
As Q is not a cylinder, we cannot apply the classical weak maximum principle. In fact, it is
possible to extend this maximum principle to the set Q and there is no particular issue but,
for the sake of completeness, we prove that this extension works well.

Lemma 2.2 Assume that z satisfies:{
∂tz −∇ · (A∇z) + q · z + bz ≥ 0 in Q

z ≥ 0 in ∂Q

where b is a bounded continuous function. Then one has z ≥ 0 in Q.

Proof. Assume first that b > 0. Set Qτ = Q∩ {t ≤ τ} and assume that there exists (t, x) ∈
Qτ such that z(t, x) < 0. Take (t0, x0) ∈ Qτ such that z(t0, x0) = min(t,x)∈Qτ z(t, x) < 0.
One necessarily has (t0, x0) ∈ Qτ and thus:

∇z(t0, x0) = 0,∇ · (A∇z)(t0, x0) ≥ 0, b(t0, x0)z(t0, x0) < 0.

This leads to:
∂tz(t0, x0) > 0.

But the definition of the minimum yields that for all 0 ≤ t ≤ t0, if (t, x0) ∈ Q, one has
z(t, x0) ≥ z(t0, x0). As t0 > 0, for ε small enough, one has (t0 − ε, x0) ∈ Q. Thus, it is
possible to differentiate the inequality to get ∂tz(t0, x0) ≤ 0. This is a contradiction. Thus
for all τ > 0, one has minQτ z ≥ 0 and then z ≥ 0 in Q.

If b is not positive, set z1(t, x) = e−(‖b‖∞+1)tz(t, x) for all (t, x) ∈ Q. This function
satisfies:

∂tz1 −∇ · (A∇z1) + q · z1 + (b+ ‖b‖∞ + 1)z1 = (∂tz −∇ · (A∇z) + q · z + bz)e−(‖b‖∞+1)t ≥ 0,

and for all (t, x) ∈ ∂Q, one has z1(t, x) ≥ 0. As b + ‖b‖∞ + 1 > 0, the first case yields that
z1 ≥ 0 and then z ≥ 0. �
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We can now finish the proof of Theorem 1.3. As λ′1 < 0, we know that there exists some
φ ∈ C1,2(R× RN) ∩W 1,∞(R× RN) such that infR×RN φ > 0 and

∂tφ−∇ · (A(t, x)∇φ) + q(t, x) · ∇φ ≤ (f ′u(t, x, 0) +
λ′1
2

)φ in R× RN .

We can assume that supR×RN φ = 1.
As f is of class C1 in s in the neighborhood of 0, there exists some positive κ0 ≤ κ1 such

that

∀0 < κ ≤ κ0,∀(t, x) ∈ R× RN , f(t, x, κ) ≥ (f ′u(t, x, 0) +
λ′1
2

)κ.

Fix 0 < κ ≤ κ0 such that u(t1, x) ≥ κφ(t1, x) for all x ∈ S(t1). Then κφ is a subsolution of
equation (1.1) in R× RN .

We apply the modified maximum principle to the function z = u− κφ. This shows that
u ≥ κφ over Q, which means that

inf
t≥t1

inf
x∈St

u(t, x) ≥ κ inf
R×RN

φ > 0.

�

Proof of Theorem 1.6. Take a sequence tn → +∞ and xn ∈ Sε(tn) such that

|p(tn, xn)− u(tn, xn)| → lim sup
t→+∞

sup
x∈Sε(t)

|p(t, x)− u(t, x)|

We know that there exist some t1 and κ1 > 0 such that

inf
t≥t1

inf
x∈St

u(t, x) ≥ κ1 > 0. (2.28)

Set un(t, x) = u(t+ tn, x+ xn). This function satisfies:

∂tun −∇ · (A(t+ tn, x+ xn)∇un) + q(t+ tn, x+ xn) · ∇un
= f(t+ tn, x+ xn, un) in (−tn,+∞)× RN .

(2.29)

Up to some extraction in Hölder spaces, one may assume that there exists some function

(B, r, g) such that A(t+ tn, x+xn)→ B(t, x) in Cδ
′/2,1+δ′

loc (R×RN), q(t+ tn, x+xn)→ r(t, x)

in Cδ
′/2,δ′

loc (R × RN) and f(t + tn, x + xn, s) → g(t, x, s) in Cδ
′/2,δ,0
loc (R × RN × R+) for all

0 ≤ δ′ < δ.
Next, the Schauder parabolic regularity estimates yield that the sequence (un)n converges,

up to some extraction, to some function u∞ in C1+δ′/2,2+δ′

loc (R× RN) for all 0 ≤ δ′ < δ. This
function satisfies:

∂tu∞ −∇ · (B(t, x)∇u∞) + r(t, x) · ∇u∞ = g(t, x, u∞) in R× RN . (2.30)

For all (t, x) ∈ R× RN , consider some n0 such that

|x|+ (1− ε) sup
e∈SN−1

‖r′e‖∞|t| ≤ ε inf
e∈SN−1

re(t+ tn) for all n ≥ n0.
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For all e, one can compute:

(x+ xn) · e ≤ (1− ε)re(tn) + |x|
≤ (1− ε)re(t+ tn) + (1− ε)‖r′e‖∞|t|+ |x|
≤ re(t+ tn).

(2.31)

Hence, x+ xn ∈ S(t+ tn) and then un(t, x) ≥ κ1 > 0 for all n ≥ n0. Thus,

inf
(t,x)∈R×RN

u∞(t, x) ≥ κ1 > 0.

Hypothesis 1 implies p(t+ tn, x+ xn)→ u∞(t, x) in C1,2
loc (R×RN), which can also be written

as
|p(t+ tn, x+ xn)− u(t+ tn, x+ xn)| → 0 in C1,2

loc (R× RN),

whence
lim sup
t→+∞

sup
x∈Sε(t)

|p(t, x)− u(t, x)| = 0.

�

3 The case of general media

The proofs rest on the use of some subsolutions. The construction of the subsolutions that
we use here rests on an idea introduced in [9]. In this section, we show how to adapt the
methods of [9] and then prove Theorem 1.2, Corollary 1.4 and Theorem 1.5.

3.1 The key lemma

We first recall the following result, which has been proved by Berestycki, Hamel and Rossi:

Lemma 3.1 [9] Let β, η and ε be three arbitrary positive numbers. Then there exists a
nonnegative function h ∈ C2(R) and a positive number θ such that:

h(ρ) = 0 for ρ ≤ 0,
h(ρ) > 0 for θ > ρ ≥ 0,
h(ρ) = 1 for ρ ≥ θ,

(3.32)

and

∀(ρ,X) ∈ (0, θ]×A, −La,Q,Ch(ρ) = −a(X)h′′(ρ) +Q(X)h′(ρ)− C(X)h(ρ) < 0

for any set A and any nonnegative functions a,Q,C defined on A and verifying

∀X ∈ A, a(X) ≤ β, Q(X) ≤ η and 4a(X)C(X)−Q2(X) ≥ ε.

We next apply this result to prove our key lemma:
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Lemma 3.2 Let β, η and ν be three arbitrary positive numbers and A ⊂ R× RN . Then
there exist a positive constant r and a function ψ ∈ C2(RN), both depending on β, η, ν and
on the dimension N , such that for all (t0, x0) that satisfies (t0,+∞)×Br(x0) ⊂ A, one has:

ψ(x) > 0 in Br(x0),
ψ(x) = 0 in RN\Br(x0),

−Lψ(x) < 0 in (t0,+∞)×Br(x0),
(3.33)

where
L = ∇ · (A(t, x)∇)− q(t, x) · ∇+ c(t, x),

for any coefficients A, q, c, γ verifying for all (t, x) ∈ A:

0 ≤ γ(t, x)IN ≤ A(t, x) ≤ βIN , q(t, x) ≤ η and 4γ(t, x)c(t, x)− |q|2(t, x) ≥ ν,

where the inequality holds in the sense of positive matrix.

Proof. Let choose some positive s large enough so that:

ε = inf
(t,x)∈A

(
4γ(t, x)c(t, x)− (|q(t, x)|+ βN

s
)2
)
> 0.

Set η′ = sup(t,x)∈A(|q(t, x)|+ Nβ
s

) <∞. The previous lemma yields some h and θ associated
with the positive constants ε, β and η′. Set r = s+θ and define the function ψ(x) = h(r−|x|).
Consider some x0 ∈ A such that (t0,+∞) × Br(x0) ⊂ A. A straightforward computation
(see [9]) shows that:

−Lψ(x− x0) ≤ −(x− x0)A(t, x)(x− x0)

|x− x0|2
h′′(r − |x− x0|)

+(|q(t, x)|+ Nβ
s

)h′(r − |x− x0|)

−c(t, x)h(r − |x− x0|).

