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Abstract

In this paper, we investigate the large-time behavior of bounded solutions of the
Cauchy problem for a reaction-diffusion equation in RN with bistable reaction term.
We consider initial conditions that are chiefly indicator functions of bounded Borel
sets. We examine how geometric transformations of the supports of these initial
conditions affect the propagation or extinction of the solutions at large time. We
also consider two fragmentation indices defined in the set of bounded Borel sets and
we establish some propagation or extinction results when the initial supports are
weakly or highly fragmented. Lastly, we show that the large-time dynamics of the
solutions is not monotone with respect to the considered fragmentation indices, even
for equimeasurable sets.
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1 Introduction

This paper is concerned with the large-time behavior of solutions to the Cauchy problem
for the bistable reaction-diffusion equation

∂u

∂t
= ∆u+ f(u), t > 0, x ∈ RN ,

u(0, x) = u0(x), x ∈ RN ,
(1.1)

in any dimension N ≥ 1, where ∆ stands for the Laplacian with respect to the spatial
variables x ∈ RN . The function f : [0, 1] → R is assumed to be of class C1 and of the

∗This work has received funding from Excellence Initiative of Aix-Marseille Université - A*MIDEX,
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bistable type with positive mass, that is, f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0,

ˆ 1

0

f(s)ds > 0,

∃ θ ∈ (0, 1), f < 0 in (0, θ), f > 0 in (θ, 1), f ′(θ) > 0.

(1.2)

The initial conditions u0 : R → [0, 1] are assumed to be Lebesgue-measurable and
compactly supported. The Cauchy problem (1.1) is well posed and, for each such u0, the
solution u : [0,+∞) × RN → [0, 1] exists and is unique, it is classical in (0,+∞) × RN

and u(t, ·)→ u0 as t→ 0+ in L1(RN). Furthermore, from the strong parabolic maximum
principle, one has 0 < u(t, x) < 1 for all (t, x) ∈ (0,+∞)×RN provided that ‖u0‖L1(RN ) > 0.
In biological or ecological models, the quantity u stands for the normalized concentration
of a species, subject to local dispersion on the one hand, and on growth and death processes
taking into account a strong Allee effect on the other hand, meaning that the per capita
growth rate f(u)/u (hence f(u) itself) is negative at low densities.

Some notations

Throughout the paper, “‖ ‖∞”, “| |” and “ · ” denote respectively the maximum norm, the
Euclidean norm and the Euclidean inner product in RN , Br(x) := {y ∈ RN : |y − x| < r}
denotes the open Euclidean ball of center x ∈ RN and radius r ≥ 0, and Br := Br(0). We
call

B :=
{
Br(x) : x ∈ RN , r > 0

}
.

We denote λ the Lebesgue measure in RN , and ωN := λ(B1). For x ∈ RN and a Borel
subset E of RN , we define the essential distance between x and E as

dist(x,E) := essinf
(
y ∈ E 7→ |x− y|

)
= sup

{
r ≥ 0 : λ(Br(x) ∩ E) = 0

}
(hence dist(x,E) = +∞ if λ(E) = 0, and the supremum is a maximum if λ(E) > 0). The
function x 7→ dist(x,E) is then Lipschitz continuous in RN . The d1-distance between two
bounded Borel subsets E and F of RN is given by the Lebesgue measure of the symmetric
difference E∆F , that is,

d1(E,F ) := λ
(
(E ∪ F ) \ (E ∩ F )

)
= λ(E ∪ F )− λ(E ∩ F ), (1.3)

which is also the L1 norm of the difference between the indicator functions of the sets E
and F . The essential Hausdorff distance between two bounded Borel subsets E and F
of RN is given by

dH(E,F ) := max
(
‖ dist(·, F )‖L∞(E), ‖ dist(·, E)‖L∞(F )

)
, (1.4)

with the conventions dH(E,F ) = dH(F,E) = +∞ if λ(E) > 0 = λ(F ), and dH(E,F ) = 0
if λ(E) = λ(F ) = 0. Throughout the paper, for two Borel subsets E and F of RN , we
also say that E is included in F up to a negligible set, or equivalently F contains E up
to a negligible set, if λ(E \ F ) = 0. We say that E and F are equal up to a negligible set
if E ⊂ F up to a negligible set and F ⊂ E up to a negligible set, that is, the indicator
functions of the sets E and F are equal almost everywhere in RN . In other words, for any
two bounded Borel subsets E and F of RN , d1(E,F ) = 0 if and only if E and F are equal
up to a negligible set. Lastly, for a bounded Borel set E ⊂ RN and for r > 0, we call

Br(E) :=
{
F bounded Borel subsets of RN : d1(E,F ) < r

}
. (1.5)
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Some results of the literature

The main goal of the paper is to understand the role of the fragmentation, in a sense to
be made precise, of the initial condition u0 on the large-time dynamics of the solution u.
But before presenting various notions of fragmentation and their properties and effects on
the dynamics of (1.1), let us recall some important known results of the literature.

First of all, it turns out that, for each given compactly supported initial condition
u0 : RN → [0, 1], u can have only three types of asymptotic behaviors as t→ +∞. Namely,
it follows from [33] that either u(t, ·)→ 0 as t→ +∞ uniformly in RN (the extinction case),
or u(t, ·)→ 1 as t→ +∞ locally uniformly in RN (the invasion case), or u(t, ·)→ Φ(·+x0)
as t → +∞ uniformly in RN for some x0 ∈ RN , where Φ : RN → (0, 1) is the unique
stationary solution of (1.1) converging to 0 at infinity and such that maxRN Φ = Φ(0) (the
function Φ is actually radially symmetric and decreasing with respect to the origin). We
point out that, if f satisfies (1.2) but with a nonpositive integral over [0, 1], then only the
extinction case is possible. Under the full assumption (1.2), when u(t, ·)→ 1 as t→ +∞
locally uniformly in RN , then it is also known from [10] (in dimension N = 1) and from [45]
(in any dimension N ≥ 1) that

lim inf
t→+∞

(
min

|x|≤ct−N−1
c

ln t−A
u(t, x)

)
−→
A→+∞

1 and lim sup
t→+∞

(
max

|x|≥ct−N−1
c

ln t+A
u(t, x)

)
−→
A→+∞

0,

where c > 0 is the unique speed of a traveling front ϕ(x − ct) solving (1.1) in dimen-
sion N = 1 and connecting 1 to 0, that is, with ϕ : R → (0, 1) such that ϕ(−∞) = 1
and ϕ(+∞) = 0. In other words, the levels sets of u with a given level ρ ∈ (0, 1)
spread with speed c in all directions as t → +∞ (this spreading result was originally
proved in [3]) and are even located at bounded Hausdorff distance from spheres of radii
ct − ((N − 1)/c) ln t. As a matter of fact, the level sets become asymptotically locally
planar as t→ +∞, since supt≥A, |x|≥A∇u(t, x)/|∇u(t, x)|+ x/|x| → 0 as A→ +∞ by [18]
(see [16, 17] for a study of further flattening properties), but they nevertheless do not
necessarily converge to families of spheres, see [40, 41, 43]. For further spreading prop-
erties and estimates of the location of the level sets for various types of functions f ,
we refer to e.g. [7, 9, 13, 37] in the case of compactly supported initial conditions, and
to [5, 11, 14, 20, 22, 32, 36, 44] for initial conditions with unbounded initial support in
dimension N = 1 and [15, 16, 17, 24, 25, 35, 38, 39] in any dimension.

Moreover, if for the problem (1.1)-(1.2) one considers a family [0,+∞) 3 σ 7→ uσ0 of
compactly supported initial conditions, which is continuous and increasing in the L1(RN)
sense and which is such that u0

0 = 0, there is a unique threshold σ∗ ∈ (0,+∞] such that the
solutions uσ of (1.1) with initial conditions uσ0 satisfy: 1) uσ(t, ·)→ 0 as t→ +∞ uniformly
in RN if 0 ≤ σ < σ∗, 2) uσ(t, ·) → 1 as t → +∞ locally uniformly in RN if σ∗ < +∞
and σ > σ∗, 3) uσ

∗
(t, ·) → Φ(· + x0) as t → +∞ uniformly in RN for some x0 ∈ RN if

σ∗ < +∞, see [33]. In particular, for any given α ∈ (θ, 1], since the solutions uα,R of (1.1)
with initial conditions

uα,R0 = α1BR :=

®
α if |x| < R,

0 if |x| ≥ R,

converge to 1 as t → +∞ locally uniformly in RN provided R > 0 is large enough (see
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e.g. [3, 8]), there is then from [30] or [33] a unique Rα ∈ (0,+∞) such that
uα,R → 0 as t→ +∞ uniformly in RN if 0 ≤ R < Rα,

uα,R → 1 as t→ +∞ locally uniformly in RN if R > Rα,

uα,R → Φ as t→ +∞ uniformly in RN if R = Rα.