Next, denote for all (t, x) ∈ A:

a(t, x) =

{
(x−x0)A(t,x)(x−x0)

|x−x0|2 if x 6= x0,

γ(t, x0) if x = x0,
Q(t, x) = |q(t, x)|+ Nβ

s
, C(t, x) = c(t, x).

The choice of s yields Q(t, x) ≤ η for all (t, x) ∈ A. As γ(t, x) ≤ a(t, x) ≤ β, one gets

4a(t, x)C(t, x)−Q2(t, x) ≥ 4γ(t, x)c(t, x)−Q2(t, x) ≥ ε.

Thus the functions a,Q,C satisfy the hypotheses of lemma 3.1 and it follows that for all
(t, x) ∈ (t0,+∞)×Br(x0)

−Lψ(x− x0) < 0.

Thus ψ satisfies the properties of Lemma 3.2. �

20



3.2 Propagation along a path

Proof of Theorem 1.2. We have to prove that there exist some t0 and κ1 > 0 such that

inf
t≥t0

u(t, ξ(t)) ≥ κ1 > 0.

We consider some t0 > 0 and R0 > 0, which are as large as needed, for which there exist
some ν > 0, δ > 0 such that for all t ≥ t0 , one has

inf
|x|≤R0

(4γ(t, x+ ξ(t))(f ′u(t, x+ ξ(t), 0)− δ)− |q(t, x+ ξ(t))− ξ′(t)|2) ≥ ν. (3.34)

We apply Lemma 3.2 to β = sup(t,x)∈R×RN Γ(t, x), where Γ is defined by (1.6), η =
sup(t,x)∈R×RN |q(t, x)| and ν defined by (3.34). This gives us some radius ρ and some function
ψ. We can assume that R0 is large enough so that R0 ≥ ρ. Recalling the properties of the
function ψ given by lemma 3.2, we know that:

−∇ · [A(t, x+ ξ(t))∇ψ] + [q(t, x+ ξ(t))− ξ′(t)] · ∇ψ <
(
f ′u(t, x+ ξ(t))− δ

)
ψ

in (t0,+∞)×Bρ and that ψ is compactly supported in Bρ.
As f is a uniformly C1 function in the neighborhood of 0, there exists some κ0 > 0 which

does not depend on e such that for all 0 < s ≤ κ0 and for all (t, x) ∈ R× RN , one has:

f(t, x, s) ≥ (f ′u(t, x, 0)− δ)s.

We know from the construction of ψ that ‖ψ‖∞ = 1. Set φ(t, x) = ψ(x − ξ(t)), for all
0 < κ ≤ κ0, one has:

∂tκφ−∇ · (A(t, x)∇κφ) + q(t, x) · ∇κφ < (f ′u(t, x, 0)− δ)κφ ≤ f(t, x, κφ),

as soon as t ≥ t0 and |x− ξ(t)| ≤ ρ.
Take now any nonnegative and non-null initial datum u0 and u the associated solution

of the Cauchy problem (1.2). Set

Q = {(t, x) ∈ (t0,+∞)× RN , |x− ξ(t)| ≤ ρ}.

We know that κφ(t, x) = 0 if |x − ξ(t)| ≥ ρ. Next, even if it means decreasing κ0 > 0, we
can assume that

u(t0, x+ x(t0)) ≥ κ0 for all x ∈ RN , |x| ≤ ρ

since u(t0, ·+ x(t0)) is continuous and positive for t0 > 0. This implies that

u ≥ κ0φ in ∂Q.

Thus, we infer from the modified weak maximum principle of Lemma 2.2 in Q that

u ≥ κ0φ in Q.

Thus:
inf
t≥t0

u(t, ξ(t)) ≥ κ0ψ(0) > 0. (3.35)

�
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3.3 Lower estimates of the spreading radii

Proof of Corollary 1.4. First, one can easily check that, as the assumption made in
Corollary 1.4 is uniform with respect to e, the proof of Theorem 1.2 gives a uniform lower
bound on u. Namely, observe first that there exist t0 > 0, R0 > 0 and δ > 0 such that

ν = inf
|x|≤R0

inf
t≥t0

inf
e∈SN−1

(4γ(t, x+ re(t)e)(f
′
u(t, x+ re(t)e, 0)− δ)− |q(t, x+ re(t)e)− r′e(t)e|2) > 0

(3.36)
Setting ψ as in the proof of Theorem 1.2, one gets some κ0 > 0 such that for all e ∈ SN−1:

inf
t≥t0

u(t, re(t)e) ≥ κ0ψ(0) > 0. (3.37)

Thus the hypotheses of Theorem 1.3 are satisfied and one gets the conclusion. �

Proof of Theorem 1.5. Fix some c ∈ (0, c∗) and set for all e ∈ SN−1, re(t) = ct. Using the
definition of c∗, we get the existence of some r > 0 and δ > 0 such that

inf
e∈SN−1

inf
|x|≥r

inf
t∈R

(4γ(t, x)f ′u(t, x, 0)− |q(t, x)− r′e(t)e|2) ≥ δ > 0.

Thus for all R0 > 0, taking some t0 such that ct0 ≥ R0 + r, we get

inf
e∈SN−1

inf
t≥t0

inf
|x−cte|≤R0

(4γ(t, x)f ′u(t, x, 0)− |q(t, x)− r′e(t)e|2) ≥ δ > 0,

since |x| ≥ ct− |x− cte| ≥ R0 + r −R0 = r. Corollary 1.4 then implies

lim inf
t→+∞

inf
|x|≤ct

u(t, x) > 0,

which concludes the proof. �

3.4 Uniqueness results

In this subsection, we prove that our uniqueness hypothesis 1 is satisfied in some important
cases. This kind of results has been proved in time independent media in [9] and in space-
time periodic media in [22]. We will follow the same sketch of proof as in [9]. In order to
extend these results to time dependent media, we first require the following technical result,
which has been proved by Berestycki, Hamel and Rossi:

Lemma 3.3 [9] Let u1, u2 ∈ C0(R× RN) be two positive bounded functions satisfying:

inf
R×RN

u1 > 0, inf
R×RN

(u2 − u1) > 0.

If (1.14) holds, there exists ε > 0 such that

∀(t, x) ∈ R× RN ,
u2(t, x)

u1(t, x)
f(t, x, u1(t, x)) ≥ f(t, x, u2(t, x)) + ε. (3.38)
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The next lemma is the extension of a result of [9] to time heterogeneous media:

Lemma 3.4 Consider a nonnegative function z ∈ C1,2(R× RN) such that

Pz = ∂tz −∇ · (A(t, x)∇z) + q(t, x) · ∇z − c(t, x)z ≥ ε,

where A and q satisfy the same hypothesis as in section 1, c ∈ L∞(R×RN) and ε > 0. Then
infR×RN z > 0.

Proof. Consider a nonnegative function θ ∈ C2(R× RN) that satisfies:

θ(0, 0) = 0, lim
|t|+|x|→+∞

θ(t, x) = 1, ‖θ‖C1,2 <∞.

There exists κ > 0 sufficiently large such that:

∀(s, y) ∈ R× RN ,P(τs,yθ) > −κε/2,

where we denote τs,yθ = θ(.− s, .− y).
Assume that infR×RN z = 0. Then one can find some (t0, x0) ∈ R× RN such that:

z(t0, x0) < min{1

κ
,

ε

2‖c‖∞
}

where 1
‖c‖∞ = +∞ if c ≡ 0. Since lim|t|+|x|→+∞ θ(t, x) = 1, there exists a positive constant

R such that τt0,x0θ(t, x)/κ > z(t0, x0) if |t − t0| + |x − x0| ≥ R. Consequently, setting
z̃ = z + τt0,x0θ(t, x)/κ, one finds for all |t− t0|+ |x− x0| ≥ R, that:

z̃(t, x) ≥ τt0,x0θ(t, x)/κ > z(t0, x0) = z̃(t0, x0).

Hence, if α = infR×RN z̃, this infimum is reached in

BR(t0, x0) = {(t, x) ∈ R× RN , |t− t0|+ |x− x0| < R}.

Moreover:
α ≤ z̃(t0, x0) = z(t0, x0) <

ε

2‖c‖∞
.

One can compute:

P(z̃ − α) = P(z) + 1
κ
P(τt0,x0θ(t, x)) + c(t, x)α

> ε− ε
2
− ‖c‖∞α

> 0

for all (t, x) ∈ R × RN . Thus, the strong maximum principle yields that z̃(t, x) = α for all
t ≤ t0 and x ∈ RN , which contradicts P(z̃ − α) > 0. This shows that infR×RN z > 0. �

Proof of Proposition 1.7. 1) As λ′1 < 0, we know that there exists some −λ′1 > µ > 0
and some ψ ∈ C1,2(R× RN) ∩W 1,∞(R× RN) such that infR×RN ψ > 0 and

∂tψ −∇ · (A(t, x)∇ψ) + q(t, x) · ∇ψ ≤ (f ′u(t, x, 0)− µ)ψ in R× RN .
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As f is of class C1 with respect to s uniformly in (t, x) ∈ R × RN in the neighborhood of
zero, we know that there exists some κ > 0 and κ ≤M such that:

∀s ∈ (0, κ), ∀(t, x) ∈ R× RN , f(t, x, s) ≥ (f ′u(t, x, 0)− µ)s.

Up to some multiplication by a positive constant, we can assume that ψ(t, x) < κ for all
(t, x) ∈ R× RN .

Next, as ψ is a subsolution and M is such that f(t, x,M) ≤ 0 for all (t, x) ∈ R×RN , an
iteration method produces a solution p ∈ C1,2(R× RN) of equation (1.1) that satisfies

ψ(t, x) ≤ p(t, x) ≤M, for all (t, x) ∈ R× RN .

This solution is clearly bounded, nonnegative and satisfies

inf
R×RN

p ≥ inf
R×RN

ψ > 0.

2) Assume that u and p are two positive bounded entire solutions of equation (1.1) such
that infR×RN u > 0 and infR×RN p > 0. Thus we can define:

κ∗ = inf{κ > 0, κu ≥ p in R× RN} > 0.

We will now assume that κ∗ > 1 and get a contradiction.
As infR×RN u > 0 and infR×RN (κ∗u− u) > 0, one knows from lemma 3.3 that there exists

ε > 0 such that

∀(t, x) ∈ R× RN ,
κ∗u(t, x)

u(t, x)
f(t, x, u(t, x)) ≥ f(t, x, κ∗u(t, x)) + ε. (3.39)

Set z = κ∗u− p, this function is nonnegative, satisfies infR×RN z = 0 and

∂tz −∇ · (A∇z) + q · ∇z = κ∗f(t, x, u)− f(t, x, p)
≥ f(t, x, κ∗u) + ε− f(t, x, p).

Set

g(t, x) =

{
f(t,x,κ∗u(t,x))−f(t,x,p(t,x))

κ∗u(t,x)−p(t,x)
if κ∗u(t, x) 6= p(t, x),

0 if κ∗u(t, x) = p(t, x).

As f is Lipschitz-continuous, this function lies in L∞(R× RN). One has

∂tz −∇ · (A(t, x)∇z) + q(t, x) · ∇z − g(t, x)z ≥ ε.

Lemma 3.4 then yields infR×RN z > 0 which is a contradiction.
Thus κ∗ ≤ 1 and p ≤ u. As u and p play a symmetric role, one has u ≡ p.

Lastly, consider some coefficients (B, r, g) as in Hypothesis 1, that is, there exist some
sequences (tn)n and (xn)n such that

A(t+ tn, x+ xn) → B(t, x) as n→ +∞ in C
δ′
2
,1+δ′

loc (R× RN),

q(t+ tn, x+ xn) → r(t, x) as n→ +∞ in C
δ′
2
,δ′

loc (R× RN),

f(t+ tn, x+ xn, s) → g(t, x, s) as n→ +∞ in C
δ′
2
,δ′,0

loc (R× RN × R+),

(3.40)
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and assume that u is a bounded entire function such that infR×RN u > 0 and

∂tu−∇ · (B(t, x)∇u) + r(t, x) · ∇u = g(t, x, u) in R× RN . (3.41)

As (1.14) is uniform with respect to (t, x), this decreasing property also holds for g. Thus u
is the unique entire solution of (3.41) such that infR×RN u > 0.

On the other hand, we know from (1.15) that there exists a solution p of (1.1) associated
with the coefficients (A, q, f) such that infR×RN p > 0. Set pn(t, x) = p(t + tn, x + xn), this
function satisfies

∂tpn−∇·(A(t+tn, x+xn)∇pn)+q(t+tn, x+xn)·∇pn = f(t+tn, x+xn, pn) in R×RN . (3.42)

The Schauder parabolic estimates yield that there exists a function p∞ such that pn(t, x)→
p∞(t, x) in C

δ′
2
,δ′,0

loc (R× RN × R+) for all 0 < δ′ < δ. The function p∞ is a solution of (3.41)
and infR×RN p∞ > 0. Thus p∞ ≡ u, which can be written p(t + tn, x + xn) → u(t, x) as
n→ +∞ in C1,2

loc (R× RN). This ends the proof. �

Proof of Proposition 1.8. Assume that p is a uniformly positive continuous entire solution
of equation (1.1) such that m = infR×RN p > 0. Assume that m < 1. Consider a sequence
(tn, xn) ∈ R× RN such that p(tn, xn)→ m.

Set pn(t, x) = p(t + tn, x + xn), An(t, x) = A(t + tn, x + xn), qn(t, x) = q(t + tn, x +
xn), fn(t, x, s) = f(t + tn, x + xn, s) for all (t, x, s) ∈ R × RN × R+. As (An, qn, fn)n is
bounded in some Hölder space, it is possible to assume, up to extraction, that this sequence
converges to some limit (A∞, q∞, f∞) in some Hölder space with a lower rate. Thus, the
Schauder parabolic estimates yield that the sequence (pn)n converges to some function p∞

in C δ
′
2
,1+δ′(R× RN) for all 0 < δ′ < δ. Hence, this function is a solution of:

∂tp∞ −∇ · (A∞(t, x)∇p∞) + q∞(t, x) · ∇p∞ = f∞(t, x, p∞). (3.43)

Moreover, one has p∞ ≥ m and p(0, 0) = m. If m < 1, then f∞(t, x,m) > 0 by 1.17
and the strong parabolic maximum principle implies p∞(t, x) = m for all t ≥ 0 and x ∈ RN ,
which yields a contradiction. Thus m ≥ 1.

Similarly, one can prove that supR×RN p ≤ 1 since f(t, x, s) < 0 if s > 1. Thus p ≡ 1.
Lastly, it is possible to prove that Hypothesis 1 is satisfied as in the proof of Proposi-

tion 1.7. �

Lastly, we give the proof of a result of independent interest about the uniform positivity
of the entire solutions of (1.1) that are uniformly positive with respect to time at a given
point x0, under some positivity hypothesis at infinity:

Proposition 3.5 Assume that

lim inf
|x|→+∞

{
inf
t∈R

[
4γ(t, x)f ′u(t, x, 0)− |q(t, x)|2

] }
> 0 . (3.44)

and that p ∈ C1,2(R× RN) is a nonnegative bounded entire solution of (1.1) such that there
exists some x0 ∈ RN for which

inf
t∈R

p(t, x0) > 0.

Then one has infR×RN p > 0.
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Proof. We first prove that for all compact subset K ⊂ RN , one has infR×K p > 0. Assume
that there exists tn ∈ R, xn ∈ K such that u(tn, xn) → 0. As the sequences (A(t + tn, x))n,
(q(t + tn, x))n and (f(t + tn, x, s))n are uniformly locally Hölder continuous with respect to
(t, x) ∈ R× RN , uniformly with respect to s ∈ [0, ‖p‖∞], one can assume, up to extraction,

that they converge to some functions A∞, q∞ and f∞ in C
δ′
2
,1+δ′

loc (R× RN) for all 0 < δ′ < δ

(the convergence of (fn)n holds in C
δ′
2
,δ′,0

loc (R × RN × R+)). We can also assume that the
sequence (xn)n converges to some x∞.

Set pn(t, x) = p(t+ tn, x). This function satisfies:

∂tpn −∇ · (A(t+ tn, x)∇pn) + q(t+ tn, x) · ∇pn = f(t+ tn, x, pn)

The classical Schauder estimates yield that one can assume that pn converges to a function
p∞ in C1,2

loc such that:

∂tp∞ −∇ · (A∞(t, x)∇p∞) + q∞(t, x) · ∇p∞ = f∞(t, x, p∞)

and p∞(0, x∞) = 0. As p∞ is nonnegative, the strong maximum principle yields that for all
t ≤ 0, for all x, p∞(t, x) = 0. On the other hand, set ε = inft∈Rp(t, x0) > 0. Then for all
n ∈ N and t ∈ R, one has pn(t, x0) ≥ ε and then for all t ∈ R, p∞(t, x0) ≥ ε > 0, which is a
contradiction.