(1.6)

The asymptotic behavior of Rα as α
>→θ was estimated in [1]. The first sharp threshold

results of that type were obtained in dimension N = 1, in [46] with initial conditions that
are indicator functions of bounded intervals, and then in [6] for more general initial condi-
tions. In both papers [6, 46], more general functions f can be considered (such as ignition
nonlinearities for which there is θ ∈ (0, 1) such that f = 0 in [0, θ]∪{1}, f > 0 in (θ, 1) and
f is non-decreasing in a neighborhood of θ). We point out that reference [6] also contains a
general convergence result for the bounded nonnegative solutions of (1.1) with compactly
supported initial conditions in dimension N = 1 under the sole assumption f(0) = 0:
namely such solutions converge as t → +∞ locally in R to a stationary solution, which
is either constant or even and decreasing with respect to a point. Other sharp threshold
results were obtained in [26, 33] for bistable-type autonomous or non-autonomous equa-
tions in R or RN with initial conditions converging to 0 at infinity, and in [29, 30] for
more general functions f and radially symmetric non-increasing initial conditions in L2(R)
and L2(RN). Earlier references [3, 19, 23] also established non-sharp extinction/invasion
results with respect to the size or the amplitude of the initial condition u0 in RN for various
reaction terms f . We refer to [6, 8, 26, 27, 34] for further results on the convergence to a
stationary solution or the convergence to the set of stationary solutions (quasiconvergence)
for various equations of the type (1.1). Extinction and invasion results have also been de-
rived for equations of the type (1.1) in general unbounded domains Ω, see [4, 42]. We lastly
mention [2, 28, 31] some results on the optimization of

´
Ω
u(T, ·) (or other integral quan-

tities) with respect to the initial condition under some pointwise and integral constraints,
for some reaction-diffusion equations set in bounded domains Ω with Neumann boundary
conditions on ∂Ω.

Main goal and outline of the paper

In this paper, we consider the Cauchy problem (1.1) with a bistable function f of the
type (1.2), and with initial conditions which are mostly indicator functions of bounded
Borel sets E, that is,

u0(x) = 1E(x) :=

®
1 if x ∈ E,
0 if x ∈ RN \E.

(1.7)

Our goal is to understand the effect of the fragmentation of the initial set E on the
large-time dynamics of the solution of (1.1) with initial condition (1.7). Unlike the afore-
mentioned sharp threshold results obtained for monotone families of initial conditions, that
would correspond in (1.7) to monotone (with respect to the inclusion) families of sets E,
we typically consider here some Borel sets E having the same Lebesgue measure (hence
being in general not comparable with respect to the inclusion) and we look for some prop-
erties of these sets which guarantee the extinction or the invasion of the solutions u. As we
will see, the large-time dynamics will strongly depend on the fragmentation of the sets E.
Two fragmentation indices are considered and their properties are discussed in Section 2.
The main results on the role of the fragmentation of E on the large-time dynamics of the
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solutions of (1.1) and (1.7) are stated in Section 3. We especially show that there is no
monotonicity of the large-time dynamics with respect to the fragmentation indices in the
class of equimeasurable sets. The main proofs are given in Section 4.

2 Fragmentation indices and their properties

For the solutions u of problem (1.1)-(1.2) with initial conditions of the type (1.7) with
E = BR, there is a unique R1 ∈ (0,+∞) such that extinction holds as t→ +∞ if R < R1

while invasion happens if R > R1, as recalled in Section 1, see (1.6). Now, for a set E with
Lebesgue measure λ(E) larger than λ(BR1), can one provide some conditions guaranteeing
the extinction or the invasion? The invasion obviously holds if E itself is a ball or if E
contains a ball of radius larger than R1, from the maximum principle. But the invasion
does not hold in general. For instance, in dimension N = 1, it follows from [12, Theorem 2]
that, if

Da := (−a− r,−a) ∪ (a, a+ r)

with a given r ∈ (0, 2R1), then the solutions ua of (1.1) with initial conditions 1Da go to
extinction as t → +∞ for all a > 0 large enough, while λ(Da) = 2r > 2R1 = λ(BR1) if r
is chosen such that r > R1.

In order to quantify how a bounded non-negligible Borel set E deviates from the set of
balls having the same measure as E, we consider in this paper two different fragmentation
indices. We then list their main properties and compare them. For such a set E, we define

RE :=
(λ(E)

ωN

)1/N

=
( λ(E)

λ(B1)

)1/N

which is nothing but the radius of all equimeasurable balls. We then denote ρE the smallest
radius of a ball containing E up to a negligible set, which can also be expressed as

ρE = min
x∈RN

‖d(x, ·)‖L∞(E). (2.1)

Notice that

ρE ≥
diam(E)

2
(2.2)

for any N ≥ 1, with equality when N = 1, where

diam(E) := ‖ (x, y) 7→ |x− y| ‖L∞(E×E)

is the essential diameter of E. There is actually a unique xE such that E ⊂ BρE(xE) up
to a negligible set. Lastly,

RE ≤ ρE

and the equality holds if and only if E is a ball, up to a negligible set.

The fragmentation index δ1

The first considered fragmentation index of a bounded non-negligible Borel set E ⊂ RN is,
up to the multiplicative factor 1/2, the Fraenkel asymmetry. It is based on the L1 distance
between E and the equimeasurable balls:

δ1(E) := inf
B∈B, λ(B)=λ(E)

‖1B − 1E‖L1(RN )

2λ(E)
.
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Since ‖1B − 1E‖L1(RN ) = λ(B∆E) = 2λ(E)− 2λ(E ∩BRE(x)) = 2λ(E\BRE(x)) for every
ball B = BRE(x) (namely, such that λ(B) = λ(E)), it follows from the continuity of the
maps x 7→ λ(E\BRE(x)) and x 7→ λ(E ∩BRE(x)) in RN that

δ1(E) = min
x∈RN

λ(E\BRE(x))

λ(E)
= min

x∈RN

λ(E)− λ(E ∩BRE(x))

λ(E)

= 1− max
x∈RN

λ(E ∩BRE(x))

λ(E)
.

(2.3)

In particular,
0 ≤ δ1(E) < 1,

and δ(E) = 0 if and only if E is a ball, up to a negligible set. Furthermore, the constant 1
in the inequality δ1(E) < 1 is optimal: for instance, the non-negligible Borel sets

En :=
⋃

x∈ZN∩(0,n)N

B1/n2

(x
n

)
, n ≥ 1, (2.4)

which are all included into the cube (0, 1)N , are highly fragmented for the index δ1 as
n→ +∞, in the sense that

δ1(En)→ 1 as n→ +∞. (2.5)

Lastly, for any ν ∈ (0, 1), consider the non-negligible Borel sets

Fn :=
⋃

x∈ZN∩Bn

[x
n

+
(
− ν

2n
,
ν

2n

)N]
=

⋃
y∈(ZN/n)∩B1

[
y +

(
− ν

2n
,
ν

2n

)N]
, n ≥ 1, (2.6)

which are all included into the ball B1+ν
√
N/2. Actually, counting the number An of points

x ∈ ZN ∩ Bn corresponds to the N−dimensional extension of Gauss circle problem. It
is a difficult issue, but some estimates can be obtained when n is large. In particu-
lar, An = nN ωN + O(nN−1) as n → +∞, see [21, Chapter 4] for sharper estimates.
Thus, λ(Fn) = An (ν/n)N → νN ωN as n → +∞. The same arguments imply that
λ(Fn ∩Bν)→ ν2N ωN as n→ +∞, so that

δ1(Fn)→ 1− νN as n→ +∞.

The fragmentation index δH

The second considered fragmentation index of a bounded non-negligible Borel set E ⊂ RN

is based on the essential Hausdorff distance between E and the equimeasurable balls:

δH(E) := inf
B∈B, λ(B)=λ(E)

dH(E,B)

ρE +RE

.

From the continuity of the map x 7→ dH(E,BRE(x)) in RN , one can also write

δH(E) = min
x∈RN

dH(E,BRE(x))

ρE +RE

. (2.7)

Furthermore, for the unique xE ∈ RN such that E ⊂ BρE(xE) up to a negli-
gible set, one has ‖ dist(·, BRE(xE))‖L∞(E) ≤ ρE − RE < ρE + RE. Moreover,
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‖ dist(·, E)‖L∞(BRE (xE)) < ρE +RE (indeed, otherwise, since the map dist(·, E) is continu-

ous in RN , there would exist a point yE ∈ BRE(xE) such that dist(yE, E) ≥ ρE + RE,
hence E ⊂ RN \ BρE+RE(yE) up to a negligible set, and then E ⊂ RN \ BρE(xE)
up to a negligible set from the triangle inequality, a contradiction with the positivity
of λ(E) and the inclusion E ⊂ BρE(xE) up to a negligible set). Finally, the inequality
‖ dist(·, E)‖L∞(BRE (xE)) < ρE +RE has been proved, hence dH(E,BRE(xE)) < ρE +RE and

0 ≤ δH(E) < 1.

As for the index δ1, a bounded non-negligible Borel E satisfies δH(E) = 0 if and only if E
is a ball, up to a negligible set. Furthermore, the constant 1 in the inequality δH(E) < 1
is optimal: for instance, the sets En defined in (2.4) satisfy δH(En) → 1 as n → +∞.
Similarly, taking two points x 6= y in RN , the non-negligible Borel sets

Gn := B1/n(x) ∪B1/n(y), n ≥ 1, (2.8)

which are all included in the ball B|x−y|/2+1((x + y)/2), are highly fragmented for the
index δH as n→ +∞, in the sense that

δH(Gn)→ 1 as n→ +∞.

Observe on the other hand that these sets are not highly fragmented for the index δ1, since
δ1(Gn) → 1/2 as n → +∞. Lastly, for ν ∈ (0, 1), the sets Fn defined by (2.6) are such
that

δH(Fn)→ 1− ν
1 + ν

as n→ +∞.

In dimension N = 1, for a bounded non-negligible Borel set E, calling

mE := essinf E and ME := esssupE,

one has mE < ME ∈ R, xE = (mE + ME)/2, and diam(E) = ME −mE = 2ρE ≥ 2RE.
Moreover, ‖ dist(·, (x − RE, x + RE))‖L∞(E) ≥ ρE − RE for every x ∈ R, with equa-
lity if and only if x = xE, while ‖ dist(·, E)‖L∞(xE−RE ,xE+RE) ≤ ρE − RE (otherwise,
there would be yE ∈ [xE − RE, xE + RE] such that d := dist(yE, E) > ρE − RE

and E ⊂ (xE − ρE, xE + ρE) \ (yE − d, yE + d) up to a negligible set, a contradiction
with |yE − xE| ≤ RE and λ(E) = 2RE). Finally, dH(E, (x− RE, x + RE)) ≥ ρE − RE for
each x ∈ R, with equality if and only if x = xE, hence

δH(E) =
ρE −RE

ρE +RE

in dimension N = 1.

Furthermore, in any dimension N ≥ 1, (2.1) implies that ‖d(x, ·)‖L∞(E) ≥ ρE for any
x ∈ RN , hence dH(E,BRE(x)) ≥ ‖d(·, BRE(x))‖L∞(E) ≥ ρE −RE and

δH(E) ≥ ρE −RE

ρE +RE

in any dimension N ≥ 1, (2.9)

by (2.7). Notice that, unlike the case N = 1, the inequality (2.9) is in general strict in
dimensions N ≥ 2. For instance, with N ≥ 2, pick any a > 0 and consider the spherical
shell

E := B(aN+1)1/N \Ba.
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For this set, one has RE = 1, ρE = (aN + 1)1/N , and, since a > (aN + 1)1/N − 1 (because
N ≥ 2), it follows that

min
x∈RN

dH(E,B1(x)) = dH(E,B1) = a > (aN + 1)1/N − 1 = ρE −RE,

hence δH(E) = a/(ρE +RE) > (ρE −RE)/(ρE +RE).
An important consequence of (2.9) is that δH(E) → 1 if ρE/RE → +∞, as for

the sets En and Gn defined in (2.4) and (2.8), for which ρEn/REn ∼ n
√
N/2 and

ρGn/RGn ∼ n|x− y|/21+1/N as n→ +∞.

Some properties of these indices

Let us now list some further properties satisfied by the fragmentation indices δ1 and δH .
First of all, they are clearly invariant by rigid motion. They are also invariant by contrac-
tion or dilation, that is,

δ1(µE) = δ1(E) and δH(µE) = δH(E)

for every bounded non-negligible Borel set E and for every µ > 0.
Furthermore, the comparisons between δ1 and δH , respectively between 1−δ1 and 1−δH ,

are summarized in the following proposition. In short, weakly fragmented sets for the
index δH are also weakly fragmented for δ1, and highly fragmented sets for the index δ1

are also highly fragmented for δH , whereas the reverse comparisons are false.

Proposition 2.1. (i) There is a constant γ > 0 such that

0 ≤ δ1(E) ≤ γ δH(E) (2.10)

for every bounded non-negligible Borel set E. In particular, δ1(E)→ 0 as δH(E)→ 0.

(ii) On the other hand,
δH(E) 6→ 0 as δ1(E)→ 0.

(iii) There is a constant η > 0 such that

0 < 1− δH(E) ≤ η (1− δ1(E))1/N (2.11)

for every bounded non-negligible Borel set E. In particular, δH(E)→ 1 as δ1(E)→ 1.

(iv) On the other hand,
1− δ1(E) 6→ 0 as 1− δH(E)→ 0.

Part (iv) is immediate since the sets Gn defined in (2.8) are such that δH(Gn) → 1
as n → +∞ and δ1(Gn) → 1/2 6= 1 as n → +∞. For (ii), consider a point x ∈ RN

with |x| > 1 and the sets Hn := B1 ∪ B1/n(x) for n ≥ 1. There holds δ1(Hn) → 0
and δH(Hn) → (|x| − 1)/(|x| + 3) > 0 as n → +∞, yielding the desired conclusion. The
proofs of parts (i) and (iii) are not as immediate, and are done in Subsection 4.1.
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3 Influence of initial fragmentation on the large-time

behavior

Let us come back to the Cauchy problem (1.1) with initial conditions u0 = 1E as in (1.7),
where E ⊂ RN always stands for a bounded non-negligible Borel set and f is a bistable-
type function satisfying (1.2). Remember that 0 < u(t, x) < 1 for all (t, x) ∈ (0,+∞)×RN

for any such set E, and let us denote
I :=

{
E : u(t, ·)→ 1 as t→ +∞ locally uniformly in RN

}
,

E :=
{
E : u(t, ·)→ 0 as t→ +∞ uniformly in RN

}
,

T :=
{
E : ∃ a ∈ RN , u(t, ·)→ Φ(·+ a) as t→ +∞ uniformly in RN

}
,

where Φ : RN → (0, 1) is the unique radially symmetric stationary solution of (1.1) such
that Φ(x) → 0 as |x| → +∞. From the results of [33] recalled in Section 1, any bounded
non-negligible Borel set E belongs to I ∪ E ∪ T . The calligraphic letters I, E and T
respectively stand for invasion, extinction and threshold.

Our goal in this section is to determine sufficient conditions for E to belong to I
or E , and to compare them. Notice at once from the comparison principle that if E ⊂ F
and if F ∈ E (resp. if E ∈ I), then E ∈ E (resp. F ∈ I). Actually, for monotone
(for the inclusion) continuously increasing (for the Lebesgue measure) families of sets E,
these sets belong to either I ∪ E up to at most one threshold value, from [33], and this
is why we mainly focus on the conditions for which E ∈ I or E ∈ E . We however do
not consider here monotone families of sets E and we rather look for some conditions
involving the fragmentation indices δ1(E) and δH(E), for constant values of the Lebesgue
measure λ(E).

First of all, it turns out that the sets I and E are open for the topology generated
by the balls Br(E) defined in (1.5), as stated in the following proposition (whose proof is
given in Subsection 4.2).

Proposition 3.1. For every E ∈ I, there is r > 0 such that Br(E) ⊂ I, under the
notation (1.5). Similarly, for every E ∈ E, there is s > 0 such that Bs(E) ⊂ E.

Secondly, it is easy to see that

∃ ε > 0,
(
λ(E) ≤ ε

)
=⇒

(
E ∈ E

)
, (3.1)

and this implication is independent of the fragmentation indices δ1(E) and δH(E). Indeed,
calling

M ′ := max
[0,1]
|f ′| (3.2)

and ε := e−M
′
(4π)N/2θ/2 > 0, with θ ∈ (0, 1) as in (1.2), and assuming that λ(E) ≤ ε, one

has

0 < u(1, x) ≤ eM
′

(4π)N/2

ˆ
E

e−|x−y|
2/4dy ≤ eM

′
λ(E)

(4π)N/2
≤ θ

2

for all x ∈ RN from the maximum principle, hence ‖u(t, ·)‖L∞(RN ) → 0 as t → +∞ since
f(0) = 0 and f < 0 in (0, θ).

Thirdly, highly contracted sets of a given set lead to extinction, and highly dilated sets
of a given set lead to invasion, as stated in the following proposition.
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Proposition 3.2. For any bounded non-negligible Borel E ⊂ RN , there are some real
numbers 0 < µ

E
≤ µE such that® (

0 < µ < µ
E

)
=⇒

(
µE ∈ E

)
,(

µ > µE
)

=⇒
(
µE ∈ I

)
.

(3.3)

Furthermore, the sets
{
µ > 0 : µE ∈ E

}
and

{
µ > 0 : µE ∈ I

}
are open, and{

µ > 0 : µE ∈ T
}
6= ∅. (3.4)

As a matter of fact, (3.1) implies that µ
E

:= (ε/λ(E))1/N > 0 satisfies the first assertion

of (3.3). If E has a non-empty interior E̊, that is, if there are x0 ∈ RN and r > 0 such that
E ⊃ Br(x0), then µE ⊃ Bµr(µx0) and µE ∈ I as soon as µr > R1, with R1 > 0 as in (1.6),
from the comparison principle and the invariance of (1.1) with respect to translations. The
end of the proof of the second assertion of (3.3), with the remaining case E̊ = ∅, as well
as the last part of Proposition 3.2, are done in Subsection 4.2. Having in hand (1.6) and
Proposition 3.2, it is tempting to conjecture that, for any bounded non-negligible Borel
E ⊂ RN , the set {µ > 0 : µE ∈ T } would be a singleton, that is, µ

E
= µE if µ

E
and µE respectively denote the largest and the smallest real numbers satisfying (3.3). This
property is true if E is further assumed to be star-shaped with respect to a point, say x0,
as follows from [33], since then the initial condition 1µ(E−x0) are pointwise nondecreasing
with respect to µ > 0 and increasing in L1(RN), and since for each µ > 0 the sets µ(E−x0)
and µE belong to the same set E , T or I. The proof of the uniqueness of the element
of {µ > 0 : µE ∈ T } is however still open in the general case of sets E that are not
star-shaped.

All remaining results are concerned with the role of the fragmentation indices δ1(E)
and δH(E) on the membership of E in I or E . The first such result asserts that equimea-
surable and highly fragmented sets for the index δ1 belong to the extinction set E .