Now, we know from Lemma 3.2 that there exist some positive constants µ, r and R and
a function ψ ∈ C2(RN) such that for all x0 /∈ Br+R(0), one has:

ψ(x) > 0 in Br(0),

ψ(x) = 0 in RN\Br(0),

−∇ · (A(t, x)∇ψ(x− x0)) + q(t, x) · ∇ψ(x− x0)
< (f ′u(t, x, 0)− µ)ψ(x− x0) in R×Br(x0).

(3.45)

Moreover, there exists some ε > 0 such that for all (t, x) ∈ R× RN , for all s ∈ [0, ε]:

f(t, x, s) ≥ (f ′u(t, x, 0)− µ

2
)s.

We now fix y /∈ BR+r(0) and we can assume, without loss of generality, that

0 < ε <
inf(t,x)∈R×Br(y) p(t, x)

‖ψ‖∞
.

This is possible since inf(t,x)∈R×Br(y) p(t, x) > 0. We set p = εψ. For all x0 /∈ Br+R(0), this
function satisfies:

−∇ · (A(t, x)∇p(x− x0)) + q(t, x) · ∇p(x− x0)

< f(t, x, p(x− x0))− µ

2
p(x− x0) in R×Br(x0).

(3.46)

We will prove that
inf

R×(RN\Br+R(0))
p ≥ p(0) = εψ(0). (3.47)
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As infR×Br+R(0) p > 0, this would end the proof of the lemma.
To prove (3.47), take z /∈ Br+R(0) and consider a curve γ : [0, 1] → RN\Br+R(0) such

that γ(0) = y and γ(1) = z. We know that p(x− γ(0)) ≤ p(t, x) for all (t, x) ∈ R×Br(γ(0))
since ‖p‖∞ = ε‖ψ‖∞ ≤ infR×Br(y) p. Call

ξ∗ = sup{ξ ∈ [0, 1], ∀ 0 ≤ s ≤ ξ, ∀ (t, x) ∈ R×Br(γ(s)), p(x− γ(s)) ≤ p(t, x)}.

Suppose by contradiction that ξ∗ < 1. Then p(x − γ(ξ∗)) ≤ p(t, x) for all (t, x) ∈
R × Br(γ(ξ∗)) and there exist some sequences ξn → ξ∗ and (tn, xn) ∈ R × Br(γ(ξn)) such
that for all n:

p(xn − γ(ξn)) > p(tn, xn).

Set pn(t, x) = p(t + tn, x), An(t, x) = A(t + tn, x), qn(t, x) = q(t + tn, x), fn(t, x, s) =
f(t + tn, x, s) for all (t, x, s) ∈ R × RN × R+. As (An, qn, fn)n is bounded in some Hölder
space, it is possible to assume, up to extraction, that this sequence converges to some limit
(A∞, q∞, f∞) in some Hölder space with a lower rate. Thus, the Schauder parabolic estimates

yield that the sequence (pn)n can be assumed to converge to a function p∞ in C δ
′
2
,1+δ′(R×RN)

for all 0 < δ′ < δ. Hence, this function is a solution of:

∂tp∞ −∇ · (A∞(t, x)∇p∞) + q∞(t, x) · ∇p∞ = f∞(t, x, p∞). (3.48)

As (xn)n is bounded, one can assume that this sequence converges to some x∞ ∈ Br(γ(ξ∗)).
Moreover:

p(x∞ − γ(ξ∗)) = lim
n→+∞

p(xn − γ(ξn)) ≥ lim
n→+∞

p(tn, xn) = p∞(0, x∞).

Hence p(x∞ − γ(ξ∗)) = p∞(0, x∞). As p ≡ 0 on ∂Br(0) and infR×Br(γ(ξ∗)) p∞ ≥
infR×Br(γ(ξ∗)) p > 0, the point x∞ belongs to Br(γ(ξ∗)). Furthermore, the function (t, x) 7→
p∞(t, x) − p(x − γ(ξ∗)) reaches a local minimum at (0, x∞). But, from (3.46), the function
p(· − γ(ξ∗)) is a strict subsolution of equation (3.48) in R×Br(γ(ξ∗)). The strong parabolic
maximum principle then leads to a contradiction.

Thus ξ∗ = 1 and then for all t ∈ R, one has p(t, z) ≥ p(z − γ(1)) = εψ(0). �

3.5 Upper estimates of the spreading radii

In this subsection, we prove the general upper bound for the spreading speeds which is stated
in Theorem 1.10. The proof mainly relies on the properties of the generalized principal eigen-
values kλ(η) defined in Section 1.

Proof of Proposition 1.9. Fix λ ∈ RN and set

A = {k > 0, ∃φ ∈ C1,2(R× RN) ∩W 1,∞(R× RN), inf
(t,x)∈R×RN

φ(t, x) > 0, Pλφ ≥ kφ}.

We need to define that this set is not empty and admits an upper bound. First of all, take
k ≤ − sup(t,x)∈R×RN

(
λA(t, x)λ − ∇ · (A(t, x)λ) + q(t, x) · λ + η(t, x)

)
and φ = 1. Then one

can easily check that Pλφ ≥ kφ and thus A is not empty.
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Next, in order to prove that A is bounded from above, we can assume that λ = 0 by
considering η̃ = λAλ−∇ · (Aλ) + q · λ+ η and q̃ = q + 2λA. Take k ∈ A and consider φ an
associated test function. Assume that

k >
sup(t,x)∈R×RN

(
|q(t, x)|2 − 4γ(t, x)η(t, x)

)
inf(t,x)∈R×RN 4γ(t, x)

and try to reach a contradiction, which would provide the upper bound on A.
This would give that ν = inf(t,x)∈R×RN

(
4γ(t, x)(η(t, x) + k)− |q(t, x)|2

)
> 0 and thus we

know from Lemma 3.2 that there exists a function ψ ∈ C2(RN) and a radius r > 0 such that
ψ is compactly supported in Br(0) and

−∇ · (A(t, x)∇ψ) + q(t, x) · ∇ψ − (η(t, x) + k)ψ ≤ 0 for all (t, x) ∈ R×Br(0).

Set κ = sup(t,x)∈R×Br(0)
ψ(x)
φ(t,x)

. This quantity is a real number since ε = inf(t,x)∈R×RN φ(t, x) >

0. Define z = κφ−ψ. This function is nonnegative and infR×RN z = 0. Since z(t, x) ≥ κε > 0
as soon as |x| ≥ r, and since our estimates are uniform with respect to t ∈ R, we may assume
that there exists (t0, x0) ∈ R × Br(0) such that z(t0, x0) = 0. Otherwise, one only need to
consider some translations in time as in the proof of Proposition 3.5 and the contradiction
that follows also holds for the limit function. Furthermore, one has

∂tz −∇ · (A(t, x)∇z) + q(t, x) · ∇z − (η(t, x) + k)z ≥ 0 in R×Br(0).

The strong maximum principle thus shows that z ≡ 0 in (−∞, t0]×Br(0), which is impossible
since z is continuous and z ≥ κε > 0 on R× ∂Br(0). �

Proposition 3.6 The function (λ, η) ∈ RN×C0(R×RN) 7→ kλ(η) is concave and continuous.
Moreover, if η1 ≥ η2, then for all λ ∈ RN , one has kλ(η1) ≤ kλ(η2).

Proof. Set F (λ, η) = kλ(η) and let λ1, λ2 be two points in RN , η1, η2 ∈ C0(R × RN) and
r ∈ [0, 1]. We want to show that:

F (r(λ1, η1) + (1− r)(λ2, η2)) ≥ rF (λ1, η1) + (1− r)F (λ2, η2).

Set λ = rλ1 + (1− r)λ2 and η = rη1 + (1− r)η2. Set:

Eλ = {φ ∈ C1,2(R× RN), φeλ·x ∈ W 1,∞(R× RN) and inf
R×RN

φeλ·x > 0}

One can write the definition of kλ(η) as:

kλ(η) = sup{k > 0, ∃φ ∈ Eλ, φ > 0, Pφ ≥ kφ}. (3.49)

Let φ1, φ2 be arbitrarily chosen in Eλ1 and Eλ2 respectively. Define z1 = ln(φ1), z2 =
ln(φ2), z = rz1 + (1− r)z2 and φ = ez ∈ Eλ. Therefore, it follows from (3.49) that:

kλ(η) ≥ inf
R×RN

(∂tφ−∇ · (A∇φ) + q · ∇φ
φ

− η
)
.
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On the other hand, one can compute that:

∂tφ−∇ · (A∇φ) + q · ∇φ
φ

= ∂tz −∇ · (A∇z)−∇zA∇z + q · ∇z

and:

∇zA∇z = r∇z1A∇z1 + (1− r)∇z2A∇z2 − r(1− r)(∇z1 −∇z2)A(∇z1 −∇z2)
≤ r∇z1A∇z1 + (1− r)∇z2A∇z2.