Proposition 3.3. For each given m > 0, there is εm > 0 such that any bounded Borel
set E satisfying λ(E) = m and δ1(E) ≥ 1− εm belongs to E.

Two comments are in order on this result, which is proved in Subsection 4.2. First of
all, the conclusion does not hold without the hypothesis that the sets have a given Lebesgue
measure m, because of Proposition 3.2 and the invariance of δ1 with respect to dilations.
More explicitly, for instance, the sets Rn2En, with n ≥ 2, En as in (2.4) and R > R1, all
belong to I from (1.6) and the comparison principle, whereas δ1(Rn2En) = δ1(En)→ 1 as
n→ +∞.

We also point out that a similar statement as Proposition 3.3 would be false if δ1

were replaced by δH . For instance, consider R > R1 and E ′n := BR ∪ B1(xn), with
R + 1 < |xn| → +∞ as n → +∞. Then, for every n ∈ N, one has λ(E ′n) = ωN(RN + 1)
and E ′n ∈ I from the comparison principle, whereas δH(E ′n)→ 1 as n→ +∞. On the other
hand, the extinction is nevertheless possible for highly fragmented sets for the index δH
with fixed Lebesgue measure, even if they are not highly fragmented for the index δ1. For
instance, for any r ∈ (0, 2R1), the sets Da := (−a − r,−a) ∪ (a, a + r), given in the first
paragraph of Section 2, with measure 2r, belong to E for all a > 0 large enough, while
δH(Da)→ 1 and δ1(Da)→ 1/2 as a→ +∞ (this follows from [12], and a similar property
holds immediately in any dimension N ≥ 1).

After dealing with highly fragmented sets, let us now consider weakly fragmented sets,
in the following proposition and an immediate corollary.
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Proposition 3.4. For each given m > λ(BR1) = ωNR
N
1 , with R1 given in (1.6), there is

ηm > 0 such that any bounded Borel set E satisfying λ(E) = m and δ1(E) ≤ ηm belongs
to I.

Proposition 3.4 is proved in Subsection 4.2. Together with Proposition 2.1 (i), the
following corollary immediately holds.

Corollary 3.5. For each given m > λ(BR1) = ωNR
N
1 , any bounded Borel set E satisfying

λ(E) = m and δH(E) ≤ ηm/γ belongs to I, where ηm > 0 is given in Proposition 3.4 and
γ > 0 in (2.10).

As for Proposition 3.3, the conclusions of Proposition 3.4 and Corollary 3.5 immediately
do not hold without the hypothesis that the sets have a given Lebesgue measure m. For
instance, the balls Br with 0 < r < R1 belong to E by (1.6), but nevertheless have
fragmentation indices δ1(Br) and δH(Br) equal to 0.

Finally, after the previous results about highly or weakly fragmented sets with given
Lebesgue measure, we investigate the following question: if two bounded Borel sets E1

and E2 have the same Lebesgue measure, is it possible to decide about their membership
of E or I according to the comparison of the values of δ1(E1) and δ1(E2), or δH(E1)
and δH(E2)? In other words, is there a kind of monotonicity of the large-time dynamics of
the solutions of (1.1) and (1.7) with respect to the fragmentation indices δ1 or δH of the
initial set E?

Actually, the answer to this question is easily seen to be false for the index δH . Let us
explain why in this paragraph. Corollary 3.5 says that, for a given m > λ(BR1), the weakly
fragmented bounded Borel sets E for the index δH (namely, δH(E) ≤ ηm/γ) with Lebesgue
measure equal to m belong to the invasion set I. Now, call R := (m/ωN)1/N > R1, pick
any e ∈ RN \ {0} and define the bounded Borel sets

On :=
n⋃
k=1

BR/n1/N (ke).

One has λ(On) = m for all n ∈ N large enough, and δ1(On) → 1 as n → +∞ (and also
δH(On)→ 1 as n→ +∞ by Proposition 2.1). Using Proposition 3.3, there is n0 ≥ 2 large
enough such that λ(On0) = m and On0 ∈ E . Pick now any R′ ∈ (R1, R) and call r′ > 0
such that ωNr

′N = m−ωNR′N . Choose any sequence (xp)p∈N in RN such that |xp| → +∞
as p→ +∞. The bounded Borel sets

Qp := BR′ ∪Br′(xp)

satisfy λ(Qp) = m for all p large enough, and they belong to I since they contain the
ball BR′ with R′ > R1. Furthermore, limp→+∞ δH(Qp) = 1 > δH(On0) > 0 (the inequality
δH(On0) > 0 holds since n0 ≥ 2 and thus On0 is not a ball up to a negligible set). Therefore,
there is p0 ∈ N large enough such that λ(Qp0) = m and δH(Qp0) > δH(On0) > 0, while
Qp0 ∈ I. As a conclusion, the sets BR, On0 and Qp0 are equimeasurable,

0 = δH(BR) < δH(On0) < δH(Qp0),

while
BR ∈ I, On0 ∈ E and Qp0 ∈ I.
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In other words, there is no monotonicity of the large-time dynamics of the solutions of (1.1)
and (1.7) with respect to δH(E) in the class of equimeasurable sets.

As far as the fragmentation index δ1 is concerned, the answer to the same monotonicity
question is not that clear. For a given m > λ(BR1), we know from Proposition 3.4 that
the weakly fragmented bounded Borel sets E for the index δ1 (namely, δ1(E) ≤ ηm) with
Lebesgue measure equal to m belong to the invasion set I, while the highly fragmented ones
(namely, δ1(E) ≥ 1 − εm) belong to the extinction set E , from Proposition 3.3. However,
what happens for intermediate values of δ1(E) is not as clear as with the fragmentation
index δH(E). The last main result of the paper actually shows that there is in general no
monotonicity of the large-time dynamics of the solutions of (1.1) and (1.7) with respect
to δ1(E) in the class of equimeasurable sets.

Theorem 3.6. There are some bounded non-negligible Borel sets E1 and E2 such that
λ(E1) = λ(E2), 0 < δ1(E2) < δ1(E1), while E1 ∈ I and E2 ∈ E.

With the notations of Theorem 3.6 and Proposition 3.3, callingm := λ(E1) = λ(E2) > 0,
one has 0 < δ1(E2) < δ1(E1) < 1 − εm. Consider now the sets En defined in (2.4) (for
n ≥ 3, to avoid the confusion with the above sets E1 and E2) and satisfying (2.5). There
is n0 ≥ 3 such that δ1(En0) ≥ 1 − εm. Call F := µEn0 , with µ = (m/λ(En0))

1/N > 0,
hence λ(F ) = m, δ1(F ) = δ1(En0) ≥ 1− εm and F ∈ E by Proposition 3.3. The bounded
non-negligible Borel sets E0, E1 and F are equimeasurable and satisfy

δ1(E2) < δ1(E1) < δ1(F ),

while
E2 ∈ E , E1 ∈ I, and F ∈ E .

Theorem 3.6, sustained by numerical simulations (see Figure 1), is proved in Sub-
section 4.3. We provide a proof based on some homogenization results, holding in any
dimension N ≥ 1. We also give another proof, holding in dimensions N ≥ 2, based on
completely different geometric arguments and the construction of suitable initial sets as
intersections of balls with cubes. The first proof, based on homogenization techniques, ap-
pears to highlight an intrinsically positive effect of fragmentation on invasibility, as shown
in Fig. 1. The second proof, which is more geometric, is instead based on the lack of the
δ1 index to capture certain types of fragmentation, rather than on an intrinsic effect of
fragmentation. Therefore, we believe that the arguments of the first proof, hence the non-
monotonicity of the large-time dynamics of the solutions of (1.1) and (1.7) with respect to
the fragmentation of E in the class of equimeasurable sets, should remain valid for a large
class of fragmentation indices (unlike the arguments of the second proof, which should no
longer hold for indices that capture the distance between the connected components of E
more finely, see Fig. 2 in Subsection 4.3). Other indices could be based, for example, on
the Wasserstein distance between the measures 1E and 1BRE (x).

4 Proofs of the main results

4.1 Comparisons between the indices δ1 and δH: proof of Propo-
sition 2.1

Proof of Proposition 2.1. As already underlined in Section 2 after the statement of Propo-
sition 2.1, only parts (i) and (iii) remain to be proved. For the proof of (i), one can restrict
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Figure 1: Evolution of the numerical solution u(t, x) of (1.1), with N = 1,
f(s) = s(1 − s)(s − θ), and θ = 0.4, starting with an initial condition u0(x) = 1E(x)

with (left) E = E1 := (−L/2, L/2) and (right) E = E2 :=
⋃
x∈Z∩[−k,k]

[
x
z

+
(
− α

2z
, α

2z

)]
.

The curves correspond to the solution for t = 0, t = 0.05 and for t ranging from 4 to
80 with a step size of 4. The gradient color goes from blue for the earliest times to
red for the latest times. In the left panel, λ(E1) = L = 4.55 and δ1(E1) = 0; in the
right panel α = 3/4, z = 2.16, k = 6, λ(E2) = 4.52 and δ1(E2) = 0.23. We observe
here that, though z is not that large and λ(E2) is even smaller than λ(E1), fragmen-
tation (right panel) improves invasion success. We also note that u(t, x) ≈ α1BR with
R = k/z + α/(2 z) when t � 1. The Matlab code used for the computations is available
at http://doi.org/10.17605/OSF.IO/ZM479.

without loss of generality to the class of bounded Borel sets E such that ρE = 1, since the
indices δ1 and δH are invariant by dilation or contraction of the sets. Consider any such
set E. Assume first that

δH(E) <
1

4
.

From (2.7) and 0 < RE ≤ ρE = 1, there is then a point yE ∈ RN such that

dH(E,BRE(yE)) = δH(E) (ρE +RE) ≤ 2δH(E) <
1

2
,

hence E ⊂ BRE+1/2(yE) up to a negligible set. It follows that RE + 1/2 ≥ ρE = 1, that is,
RE ≥ 1/2. On the other hand,

δ1(E) ≤ λ(E\BRE(yE))

λ(E)
≤ ωN(RE + dH(E,BRE(yE)))N − ωNRN

E

ωNRN
E

≤ (RE + 2δH(E))N −RN
E

RN
E

.

Since 1/2 ≤ RE ≤ RE + 2δH(E) ≤ 3/2, one infers from the mean value theorem that
δ1(E) ≤ 2NN(3/2)N−1 × (2δH(E)) = 4N3N−1δH(E).

If now δH(E) ≥ 1/4, then δ1(E) < 1 ≤ 4δH(E). Finally, δ1(E) ≤ 4N3N−1δH(E) for
every bounded non-negligible Borel set E, that is, (2.10) holds with γ := 4N3N−1 > 0.

For the proof of (iii), one can restrict without loss of generality to the class of bounded
Borel sets E such that RE =

√
N/2. Consider any such set E. Assume first that

0 < 1− δ1(E) <
1

6N
.

13

http://doi.org/10.17605/OSF.IO/ZM479


Then
1

2
×
( 1

(1− δ1(E))1/N
− 1
)
− 1 >

1

4
× 1

(1− δ1(E))1/N
>

3

2
,

and there is an integer mE ≥ 2 such that

1

4
× 1

(1− δ1(E))1/N
< mE <

1

2
×
( 1

(1− δ1(E))1/N
− 1
)
. (4.1)

Now, since any cube with sides of unit length is included into a ball of radius RE =
√
N/2,

one has in particular

max
k∈ZN

λ(E ∩ (k + (0, 1)N))

λ(E)
≤ max

x∈RN

λ(E ∩BRE(x))

λ(E)
= 1− δ1(E),

where the last equality follows from (2.3). On the other hand, since λ(E) > 0 and the
cubes k+ (0, 1)N cover RN up to a negligible set as k describes ZN , there is kE ∈ ZN such
that

0 < max
k∈ZN

λ(E ∩ (k + (0, 1)N)) = λ(E ∩ (kE + (0, 1)N)) ≤ (1− δ1(E))λ(E).

Thus,

λ
(
E ∩

⋃
k∈ZN , ‖k‖∞≤mE

(kE + k + (0, 1)N)
)
≤ (2mE + 1)N × (1− δ1(E))λ(E).

Since λ(E) > 0 and (2mE +1)N(1−δ1(E)) < 1 from the right inequality in (4.1), it follows
that

λ
(
E ∩

(
RN \

⋃
k∈ZN , ‖k‖∞≤mE

(kE + k + (0, 1)N)
))

> 0,

hence there is k′E ∈ ZN with ‖k′E‖∞ > mE (that is, ‖k′E‖∞ ≥ mE + 1) such that
λ(E ∩ (kE + k′E + (0, 1)N)) > 0. Remembering that λ(E ∩ (kE + (0, 1)N)) > 0, one
gets that diam(E) ≥ mE, hence

ρE ≥
diam(E)

2
≥ mE

2
≥ 1

8 (1− δ1(E))1/N
,

by using (2.2) and the left inequality in (4.1). Together with (2.9) and the normalization
RE =

√
N/2, one infers that

1− δH(E) ≤ 2RE

ρE +RE

≤ 2RE

ρE
≤ 8
√
N (1− δ1(E))1/N .

If now 1 − δ1(E) ≥ 1/6N , then 1 − δH(E) ≤ 1 ≤ 6 (1 − δ1(E))1/N . Finally,
1 − δH(E) ≤ 8

√
N (1 − δ1(E))1/N for every bounded non-negligible Borel set E, that

is, (2.11) holds with η := 8
√
N . The proof of Proposition 2.1 is thereby complete.
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4.2 Extinction vs. invasion for dilated and highly or weakly frag-
mented sets

This subsection is devoted to the proofs of Propositions 3.1-3.4 on the large-time dynamics
of solutions of (1.1) for close, dilated, highly fragmented, or weakly fragmented indicator
sets E in (1.7).

Proof of Proposition 3.1. Let us first consider E in I and let us show that F ∈ I for
any bounded Borel set F such that d1(E,F ) is small enough. Let uE and uF denote the
solutions of (1.1) with initial conditions 1E and 1F respectively. Pick any α ∈ (θ, 1)
with θ ∈ (0, 1) as in (1.2), remember the definition of Rα > 0 in (1.6), and pick
any R ∈ (Rα,+∞). As uE(t, ·) → 1 as t → +∞ locally uniformly in RN , there is T > 0
such that minBR uE(T, ·) > α. Since

‖uE(T, ·)− uF (T, ·)‖L∞(RN ) ≤
eM
′T

(4πT )N/2
× ‖1E − 1F‖L1(RN ) (4.2)

from the maximum principle, with M ′ = max[0,1] |f ′| as in (3.2), there is then r > 0
such that minBR uF (T, ·) ≥ α if d1(E,F ) = ‖1E − 1F‖L1(RN ) < r. Therefore, for every
F ∈ Br(E), there holds 1 ≥ uF (T, ·) ≥ α1BR in RN , hence uF (t, ·) → 1 as t → +∞
locally uniformly in RN , from the comparison principle and (1.6) again. In other
words, Br(E) ⊂ I.

Let us now assume that E ∈ E . Therefore, there is T > 0 such that 0 ≤ uE(T, ·) ≤ θ/3
in RN . From (4.2), there is then s > 0 such that uF (T, ·) ≤ θ/2 in RN for every bounded
Borel set F satisfying d1(E,F ) < s, and then the nonnegative function uF converges
to 0 as t → +∞ uniformly in RN , from (1.2) and the comparison principle. In other
words, Bs(E) ⊂ E .

Proof of Proposition 3.2. As already underlined in Section 3 after the statement of Propo-
sition 3.2, for the proof of (3.3), only the case of dilated sets µE with large µ and E̊ = ∅
remains to be dealt with. Let E be such a set. Since λ(E) > 0 and since

1

λ(Br(x))

ˆ
Br(x)

1E(y) dy → 1E(x) as r
>→ 0 for almost every x ∈ RN

by Lebesgue’s differentiation theorem, there is x0 ∈ RN such that λ(E∩Br(x0)) ∼ λ(Br(x0))

as r
>→ 0. Since (1.1) is invariant by translation, one can assume without loss of generality

that x0 = 0. Pick any R > R1, with R1 defined in (1.6) with α = 1 (hence, BR ∈ I). Since

λ(BR) ≥ λ(µE ∩BR) = µNλ(E ∩BR/µ) ∼
µ→+∞

µNλ(BR/µ) = λ(BR),

it follows that d1(BR, µE ∩ BR) → 0 as µ +∞. Therefore, µE ∩ BR ∈ I for all µ > 0
large enough, from Proposition 3.1. Finally, µE ∈ I for all µ > 0 large enough, from the
comparison principle.

Let us now turn to the proof of the openness of the sets {µ > 0 : µE ∈ E} and
{µ > 0 : µE ∈ I}. In the case when the bounded Borel set E ⊂ RN has a negligible
boundary for the N -dimensional Lebesgue measure λ, that is, if λ(∂E) = 0, then, for
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any µ0 > 0, λ(∂(µ0E)) = 0 and

d1(µE, µ0E) =

ˆ
RN
|1µE(x)− 1µ0E(x)| dx

=

ˆ
˚̄µ0E
|1µE(x)− 1µ0E(x)| dx+

ˆ
RN\µ0E

|1µE(x)− 1µ0E(x)| dx −→
µ→µ0

0

from Lebesgue’s dominated convergence theorem. Therefore, in this case, the openness of
the sets {µ > 0 : µE ∈ E} and {µ > 0 : µE ∈ I} follows from Proposition 3.1.

Consider now the case of a general bounded Borel set E ⊂ RN . Assume first that µ0 > 0
is such that

µ0E ∈ I.
For µ > 0, let uµ denote here the solution of (1.1) with initial condition 1µE. As in the
proof of Proposition 3.1, pick any α ∈ (θ, 1) and any R > R′ > Rα, with Rα > 0 as in (1.6).
By hypothesis, there holds uµ0(t, ·)→ 1 as t→ +∞ locally uniformly in RN . There is then
T > 0 such that minBR uµ0(T, ·) > α. On the other hand, for every µ > 0, the function

(t, x) 7→ vµ(t, x) := uµ

(µ2

µ2
0

t,
µ

µ0

x
)

ranges in [0, 1] and satisfies

∂vµ
∂t

= ∆vµ +
µ2

µ2
0

f(vµ), t > 0, x ∈ RN

with initial condition vµ(0, ·) = 1µ0E = uµ0(0, ·). Therefore, the function wµ := vµ − uµ0
vanishes at time t = 0 and satisfies

∂wµ
∂t
≤ ∆wµ + f(vµ)− f(uµ0) +M

∣∣∣µ2

µ2
0

− 1
∣∣∣ ≤ ∆wµ +M ′|wµ|+M

∣∣∣µ2

µ2
0

− 1
∣∣∣

in (0,+∞) × RN , with M := max[0,1] |f | and M ′ = max[0,1] |f ′|. It then follows from the
maximum principle that

wµ(t, x) ≤ M

M ′

∣∣∣µ2

µ2
0

− 1
∣∣∣× (eM ′t − 1

)
for all t ≥ 0 and x ∈ RN .