Hence,

∂tφ−∇ · (A∇φ) + q · ∇φ
φ

− η ≥ r(∂tz1 −∇ · (A∇z1)−∇z1A∇z1 + q∇z1 − η1)

+(1− r)(∂tz2 −∇ · (A∇z2)−∇z2A∇z2 + q∇z2 − η1)

= r
(∂tφ1 −∇ · (A∇φ1) + q · φ1

φ1

− η1

)
+(1− r)

(∂tφ2 −∇.(A∇φ2) + q · φ2

φ2

− η2

)
.

Then,

kλ(η) ≥ inf
R×RN

(∂tφ−∇.(A∇φ) + q · ∇φ
φ

− η
)

≥ r inf
R×RN

(∂tφ1 −∇ · (A∇φ1) + q · ∇φ1

φ1

− η1

)
+(1− r) inf

R×RN

(∂tφ2 −∇.(A∇φ2) + q · ∇φ2

φ2

− η2

)
.

Since φ1 and φ2 are arbitrarily chosen in Eλ1 and Eλ2 , this leads to

kλ(η) ≥ rkλ1(η1) + (1− r)kλ2(η2)

Then f is concave and we get the continuity in λ.
If η1 ≥ η2, we immediately get from (3.49) that kλ(η1) ≤ kλ(η2). Thus, for all η1, η2, as

η1 ≤ η2 + ‖η1 − η2‖∞, one has

kλ(η1) ≥ kλ(η2 + ‖η1 − η2‖∞) = kλ(η2)− ‖η1 − η2‖∞.

Similarly, one has
kλ(η2) ≥ kλ(η1)− ‖η1 − η2‖∞.

This finally shows that for all η1, η2,

|kλ(η2)− kλ(η1)| ≤ ‖η1 − η2‖∞,

which is a sharper result than the classical continuity. �

Proof of Theorem 1.10. First of all, we observe that

w∗∗(e) = inf{w ∈ R, ∃λ ∈ RN , kλ(η) + wλ · e > 0 and λ · e > 0}.
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Next, as w > w∗∗(e), there exist w′ ∈ [w∗∗(e), w) and λ ∈ RN such that kλ(η)+w′λ ·e > 0
and λ · e > 0. Set

r =
kλ(η) + w′λ · e

λ · e
> 0.

One can find a positive φ ∈ C1,2(R×RN)∩W 1,∞(R×RN) such that Pλφ ≥ (λ ·e) (r/2−w′) φ
in R× RN . Set

ψ(t, x) = φ(t, x)e−λ·x+(λ·e)(w′−r/2)t.

A straightforward calculation shows that this function is a super solution of equation (1.1).
As it is continuous and positive, one may assume, up to multiplication by some positive
constant, that ψ(0, x) ≥ u0(x) for all x ∈ RN , which implies ψ ≥ u in R+ × RN . Thus

u(t, x+ wte) ≤ φ(t, x+ wte)e−λ·xe(λ·e)(−w+w′−r/2)t ≤ ‖φ‖∞e−λ·xe−(λ·e)(r/2)t → 0

as t→ +∞ locally uniformly with respect to x ∈ RN . �

3.6 Example of a sublinear complete spreading

This subsection is dedicated to the proof of Theorem 1.11.

Proof of Theorem 1.11. Consider a non-null measurable initial datum such that 0 ≤
u0 ≤ 1 and u0 has a compact support in R. Let y− ∈ R be such that g(y) ≤ 0 for all
y ≤ y−. Let c be any positive real number and choose c′ such that 0 < c′ < c. We know that
M = supt≥0(r(t) − c′t) < ∞. Take t0 > 0 such that M ≤ c′t0 + y− and u0 = 0 outside the
interval [−c′t0, c′t0]. Define

v(t, x) = min{e−c′(|x|−c′(t+t0)), 1}.

Notice that v(0, x) ≥ u0(x) for all x ∈ R. We already know that 1 is a supersolution of{
∂tu− ∂xxu = g(r(t)− |x|)u(1− u),

u(0, x) = u0(x).
(3.50)

Next, set Ω = {(t, x) ∈ R+ × R, |x| ≥ c′(t + t0)}. In order to prove that v is a gener-
alized supersolution of (3.50), it is sufficient to prove that w : (t, x) 7→ e−c

′(|x|−c′(t+t0)) is a
supersolution of the parabolic equation over Ω. We compute:

∂tw − ∂xxw − g(r(t)− |x|)w(1− w) ≥ −g(r(t)− |x|)w(1− w) ≥ 0

since 0 ≤ w ≤ 1 and r(t) − |x| ≤ r(t) − c′(t + t0) ≤ M − c′t0 ≤ y− in Ω. We conclude that
0 ≤ u(t, x) ≤ v(t, x) for all (t, x) ∈ R+×RN . In particular, sup|x|≥ct |u(t, x)| → 0 as t→ +∞
since c′ < c.

Let now ε be any real number in (0, 1). For any R > 0, there holds

lim inf
t→+∞

inf
|x|≤R

f ′u(t, x± (1− ε)r(t), 0) = lim inf
t→+∞

inf
|x|≤R

g(r(t)− |x± (1− ε)r(t)|) = g(+∞) > 0.
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Since r′(t)→ 0 as t→ +∞, Theorem 1.2 then implies that lim inft→+∞ u(t,±(1−ε)r(t)) > 0.
Define

Ω = {(t, x) ∈ [t0,+∞)× RN ,−(1− ε)r(t) ≤ x ≤ (1− ε)r(t)},
where t0 ≥ 0 is be chosen so that κ0 = inf∂Ω u > 0 and g(s) > 0 for all s ≥ εr(t) and t ≥ t0.
The choice of such a t0 is possible from the previous estimates and from the strong parabolic
maximum principle. But the constant function κ0 is a subsolution of (3.50) in Ω. Hence,
u ≥ κ0 in Ω, which completes the proof. �

4 Space-time periodic media

This section is devoted to showing how the ideas developed in this article yield a new an
purely PDE approach to the results regarding spreading in periodic media.

We first study the somewhat simpler case of space periodic media where the coefficients
in the equation do not depend on t. The arguments there are more transparent. Actually,
the method presented for this case may be used in the case of space-time periodic media as
well. However, in trying to use this method in space-time periodic media, the reader will
have to face essentially the same difficulties as with the second method. This is why we
prefer to develop still another method for the general space-time periodic media. It will also
yield some by-products of independent interest.

4.1 The space periodic case

We begin with the proof of Theorem 1.13 in space periodic only media. Actually, we only
prove here a slightly weaker version, that is the local propagation of the solution u along the
path t 7→ wte for any direction e and any speed w such that 0 ≤ w < w∗(e). It is not too
difficult to prove that w∗(e) is optimal by using the pulsating travelling fronts of [3] and we
omit it here.
Proof of Theorem 1.13 in space periodic media. First, for all λ ∈ RN , we define kλ
to be the space periodic principal eigenvalue associated with the operator Lλ defined for all
φ ∈ C2(RN) by

Lλφ = −∇ · (A(x)∇φ) +
(
q(x)− 2λA(x)

)
· ∇φ−

(
λA(x)λ+∇ · (A(x)λ)− q(x) · λf ′u(x, 0)

)
φ.

Next, take any e ∈ SN−1 and w ∈ [0, w∗(e)). Define T =
∑N
i=1 eiLi
w

and for all φ ∈
C1,2(R× RN):

Lwφ = ∂tφ−∇ · (A(x+ wte)∇φ) + (q(x+ wte)− we) · ∇φ− f ′u(x+ wte, 0)φ.

The operator Lw is a parabolic operator with space-time periodic coefficients of periods
(T, L1, ..., LN) respectively.

Consider the modified operators Lw,λ for all λ ∈ RN , where for all φ ∈ C1,2(R× RN):

Lw,λφ = e−λ·xLw(eλ·xφ)
= ∂tφ−∇ · (A(x+ wte)∇φ) +

(
q(x+ wte)− we− 2λA(x+ wte)

)
· ∇φ

−
(
λA(x+ wte)λ+∇ · (A(x+ wte)λ)− q(x+ wte) · λ+ we · λ+ f ′u(x+ wte, 0)

)
φ.
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Set kwλ the space-time periodic principal eigenvalue associated with the operator Lw,λ. Doing
the change of variables y = x+ wte, one can easily remark that for all λ ∈ RN :

kwλ = kλ + wλ · e.

For all R > 0, we define the principal eigenvalue associated with Lw and with time
periodic boundary conditions and Dirichlet boundary conditions in space:

Lwφ = λw1 (BR)φ,
φ > 0 in R×BR,
φ is T-periodic,
φ = 0 in R× ∂BR.

(4.51)

It has been proved in [23] that

λw1 (BR)→ max
λ∈RN

kwλ = max
λ∈RN

(kλ + wλ · e).

But as

0 ≤ w < w∗(e) = min
λ∈RN ,λ·e>0

−kλ
λ · e

,

one has λw1 (BR) < 0 when R is large enough. Fix such a R and some principal eigenfunction
φwR associated with λw1 (BR) < 0, that we extend to the whole space RN by setting φwR(t, x) = 0
if |x| ≥ R.

Consider some bounded measurable nonnegative initial datum u0 6≡ 0 and u the so-
lution of the Cauchy problem associated with u0. Up to some shift in time, we can as-
sume that u(0, ·) is continuous and positive. Thus there exists some small κ such that
u(0, x) ≥ κφwR(0, x) for all x ∈ RN . As f is of class C1 in s = 0 and λw1 (BR) < 0, we can
assume that κ is small enough such that for all (t, x) ∈ R+ ×BR:

∂tκφ
w
R −∇ · (A(x+ wte)∇κφwR) + (q(x+ wte)− we) · ∇κφwR ≤ f(x+ wte, κφwR).

Set ψwR(t, x) = φwR(t, x−wte) if |x−wte| ≤ R and 0 otherwise, then κψwR is a subsolution of
the Cauchy problem (1.2) and thus u(t, x) ≥ κψwR(t, x) for all (t, x) ∈ R+ × RN . Therefore,
u(t, x+ wte) ≥ κφwR(t, x) and thus

lim inf
t→+∞

u(t, wte) ≥ κmin
t∈R

φwR(t, 0) > 0,

which yields the propagation property. The proof of Theorem 1.13 in space periodic media
is thus complete. �

4.2 Approximation of the lower spreading speed

We now turn to the case where the coefficients of the equation have a periodic time depen-
dence in addition to the space periodic dependence. First, we prove that the spreading speed
w∗(e, µ) defined as

w∗(e, µ) = min
λ∈RN ,λ·e>0

−kλ(µ)

λ · e
,
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is the limit of the sequence of the spreading speeds associated with increasing cylinders of
direction e. These approximating spreading speeds are not always defined and one requires
the direction e to meet the periodicity network so that the coefficients are periodic in the
direction e. This condition however is not restrictive since the set of all the directions e that
meet the periodicity network is dense in SN−1.

Definition 7 The periodicity network is the set L1Z⊕ ...⊕ LNZ. We define:

Σ = {e ∈ SN−1,Re ∩ (L1Z⊕ ...⊕ LNZ) is not empty}.

Proposition 4.1 The set Σ is dense in SN−1.

This is a standard property. For the sake of completeness, we recall it here.

Proof. Take ξ ∈ SN−1. For all i ≥ 2, there exist two sequences (p
(n)
i , q

(n)
i )n∈N, where

p
(n)
i ∈ Z, q(n)

i ∈ N∗, such that:

p
(n)
i

q
(n)
i

→ ξiL1

Liξ1

.

Set k
(n)
1 = ΠN

i=2q
(n)
i and for all i ≥ 2, k

(n)
i = k

(n)
1

p
(n)
i

q
(n)
i

and ξ
′(n)
i = k

(n)
i Liξ1.

Using the preceding construction, it is readily seen that the vector ξ(n) = ξ′(n)

‖ξ′(n)‖ belongs

to Σ for all n and that ξ
′(n)
i → ξi as n → +∞ for all i. As ‖ξ‖ = 1, one has ‖ξ′(n)‖ → 1 as

n→ +∞ and thus ξ(n) → ξ as n→ +∞. �

We now set in all the sequel of this subsection:

Ã(t, x1, ..., xN) = A(t, L1x1, ..., LNxN),

q̃(t, x1, ..., xN) = q(t, L1x1, ..., LNxN),

µ̃(t, x1, ..., xN) = µ(t, L1x1, ..., LNxN).

Using this change of variables, we can assume without loss of generality that

L1 = ... = LN = 1.

In this case, observe that one can choose a convenient basis as in the next lemma.

Lemma 4.2 If e ∈ Σ, one can find an orthonormal basis (e1, ..., eN) of RN such that e1 = e
and ek ∈ Σ for all k ∈ [1, N ].

Proof. We prove our proposition by induction. If N = 2, assume that re ∈ Q2 and set
e2 = (−e2, e1). Then re2 ∈ Q2 and (e, e2) is an orthonormal basis.

Assume that the property is true at the rank N and take a unit vector e associated with
some r ∈ R such that re ∈ QN+1. Set (ε1, ..., εN+1) the canonical basis of RN+1. Applying
the proposition in the space Span(ε1, e), one knows that there exists some e2 ∈ Σ such that
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(e, e2) is an orthonormal basis of Span(ε1, e). Set V = e⊥, applying the proposition at rank
N in the space V to the unit vector e2 ∈ Σ, one can find an orthonormal basis that satisfy
the good conditions. �

For all e ∈ Σ, set

CR(e) = {(t, x) ∈ R× RN , such that ‖x− (x · e)e‖ < R}.

Take r ∈ R such that re ∩ (L1Z ⊕ ... ⊕ LNZ) is not empty. We define the following eigen-
elements for all λ > 0:

e−λx·eL(eλx·eφRλe) = kRλeφ
R
λe,

φRλe(t+ T, x) = φRλe(t, x) for all (t, x) ∈ R× CR(e),
φRλe(t, x+ re) = φRλe(t, x) for all (t, x) ∈ R× CR(e),

φRλe > 0 on CR(e),
φRλe ≡ 0 on ∂CR(e).

(4.52)

The medium is r-periodic in the direction e, periodic in time and we impose Dirichlet
boundary conditions on the boundary of CR(e). The following proposition is a generalization
of theorem 2.7 of [23]. It can be proved with the same method as in [23] and we do not
repeat the proof here.

Proposition 4.3 These eigenelements are well-defined for all e ∈ Σ and unique up to mul-
tiplication of φRλe by a positive constant. Moreover, the function λ 7→ kRλe is concave and
continuous.

Set w∗R(e) = minλ>0
−kRλe
λ

. Using the concavity of the function λ 7→ kλ, one easily gets
the following characterization:

w∗R(e) = min{w ∈ R,∃λ ∈ R, kRλe + λw = 0}.

It may be shown that this quantity is the spreading speed associated with equation (1.1)
with Dirichlet boundary conditions on the boundary of the cylinder CR(e). This is derived
by the same methods as in this paper. But now, this property is not the main goal of
the present paper and we leave the details out. Travelling fronts and spreading properties
in cylinder have been widely investigated (see [3, 19] for example), but in general, only
Neumann boundary conditions, are used. Using this interpretation, it is natural to try to
identify the limit of the function R 7→ w∗R(e). We now prove that this limit is w∗(e).

Proposition 4.4 There holds kRλe ↘ maxβ·e=0 kλe+β as R→ +∞.

Corollary 4.5 The following convergence holds as R→ +∞:

w∗R(e)↗ w∗(e)
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Proof. Using Proposition 4.4, one gets

w∗R(e)↗ min
λ>0

min
β·e=0

−kλe+β
λ

= min
γ·e>0

−kγ
γ · e

= w∗(e).

�

The proof of Proposition 4.4 is based on two lemmas.

Lemma 4.6 The map R 7→ kRλe is decreasing for all λ > 0, e ∈ Σ.

Proof. Take R1 < R2 and assume that kR1
λe ≤ kR2

λe . Take φR1
λ , φR2

λ two eigenfunction
associated with kR1

λe and kR2
λe . One has:

∂tφ
R1
λ −∇ · (A∇φ

R1
λ ) + q · φR1

λ − µφ
R1
λ − k

R2
λ φR1

λ = (kR1
λ − k

R2
λ )φR1

λ ≤ 0 in CR2(e).

Thus φR1
λ is a subsolution of the equation satisfied by φR2

λ on CR2(e). Next, set:

κ∗ = sup{κ > 0, κφR1
λ < φR2

λ in CR2(e)}.

As φR2
λ is bounded and φR1

λ has a positive infimum over CR2(e) since it is an periodic
function, κ∗ is finite and positive. Set z = φR2

λ − κ∗φ
R1
λ . There exists a sequence (tn, xn) ∈

CR2(e) such that z(tn, xn)→ 0. Set zn(t, x) = z(t+ tn, x+ xn), this function satisfies:

∂tzn−∇·(A(t+tn, x+xn)∇zn)+q(t+tn, x+xn)·zn−µ(t+tn, x+xn)zn−kR2
λ zn ≤ 0 in CR2(e).