By arguing similarly with uµ0 − vµ, one gets the same bound from above for |vµ− uµ0 |. In
particular, at time t = T , by rewriting vµ in terms of uµ and changing x into (µ0/µ)x, one
infers that∣∣∣uµ(µ2

µ2
0

T, x
)
− uµ0

(
T,
µ0

µ
x
)∣∣∣ ≤ M

M ′

∣∣∣µ2

µ2
0

− 1
∣∣∣× (eM ′T − 1

)
for all x ∈ RN . (4.3)

As a consequence, remembering that minBR uµ0(T, ·) > α and that R > R′, there is
ε ∈ (0, µ0) such that, if |µ− µ0| ≤ ε, then

min
BR′

uµ

(µ2

µ2
0

T, ·
)
≥ α,

hence 1 ≥ uµ((µ2/µ2
0)T, ·) ≥ α1BR′ in RN . Since R′ > Rα, one concludes from (1.6)

and the maximum principle that uµ(t, ·) → 1 as t → +∞ locally uniformly in RN for
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each µ ∈ (µ0− ε, µ0 + ε), that is, µE ∈ I for any such µ. From the arbitrariness of µ0 such
that µ0E ∈ I, the openness of {µ > 0 : µE ∈ I} has been shown.

Let now µ0 > 0 be such that
µ0E ∈ E ,

and let T > 0 be such that 0 ≤ uµ0(T, ·) ≤ θ/3 in RN . The inequality (4.3), which holds
independently of the hypothesis µ0E ∈ E , provides the existence of ε ∈ (0, µ0) such that, if
|µ−µ0| ≤ ε, then uµ((µ2/µ2

0)T, ·) ≤ θ/2 in RN , hence uµ(t, ·)→ 0 as t→ +∞ uniformly in
RN , from (1.2) and the comparison principle. Finally, µE ∈ E for all µ ∈ (µ0 − ε, µ0 + ε),
and the set {µ > 0 : µE ∈ E} is open.

Lastly, property (3.4) immediately follows from (3.3) and the openness of the
sets {µ > 0 : µE ∈ E} and {µ > 0 : µE ∈ I}, together with the fact that µE ∈ E ∪ T ∪ I
for every µ > 0. The proof of Proposition 3.2 is thereby complete.

Proof of Proposition 3.3. Let m > 0 be given, define

s :=
1√
N
×
( m
ωN

)1/N

> 0,

and observe that any cube of measure (2s)N is included into a ball of measure m. Con-
sider now any bounded Borel set E with λ(E) = m, and let u be the solution of (1.1)
with initial condition (1.7). Formula (2.3) and the previous observations then imply
that λ(Q ∩ E) ≤ m (1 − δ1(E)) for every cube Q of measure (2s)N . Therefore, remem-
bering the definition M ′ = max[0,1] |f ′|, it follows from the comparison principle that, for
every x ∈ RN ,

0 ≤ u(1, x) ≤ eM
′

(4π)N/2
×
ˆ
E

e−|x−y|
2/4dy

=
eM
′

(4π)N/2
×
∑
k∈ZN

ˆ
E∩(x+2ks+(−s,s)N )

e−|x−y|
2/4dy

≤ eM
′

(4π)N/2
×m× (1− δ1(E))×

∑
k∈ZN

e−max(2‖k‖∞−1;0)2s2/4,

where the above two series converge. Since the right-hand side of the last inequality
does not depend on x, there is then εm > 0 such that 0 ≤ u(1, ·) ≤ θ/2 in RN as soon
as δ1(E) ≥ 1 − εm, hence u(t, ·) → 0 as t → +∞ uniformly in RN . In other words, every
bounded Borel set E such that λ(E) = m and δ1(E) ≥ 1− εm belongs to E .

Proof of Proposition 3.4. Fix any m > λ(BR1) = ωNR
N
1 . Define α = (θ + 1)/2 ∈ (θ, 1)

and R = Rα + 1, with θ ∈ (0, 1) and Rα given in (1.2) and (1.6). Let v denote the solution
of (1.1) with initial condition 1B

(m/ωN )1/N
. Since (m/ωN)1/N > R1 by assumption, it follows

from (1.6) that v(t, ·)→ 1 as t→ +∞ locally uniformly in RN , hence there is T > 0 such
that minBR v(T, ·) > α. Consider now any bounded Borel set E such that λ(E) = m and,
from (2.3), let zE ∈ RN be such that

‖1E − 1B
(m/ωN )1/N

(zE)‖L1(RN ) = 2λ(E \B(m/ωN )1/N (zE)) = 2λ(E)δ1(E) = 2mδ1(E).

As in (4.2), the solution uE of (1.1) with initial condition 1E satisfies

‖uE(T, ·)− v(T, · − zE)‖L∞(RN ) ≤
eM
′T

(4πT )N/2
× ‖1E − 1B

(m/ωN )1/N
(zE)‖L1(RN ),
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hence ‖uE(T, · + zE) − v(T, ·)‖L∞(RN ) ≤ 2eM
′T (4πT )−N/2m × δ1(E). Observing that α

and T only depend on f and m (and on the dimension N), and remembering
that minBR v(T, ·) > α, there is then ηm > 0 such that minBR uE(T, ·+ zE) ≥ α as soon as
δ1(E) ≤ ηm. For any such E, one then has uE(T, · + zE) ≥ α1BR , hence uE(t, ·) → 1 as
t→ +∞ locally uniformly in RN , by (1.6) and the definition R = Rα + 1. Therefore, any
bounded Borel set E such that λ(E) = m and δ1(E) ≤ ηm belongs to I.

4.3 Proof of Theorem 3.6

We provide two different proofs of Theorem 3.6. The first one holds in any dimension
N ≥ 1 and is based on homogenization techniques, and the constructed sets E1 and E2

have similarities with the sets Fn defined in (2.6). The alternate proof holds in dimensions
N ≥ 2, and the constructed sets involve cubes and their intersections with balls.

Proof of Theorem 3.6 in any dimension N ≥ 1. Consider any α ∈ (θ, 1), with θ ∈ (0, 1) as
in (1.2). Fix then some real numbers R and R′, close enough to Rα, such that

0 < R′ < Rα < R, α1/NR < R′, and 0 < αRN − αR′N < min
(RN

1

2N
, α2RN

)
, (4.4)

with Rα > 0 and R1 > 0 as in (1.6). Owing to the definition of Rα, the solution ṽ of (1.1)
with initial condition α1BR′ converges to 0 as t→ +∞ uniformly in RN , thus there is T > 0
such that ṽ(T, ·) ≤ θ/3 in RN . For β ∈ (α, 1], let ṽβ be the solution of (1.1) with initial
condition β 1BR′ . Since 0 ≤ ṽβ(T, ·) − ṽ(T, ·) ≤ eM

′T (4πT )−N/2‖β 1BR′ − α1BR′‖L1(RN )

from the maximum principle, with M ′ = max[0,1] |f ′| as in (3.2), one can choose β ∈ (α, 1),
close enough to α, so that 0 ≤ ṽβ(T, ·) ≤ θ/2 in RN , hence

ṽβ(t, ·)→ 0 as t→ +∞ uniformly in RN (4.5)

by (1.2) and the maximum principle. Even if it means decreasing β in (α, 1), one can also
assume without loss of generality that

0 < αRN − β R′N < min
(RN

1

2N
, α2RN

)
. (4.6)

Consider the following bounded Borel sets

Fn :=
⋃

z∈(ZN/n)∩BR

[
z +

(
−α

1/N

2n
,
α1/N

2n

)N]
and

Gn :=
⋃

z∈(ZN/n)∩BR′

[
z +

(
−β

1/N

2n
,
β1/N

2n

)N]
for n ≥ 1. The sets Fn and Gn are such that (see (2.6) and below)

lim
n→+∞

λ(Fn) = αωNR
N > β ωNR

′N = lim
n→+∞

λ(Gn) (4.7)

and
lim

n→+∞
δ1(Fn) = 1− α > 1− β = lim

n→+∞
δ1(Gn) > 0. (4.8)
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Together with (4.6), there is then n1 ∈ N such that

0 < λ(Gn) < λ(Fn) and λ(Fn)− λ(Gn) < min
(
ωN

RN
1

2N
, α2ωNR

N
)

(4.9)

for all n ≥ n1.
Let then un, vn, u and v = ṽβ be the solutions of (1.1) with respective initial conditions

1Fn , 1Gn , α1BR and β 1BR′ . Let similarly Un, Vn, U and V be the solutions of the heat
equation ∂z

∂t
= ∆z with respective initial conditions 1Fn , 1Gn , α1BR and β 1BR′ . We

point out that these 8 functions are nonnegative, and that un, vn, u and v range in [0, 1].
Since ‖α1BR − (α− ε)1BR−ε‖L1(RN ) → 0 as ε→ 0, and since u(t, ·)→ 1 as t→ +∞ locally
uniformly in RN by (1.6) (since R > Rα), it follows as in the proof of Proposition 3.1 that
there is ε1 ∈ (0, R) such that the solution uε1 of (1.1) with initial condition

uε10 := (α− ε1)1BR−ε1

converges to 1 as t→ +∞ locally uniformly in RN . Notice also that U(t, ·)→ α as t→ 0
locally uniformly in BR. As a consequence, there is t1 > 0 small enough such that

U(t1, ·) ≥
(
α− ε1

3

)
1BR−ε1 in RN .