The periodicity yields that, up to extraction, we can assume that the sequence (A(. +
tn, . + xn), q(. + tn, . + xn), µ(. + tn, . + xn)) converges uniformly in CR(e) to a function
(A∞, q∞, µ∞). From the classical Schauder estimates we infer that, up to extraction of a
subsequence, the sequence (zn) uniformly converges to a function z∞ that satisfies:

∂tz∞ −∇ · (A∞∇z∞) + q∞ · z∞ − µ∞z∞ − kR2
λ z∞ ≤ 0 in CR2(e).

As z∞ ≥ 0 and z∞(0, 0) = 0, the strong parabolic maximum principle yields that for all
t ≤ 0, x ∈ RN , one has z∞(t, x) ≡ 0. The periodicity thus yields that z∞ ≡ 0. In the other
hand, one has z(t, x) = zn(t− tn, x− xn). The uniform convergence thus yields that z ≡ 0,
which is a contradiction since φR1

λ > 0 in CR2(e). �

Lemma 4.7 For all λ > 0, e ∈ Σ and β ∈ RN such that β · e = 0, the following inequality
holds:

kRλe > kλe+β.

Proof. Assume that kRλe ≤ kλe+β and consider φRλe and ψλe+β two eigenfunctions associated
with kRλe and kλe+β. It is easy to see that (t, x) 7→ e−β·xφRλe(t, x) is a subsolution of the
equation satisfied by ψλe+β in CR(e). Set:

κ∗ = sup{κ > 0, κe−β·xφRλ < ψλe+β in CR(e)}.
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This quantity is finite and positive. We define z = ψλe+β −κ∗e−β·xφRλ . Take (tn, xn) ∈ CR(e)
and consider the sequence zn(t, x) = z(t + tn, x + xn). As in the proof of the preceding
lemma, it is possible to extract a subsequence that uniformly converges to a function z∞.
The strong maximum principle and the periodicity yield z∞ ≡ 0 and thus z ≡ 0, which is a
contradiction. �

Proof of Proposition 4.4. First of all, thanks to Lemma 4.2, one can find an orthonormal
basis (e1, ..., eN) such that e = e1 and ek ∈ Σ for all k. Therefore, the coefficients A, q and µ
are all space-periodic in the directions e1, ..., eN . Thus, up to some rotation, we can assume
that e = ε1 in the sequel, where ε1 stands for the first vector of the canonical basis. In other
words, re = L1.

As R 7→ kRλe is a decreasing bounded function, it admits a limit k∞λe as R → +∞.
The Schauder classical estimates enable us to extract a sequence Rn → +∞ such that the
eigenfunctions sequence of (φRnλe ), normalized by the condition φRnλe (0, 0) = 1, converges to a
nonnegative function φ∞λe that satisfies:

e−λx·eL(eλx·eφ∞λe) = k∞λeφ
∞
λe,

φ∞λe(t+ T, x) = φ∞λe(t, x) for all (t, x) ∈ R× RN ,
φ∞λe(t, x+ L1) = φ∞λe(t, x) for all (t, x) ∈ R× RN ,

φ∞λe(0, 0) = 1.

(4.53)

The strong maximum principle yields that this function is positive.
Next, we set ϕ(t, x) = φ∞λe(t, x)eλe·x and ψ(t, x) = ϕ(t,x+L2)

ϕ(t,x)
, then ψ satisfies:

∂tψ −∇ · (A(t, x)∇ψ) + q(t, x) · ∇ψ − 2
∇ϕ
ϕ
A(t, x)∇ψ = 0.

As the coefficients A, q and f(·, ·, s) are of class Cδ/2,δ(R × RN) for all s ≥ 0 uniformly
over R × RN , the Krylov-Safonov-Harnack inequality yields that ψ is uniformly bounded
over R× RN . Set m = supR×RN ψ > 0 and (xn, tn) ∈ [0, T ]× RN such that: ψ(xn, tn) → m
as n→∞.

There exists yn ∈ C so that for all n, xn − yn ∈ L1Z × ... × LNZ. We may assume that
yn → y∞ ∈ C and tn → t∞ ∈ [0, T ].

Set ψn(t, x) = ψ(t+ tn, x+ xn) and ϕn(t, x) = ϕ(t+tn,x+xn)
ϕ(tn,xn)

. The function ϕn satisfies:

∂tϕn −∇ · (A(t+ tn, x+ yn)∇ϕn) + q(t+ tn, x+ yn) · ∇ − µ(t+ tn, x+ yn)ϕn = k∞λeϕn.

Using the classical parabolic estimates, we may suppose, up to extraction, that ϕn → ϕ∞
in C1,2

loc (R× RN). The function ϕ∞ satisfies:
∂tϕ∞ −∇ · (A(t+ t∞, x+ y∞)∇ϕ∞) + q(t+ t∞, x+ y∞) · ∇ϕ∞,
−µ(t+ t∞, x+ y∞)ϕ∞ = k∞λeϕ∞,
ϕ∞ periodic in t,
ϕ∞ > 0, ϕ∞(0, 0) = 1.

On the other hand, ψn is the solution of:

∂tψn−∇ · (A(t+ tn, x+ yn)∇ψn) + q(t+ tn, x+ yn) · ∇ψn− 2
∇ϕn
ϕn

A(x+ yn, t+ tn)∇ψn = 0.
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So, we may assume, up to extraction, that ψn → ψ∞, where ψ∞ satisfies:

∂tψ∞−∇·(A(t+t∞, x+y∞)∇ψ∞)+q(t+t∞, x+y∞)·∇ψ∞−2
∇ϕ∞
ϕ∞

A(t+t∞, x+y∞)∇ψ∞ = 0.

Furthermore, ψ∞ ≤ m and, as ψn(0, 0) = ψ(tn, xn)→ m, ψ∞(0, 0) = m. Using the strong
parabolic maximum principle and the time periodicity, we get ψ∞ ≡ m.

Since m > 0, we can define β2 = 1
|L2| ln(m). Then the function ϕ∞exp(−β2x2) is L2-

periodic. Going on the construction, one can find a βi for all i ≥ 2 and then get a function
θ verifying:{
∂tθ −∇ · (A(t+ t∞, x+ y∞)∇θ) + q(t+ t∞, x+ y∞) · ∇θ − µ(t+ t∞, x+ y∞)θ = k∞λeθ,

θ(t, x)exp(−(λe+ β) · x) is periodic in t, x1, ..., xN , θ > 0, θ(0, 0) = 1.

Therefore, since the periodic principal eigenvalue kλ is invariant under a translation in
(t, x) of the coefficients, there exists a positive constant C such that the function θ is equal
to Cφλ+β and k∞λe = kλ+β, where β · e = β1 = 0. On the other hand, Lemma 4.7 yields that
k∞λe ≥ maxβ·e=0 kλe+β. As the equality holds for at least one β such that β · e = 0, we finally
have k∞λe = maxβ·e=0 kλe+β. �

4.3 Proof of Theorem 1.13

We now prove Theorem 1.13. First, up to a shift in time, one can assume that u0 is positive
and continuous. We begin with the following lemma, which is a generalization of a theorem
that had been proved by Mallordy and Roquejoffre [19]:

Lemma 4.8 For all R > 0 and e ∈ Σ, there exists δ > 0 which does not depend on e
such that for all w ∈ [w∗R(e) − δ, w∗R(e)), there exists a complex λ ∈ C\R and a solution
φλ ∈ C1,2(RN ,C) of:

e−λx·eL(eλx·eφλ) = −λwψ,
φλ(t+ T, x) = φλ(t, x) for all (t, x) ∈ R× CR(e),
φλ(t, x+ re) = φλ(t, x) for all (t, x) ∈ R× CR(e),
Re(φλ) > 0 on CR(e),
Re(φλ) ≡ 0 on ∂CR(e).

(4.54)

In order to understand this lemma, it is useful to think about the homogeneous one-
dimensional case. In this case, the linearized equation admits positive exponential solutions,
that is solutions of the form (t, x) 7→ eλ·x+wtφλ(t, x), λ ∈ R, if and only if w ≥ 2

√
f ′(0).

Otherwise, there exist exponential solutions, but with λ ∈ C and these solutions cannot be
uniformly positive. The preceding lemma selects this kind of solutions.

Proof of Lemma 4.8. Let us first prove this lemma in a neighborhood of all e ∈ Σ. Fix e
and set λ∗ = λw∗R(e). The family of operators Lλe depends analytically on λ, in the sense of
Kato [17]. From the Kato-Rellich theorem, there exists a neighborhood V of λ∗ in C, such

that there exists a simple eigenvalue k̃Rλe continuing kRλ on all V analytically and a family of
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eigenfunctions φλ analytic in λ, where φλ∗ is the positive principal eigenfunction associated
with w∗R(e).