Even if it means decreasing t1 > 0, one can assume without loss of generality
that (α − ε1/2)e−M

′t1 ≥ α − ε1. Now, owing to the definition of Fn, it follows by homo-
genization that

0 ≤ Un(t1, x) =
1

(4πt1)N/2

∑
z∈(ZN/n)∩BR

ˆ
z+(−α1/N/(2n), α1/N/(2n))N

e−|x−y|
2/(4t1) dy

−→
n→+∞

1

(4πt1)N/2

ˆ
BR

α e−|x−y|
2/(4t1) dy = U(t1, x)

uniformly with respect to x ∈ RN . Thus, there is n2 ≥ n1 such that

Un(t1, ·) ≥
(
α− ε1

2

)
1BR−ε1 in RN for all n ≥ n2.

Since 1 ≥ un(t1, ·) ≥ e−M
′t1Un(t1, ·) in RN from the maximum principle, one infers

that 1 ≥ un(t1, ·) ≥ (α − ε1)1BR−ε1 = uε10 in RN for all n ≥ n2, hence un(t, ·) → 1

as t→ +∞ locally uniformly in RN . In other words,

Fn ∈ I for all n ≥ n2. (4.10)

Consider now the solution v = ṽβ of (1.1) with initial condition β 1BR′ . By (4.5), there
is T ′ > 0 such that 0 ≤ v(T ′, ·) ≤ θ/3 in RN . For ε ∈ (0, 1 − β), let vε be the solution
of (1.1) with initial condition

vε0 := (β + ε)1BR′+ε + ε1RN\BR′+ε .

Since

0≤vε(T ′, x)−v(T ′, x)≤ eM
′T ′

(4πT ′)N/2

[ ˆ
BR′

ε e−|x−y|
2/(4T ′)dy +

ˆ
BR′+ε\BR′

(β+ε) e−|x−y|
2/(4T ′)dy

+

ˆ
RN\BR′+ε

ε e−|x−y|
2/(4T ′)dy

]
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for all x ∈ RN , one infers that vε(T ′, ·) → v(T ′, ·) uniformly in RN as ε → 0. Thus, there
is ε2 ∈ (0, 1 − β) such that 0 ≤ vε2(T ′, ·) ≤ θ/2 in RN , hence vε2(t, ·) → 0 as t → +∞
uniformly in RN . On the other hand, supBR′+ε2

v(t, ·)→ β and supRN\BR′+ε2
v(t, ·)→ 0 as

t → 0, while V (t, ·) ≤ eM
′tv(t, ·) in RN for all t ≥ 0, from the maximum principle. As a

consequence, there is t2 > 0 (independent of n) small enough such that

V (t2, ·) ≤
(
β +

ε2

3

)
1BR′+ε2

+
ε2

3
1RN\BR′+ε2

.

Even if it means decreasing t2 > 0, one can also assume without loss of generality
that (β + ε2/2)eM

′t2 ≤ β + ε2 and (ε2/2)eM
′t2 ≤ ε2. Now, owing to the definition of Gn,

there holds that Vn(t2, ·) → V (t2, ·) uniformly in RN as n → +∞ by homogenization, as
for Un(t1, ·) and U(t1, ·) above. Therefore, there is n3 ≥ n2 such that

Vn(t2, ·) ≤
(
β +

ε2

2

)
1BR′+ε2

+
ε2

2
1RN\BR′+ε2

in RN for all n ≥ n3.

As 0 ≤ vn(t2, ·) ≤ eM
′t2Vn(t2, ·) in RN from the maximum principle, one infers

that 0 ≤ vn(t2, ·) ≤ (β + ε2)1BR′+ε2 + ε21RN\BR′+ε2
= vε20 in RN for all n ≥ n3, hence

0 ≤ vn(t2 + t, ·) ≤ vε2(t, ·) in RN for all t ≥ 0 and n ≥ n3 (4.11)

by the maximum principle. In particular, vn(t, ·) → 0 as t → +∞ uniformly in RN , that
is, Gn ∈ E , for all n ≥ n3.

Remember (4.9) and define

0 < ρn :=
(λ(Fn)− λ(Gn)

ωN

)1/N

<
R1

2
(4.12)

for n ≥ n1. Consider finally a sequence of points (xn)n≥n1 in RN such that Bρn(xn)∩Gn = ∅
for every n ≥ n1, and |xn| → +∞ as n→ +∞. The bounded Borel sets

Hn := Gn ∪Bρn(xn)

satisfy
λ(Hn) = λ(Fn) > 0 for all n ≥ n1. (4.13)

Since ρn < R1/2, all the balls Bρn(xn) belong to E , by definition of R1.
For the Cauchy problem (1.1) with the initial condition 1Hn , the two components 1Gn

and 1Bρn (xn) act as almost independent initial conditions for n large enough and then Hn

will belong to E for every n large enough (as in the example of the sets Da given in
the first paragraph of Section 2). More precisely, to show this fact, fix first ρ > 0 such
that Gn ⊂ Bρ and ρn ≤ ρ for all n ≥ n1. Denote w, wn, and zn, the solutions of (1.1)
with initial conditions 1BR1/2

, 1Bρn (xn), and 1Hn , respectively. From (4.11)-(4.12) and
limt→+∞ ‖vε2(t, ·)‖L∞(RN ) = 0, together with the definition of R1, there is τ > 0 such that

0 ≤ vn(τ, ·) ≤ θ

3
and 0 ≤ wn(τ, ·) ≤ w(τ, · − xn) ≤ θ

3
in RN , for all n ≥ n3. (4.14)

Furthermore, since Hn = Gn ∪Bρn(xn), the maximum principle yields

0 ≤ vn(τ, x) ≤ zn(τ, x) ≤ vn(τ, x) +
eM
′τ

(4πτ)N/2

ˆ
Bρn (xn)

e−|x−y|
2/(4τ)dy

≤ vn(τ, x) +
eM
′τ

(4πτ)N/2

ˆ
Bρ

e−|x−xn−y|
2/(4τ)dy
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and

0 ≤ wn(τ, x) ≤ zn(τ, x) ≤ wn(τ, x) +
eM
′τ

(4πτ)N/2

ˆ
Gn

e−|x−y|
2/(4τ)dy

≤ vn(τ, x) +
eM
′τ

(4πτ)N/2

ˆ
Bρ

e−|x−y|
2/(4τ)dy

for all x ∈ RN and n ≥ n1. Let σ > 0 be such that

eM
′τ

(4πτ)N/2

ˆ
Bρ

e−|ξ−y|
2/(4τ)dy ≤ θ

6
for all |ξ| ≥ σ.

Together with (4.14), it follows that 0 ≤ zn(τ, x) ≤ θ/2 for all n ≥ n3 and for all x ∈ Rn

such that either |x− xn| ≥ σ or |x| ≥ σ. Since |xn| → +∞ as n→ +∞, there is n4 ≥ n3

such that 0 ≤ zn(τ, x) ≤ θ/2 for all n ≥ n4 and x ∈ RN , and then zn(t, ·)→ 0 as t→ +∞
uniformly in RN . In other words,

Hn ∈ E for all n ≥ n4. (4.15)

Let us finally estimate δ1(Hn) for large n. Since 0 < λ(Hn) = λ(Fn) → αωNR
N as

n→ +∞ by (4.7), one has

0 < RHn → α1/NR < R′ as n→ +∞, (4.16)

where the inequality α1/NR < R′ holds by (4.4). From this, Gn ⊂ Bρ, |xn| → +∞ and
ρn < R1/2, there is then n5 ≥ n4 such that, for every n ≥ n5 and y ∈ RN , one has either
Gn ∩BRHn

(y) = ∅ or Bρn(xn) ∩BRHn
(y) = ∅. Consequently,

max
y∈RN

λ
(
Hn ∩BRHn

(y)
)

= max
(

max
y∈RN

λ
(
Gn ∩BRHn

(y)
)
,max
y∈RN

λ
(
Bρn(xn) ∩BRHn

(y)
))

for all n ≥ n5. But λ(Bρn(xn)) = λ(Fn) − λ(Gn) < α2ωNR
N < αβωNR

N for all n ≥ n1

by (4.9), while λ(Gn ∩BRHn
)→ βωNαR

N as n→ +∞ by (4.16) and the definition of Gn.
Therefore, there is n6 ≥ n5 such that

max
y∈RN

λ
(
Hn ∩BRHn

(y)
)

= max
y∈RN

λ
(
Gn ∩BRHn

(y)
)

for all n ≥ n6, and then

lim
n→+∞

max
y∈RN

λ
(
Hn ∩BRHn

(y)
)

= lim
n→+∞

λ(Gn ∩BRHn
) = αβωNR

N .

Therefore,

δ1(Hn)→ 1− αβωNR
N

αωNRN
= 1− β as n→ +∞.

From (4.8), there is then n7 ≥ n6 such that

δ1(Fn) > δ1(Hn) > 0 for all n ≥ n7.