For all ξ ∈ Σ, w ∈ R, set Fw,ξ(λ) = k̃Rλξ + λw. This function is analytic in λ and
converges locally uniformly to Fw∗R(e) as ξ → e and w → w∗R(e). As Fw∗R(e),e(λ

∗) = 0, the
Rouché theorem yields the existence of some neighborhood Ve of (w∗R(e), e) such that for all
(w, ξ) ∈ Ve, there exists some λw,ξ ∈ C such that Fw,ξ(λw,ξ) = 0 and λw,ξ → λ∗ as ξ → e and
w → w∗R(e).

Using the Schauder estimates, one can prove that φλw,ξ → φλ∗ uniformly in t and x. Thus
Re(φλw,ξ)→ φλ∗ > 0 and taking Ve small enough, we can assume that Re(φλw,ξ) > 0 for all
(ξ, w) ∈ Ve. Lastly, if −w∗R(−ξ) < w < w∗R(ξ), it is impossible to have λw,ξ ∈ R. Otherwise,
this would contradict the definition of w∗R(ξ).

Next, as e ∈ Σ 7→ w∗R(e) is continuous, SN−1 is compact and Σ is dense in SN−1, we
can extract a finite family (Vek)1≥k≥m such that {(w∗R(e), e), e ∈ Σ} ⊂ ∪1≥k≥mVek . Thus,
there exists some δ > 0 such that for all e ∈ Σ, for all w ∈ [w∗R(e) − δ, w∗R(e)), there exists
λw,e ∈ C\R such that Fw,e(λw,e) = 0 and the proposition is proved. �

We are now able to construct a subsolution with compact support as in Proposition 2.1
for all e ∈ Σ. Take w ∈ (w∗R(e)− δ, w∗R(e)), Lemma 4.8 yields some λ and φλ associated with
w. Set:

v0(t, x) = Re(φλ(t, x)eλ(x·e+wt)).

One has:

v0(t, x) = eλr(x·e+wt)[φλ,rcos(λi(x · e+ wt)) + φλ,isin(λr(x · e+ wt))], (4.55)

where φλ,i, φλ,r, λi, λr denote the imaginary and real parts of λ and φ. For all n ∈ Z, if
(e ·x+ ct) = 2nπ/λi, then w0(t, x) > 0. Similarly, for all n ∈ Z, if (e ·x+ ct) = (2n+ 1)π/λi,
then v0(t, x) < 0. Thus, it follows from (4.55) that there exist an interval (b1, b2) ⊂ R and
an unbouded domain D ⊂ CR(e) such that: D ⊂

{
(t, x) ∈ CR(e), x · e+ wt ∈ [b1, b2]

}
,

0 < v0(t, x) < ε, for all (t, x) ∈ D,
v0(t, x) = 0, for (t, x) ∈ ∂D.

(4.56)

where ε = infx∈BR u0(x) > 0.
Set v the function:

v(t, x) =

{
v0(t, x) if (t, x) ∈ D,
0 otherwise.

(4.57)

This function has a compact support and it is a subsolution of equation (1.1).
One has v(0, x) ≥ u0(x) for all x ∈ RN , the maximum principle leads to u ≤ v. We

remark that
v(t, x− wte) = Re(eλx·eφλ(t, x− wte)).

As φλ is space-time periodic, one has

inf
e∈SN−1

inf
t∈R+

v(t, x− wte) > 0,
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for all x ∈ RN and w ∈ (w∗R(e)− δ, w∗R(e)).

We recall that Σ is dense in SN−1, thus the continuous function e 7→ w∗R(e) admits a
continuous extension e 7→ w̃∗R(e) to the compact set SN−1. For all positive R and δ′, set:

Ω = {(t, x) ∈ R+ × RN ,∀e ∈ SN−1,−e · x− (w̃∗R(e)− δ′)t < R}.

Then taking δ′ small enough and R large enough, one may assume that:

{(t, x) ∈ R+ × RN , x ∈ tK} ⊂ Ω.

We know from the previous step that there exists some ε > 0 such that

∀(t, x) ∈ R+ ×BR,∀e ∈ Σ, u(t, x− (w∗R(e)− δ′)te) ≥ ε.

As Σ is dense in SN−1, this inequality can be generalized:

∀(t, x) ∈ R+ ×BR, e ∈ SN−1, u(t, x− (w̃∗R(e)− δ′)te) ≥ ε.

As infBR u0 > 0, one may assume that ε is small enough so that infBR u0 ≥ ε. Hence for all
(t, x) ∈ ∂Ω, u(t, x) ≥ ε.

As f is of class C1 in the neighborhood of 0 and k0(µ) < 0, there exists some κ0 > 0 such
that

∀0 < κ < κ0, ∀(t, x) ∈ R× RN , f(t, x, κ) ≤ (µ(t, x)− k0(µ))κ.

Set z = u− φ0, where φ0 is some eigenfunction associated with k0(µ) such that ‖φ0‖∞ <
min{ε, κ0}. One easily remarks that φ0 is a subsolution of equation (1.1). In order to apply

the modified maximum principle proved in Lemma 2.2, define b(t, x) = f(t,x,u)−f(t,x,φ0)
u−φ0

. As f

is Lipschitz-continuous in u uniformly in (t, x), the function b is bounded. The function z
satisfies the equation:

∂tz −∇ · (A∇z) + q · z + bz ≥ 0.

Thus, the hypothesis of Lemma 2.2 are satisfied and one has z ≥ 0, that is u ≥ φ0 in Ω.
This shows that

lim inf
t→+∞

inf
x∈tK

u(t, x) ≥ min
(t,x)∈R×RN

φ0(t, x) > 0.

and thus the proof is complete. �

4.4 Proof of additional results

Proof of Theorem 1.14. In this case, the spreading speeds w∗(µ) and w∗∗(µ) are still
well-defined, the main difference is that these two quantities are both negative or positive if
λ1 ≥ 0. Anyway, the preceding proof still works, because the set

Ω = {(t, x) ∈ R× RN , x ∈ (−R− w∗Rt, R + w∗∗R t)}

remains bounded and thus it is possible to apply our modified weak maximum principle. If
the dimension N is higher than 2, then this set is not bounded anymore and the maximum
principle does not necessarily hold. �
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Proof of Proposition 1.12. We need to adapt the proof of Proposition 2.13 of [23], where
we defined the generalized principal eigenvalue with the help of time periodic subsolutions
of the linearized equation instead of general supersolutions.

Set lλ the space-time periodic principal eigenvalue and kλ the generalized principal
eigenvalue. Taking ϕ a periodic principal eigenfunction associated with lλ as a test-
function, one gets kλ ≥ lλ. Next, take k > lλ and assume that there exists a function
φ ∈ C1,2(R × RN) ∩W 1,∞(R × RN) such that inf(t,x)∈R×RN φ > 0 and Pλφ ≥ kφ. We now
search for a contradiction in order to prove that such a k does not exist and that lλ ≥ kλ.

Set γ = inf(0,T )×C
φ
ϕ

, then 0 < γ < ∞ and one can define z = φ − γϕ. This function is

nonnegative and inf z = 0. Set ε = (k − lλ) minϕ > 0. One has (Pλ − k)(z) ≥ γε > 0.
Consider a nonnegative function θ ∈ C2(RN) that satisfies:

θ(0) = 0, lim
|x|→+∞

θ(x) = 1, ‖θ‖C2 <∞.

There exists κ > 0 sufficiently large such that:

∀y ∈ RN , (Pλ − k)(τyθ) > −κγε/2,

where we denote τyθ = θ(.− y).
Since inf z = 0, one can find some (t0, x0) ∈ R× RN such that:

z(t0, x0) < min{1

κ
,

γε

2‖ζ − k‖∞
}

where
ζ = η + λ2eAe+ λ∇ · (Ae)− λq · e

and ‖ζ − k‖−1
∞ = +∞ if ζ − k ≡ 0. Since lim|x|→+∞ θ(x) = 1, there exists a positive constant

R such that τx0θ(x)/κ > z(t0, x0) if |x− x0| ≥ R. Consequently, setting z̃ = z + τx0θ(x)/κ,
one finds for all |x− x0| ≥ R, that:

z̃(t, x) ≥ τx0θ(x)/κ > z(t0, x0) = z̃(t0, x0).

Hence, if α = infR×RN z̃, then

α ≤ z̃(t0, x0) = z(t0, x0) <
γε

2‖ζ − k‖∞

and
(Pλ − k)(z̃ − α) = (Pλ − k)(z) + 1

κ
(Pλ − k)(τx0θ(x))− ζ(t, x)α + kα

> γε− γε
2
− ‖ζ − k‖∞α > 0

for all (t, x) ∈ R×RN . Thus, Lemma 3.4 yields infR×RN (z̃ − α) > 0, which is impossible. �
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