Together with (4.10), (4.13) and (4.15), one concludes that, for each n ≥ n7, the sets
E1 := Fn and E2 := Hn satisfy the desired properties of Theorem 3.6, completing its
proof.
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Alternate proof of Theorem 3.6 in dimensions N ≥ 2. We assume here that N ≥ 2. For
a > 0, let

Qa :=
(
− a

2
,
a

2

)N
be the cube of RN centered at the origin and with sides of length a. For the solutions of (1.1)
with the initial condition 1Qa , it follows from [33] that there is a unique threshold a∗ > 0
between extinction and invasion, that is,

Qa ∈ E if 0 < a < a∗, Qa∗ ∈ T , and Qa ∈ I if a > a∗. (4.17)

For a > 0 and r > 0, define
Ca,r = Qa ∩Br.

For each fixed a > 0, the family Ca,r is continuously increasing in L1(RN) with respect
to r ∈ (0, a

√
N/2], while, for each fixed r > 0, the family Ca,r is continuously increasing

in L1(RN) with respect to a ∈ (0, 2r]. Consider

a = a∗ + ε,

with ε > 0. For r ≥ a
√
N/2 = (a∗ + ε)

√
N/2, one has Ca,r = Qa, hence by (4.17) the

solution of (1.1) with initial condition 1Ca,r converges to 1 as t → +∞ locally uniformly
in RN . On the other hand, for r > 0 small enough, one has Ca,r = Br and extinction
occurs, that is, Ca,r ∈ E . Thus, by [33] again, there is a threshold value

r∗(ε) ∈
(

0,
a
√
N

2

)
=
(

0,
(a∗ + ε)

√
N

2

)
such that

Ca,r ∈ E if 0 < r < r∗(ε), Ca,r∗(ε) ∈ T , and Ca,r ∈ I if r > r∗(ε).

When ε → 0, we observe that r∗(ε) → a∗
√
N/2. Indeed, on the one hand,

r∗(ε) < (a∗ + ε)
√
N/2 for each ε > 0, hence lim supε→0, ε>0 r

∗(ε) ≤ a∗
√
N/2. On the

other hand, for each r ∈ (0, a∗
√
N/2), one has Ca∗,r ⊂ Qa∗ and λ(Qa∗ \ Ca∗,r) > 0,

hence Ca∗,r ∈ E by [33] and then Ca∗+ε,r ∈ E for all ε > 0 small enough by Proposition 3.1.
Finally, for each r ∈ (0, a∗

√
N/2), one has r < r∗(ε) for all ε > 0 small enough, hence

lim infε→0, ε>0 r
∗(ε) ≥ a∗

√
N/2, and therefore

lim
ε→0, ε>0

r∗(ε) =
a∗
√
N

2
. (4.18)

When ε > 0 is large enough, so that Qa∗+ε ⊃ BR1 with R1 > 0 as in (1.6), then r∗(ε) = R1.
As the family Ca∗+ε,r is nondecreasing with respect to ε > 0, the function ε 7→ r∗(ε) is
nonincreasing in (0,+∞). This map is also continuous in (0,+∞), with similar arguments
as above and by using Proposition 3.1 again. Notice also that ωN = λ(B1) > (2/

√
N)N

(because B1 ⊃ Q2/
√
N and λ(B1 \Q2/

√
N) > 0, the assumption N ≥ 2 is used here!). One

can then choose σ ∈ (1/ω
1/N
N ,
√
N/2) sufficiently close to

√
N/2 so that

0 < λ(Qa∗)− λ(Ca∗,σa∗) <
ωNa

∗N

2N
.
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Figure 2: The two sets E1 (in red) and E2 (in blue) have the same Lebesgue measure
λ(E1) = λ(E2). Invasion occurs for (1.1) with initial condition 1E1 but not with 1E2 . To
understand why 0 < δ1(E2) < δ1(E1) for all |x| large enough, observe that the value of

maxB∈B, λ(B)=λ(E1) λ(E1 ∩ B) corresponds in dimension N = 2 to the measure λ(E1 ∩ ‹B) of

the intersection between E1 and the disk ‹B inside the dashed circle. For |x| large enough, the

value of maxB∈B, λ(B)=λ(E2) λ(E2 ∩ B) simply corresponds to the measure of λ(E2 ∩ ‹B), and is

higher than λ(E1 ∩ ‹B) = maxB∈B, λ(B)=λ(E1) λ(E1 ∩ B), hence δ1(E2) < δ1(E1). The details are
provided below.

As 0 < σ <
√
N/2, it follows from (4.18) and the above continuity and monotonicity

properties of the map ε 7→ r∗(ε), that there is a unique ε∗ > 0 such that

r∗(ε∗) = σ (a∗ + ε∗).

Fix now β ∈ (0, 1) small enough so that

0 < λ(Qa∗+βε∗)− λ(Ca∗+βε∗,σ(a∗+βε∗)) <
ωNa

∗N

2N
, (4.19)

define

0 <
a∗ + βε∗

ω
1/N
N

< r := σ (a∗ + βε∗) <
(a∗ + βε∗)

√
N

2
(4.20)

and choose η ∈ (0, β) close enough to β so that

0 < λ(Qa∗+ηε∗)− λ(Ca∗+βε∗,r) <
ωNa

∗N

2N
, (4.21)

and
a∗ + βε∗

2
<
a∗ + ηε∗

ω
1/N
N

(4.22)

(such a choice is possible because of (4.19) and because ωN < 2N , due to the assumption
N ≥ 2). Define

E1 := Qa∗+ηε∗ and E2 := Ca∗+βε∗,r ∪Qx,

where Qx denotes the cube of measure λ(Qx) := λ(Qa∗+ηε∗)−λ(Ca∗+βε∗,r) > 0 and centered
at x with |x| large enough so that Ca∗+βε∗,r∩Qx = ∅. Let us check that the bounded Borel
sets E1 and E2 fulfill the desired conclusions of Theorem 3.6, provided |x| is large enough
(see Figure 2).
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First of all, by definition of a∗ in (4.17), invasion occurs for the solution of (1.1) with
the initial condition 1E1 , that is, E1 ∈ I. By definition of r∗(ε∗), extinction occurs for the
solution of (1.1) with the initial condition 1Ca∗+βε∗,r , as

r = σ (a∗ + βε∗) < σ (a∗ + ε∗) = r∗(ε∗) ≤ r∗(βε∗),

that is, Ca∗+βε∗,r ∈ E . Additionally,

0 < λ(Qx) = λ(Qa∗+ηε∗)− λ(Ca∗+βε∗,r) <
ωNa

∗N

2N
< a∗N (4.23)

by (4.21) and ωN < 2N . As a consequence, by definition of a∗ in (4.17) and the invariance
of (1.1) by translation, extinction occurs for the solutions of (1.1) with the initial condi-
tions 1Qx (that is, Qx ∈ E) for all |x| large enough. As for Hn in (4.15) in the first proof
of Theorem 3.6, for the Cauchy problem (1.1) with the initial condition 1E2 , extinction
occurs (that is, E2 ∈ E) for all |x| large enough.

Now, observe that λ(E1) = λ(E2) > 0 for all |x| large enough, and

δ1(E1) = 1− λ(Ca∗+ηε∗,RE)

λ(E1)
,

with
a∗ + βε∗

2
< RE :=

a∗ + ηε∗

ω
1/N
N

<
a∗ + βε∗

ω
1/N
N

, (4.24)

where the first inequality above holds because of (4.22). Lastly, for |x| large enough such
that Ca∗+βε∗,r ∩Qx = ∅, one has

λ(Qx) <
ωNa

∗N

2N
<
ωN(a∗ + βε∗)N

2N
(4.25)

by (4.23). On the other hand, RE < r by (4.20) and (4.24), and then

λ(Ca∗+βε∗,r ∩BRE) = λ(Ca∗+βε∗,RE) >
ωN(a∗ + βε∗)N

2N
(4.26)

since RE > (a∗ + βε∗)/2 by (4.24). For every |x| large enough, and for every y ∈ RN , one
has either Ca∗+βε∗,r ∩BRE(y) = ∅ or Qx ∩BRE(y) = ∅. Hence

max
y∈RN

λ
(
E2 ∩BRE(y)

)
= max

(
max
y∈RN

λ
(
Ca∗+βε∗,r ∩BRE(y)

)
,max
y∈RN

λ
(
Qx ∩BRE(y)

))
for all |x| large enough. Since λ(Qx) < ωN(a∗ + βε∗)N/2N < λ(Ca∗+βε∗,r ∩BRE) for all |x|
large enough by (4.25)-(4.26), one infers that

max
y∈RN

λ
(
E2 ∩BRE(y)

)
= max

y∈RN
λ
(
Ca∗+βε∗,r ∩BRE(y)

)
and then maxy∈RN λ

(
E2 ∩BRE(y)

)
= λ(Ca∗+βε∗,r ∩BRE) = λ(Ca∗+βε∗,RE). Therefore,

δ1(E2) = 1− λ(Ca∗+βε∗,RE)

λ(E1)
> 0

for all |x| large enough (notice that δ1(E2) > 0 because E2 is not a ball up to a
negligible set). Finally, since a∗ + ηε∗ < a∗ + βε∗ < 2RE by (4.24), it follows
that λ(Ca∗+ηε∗,RE) < λ(Ca∗+βε∗,RE), hence

0 < δ1(E2) < δ1(E1),

for all |x| large enough. The alternate proof of Theorem 3.6 in dimension N ≥ 2 is thereby
complete.
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[8] Y. Du and P. Poláčik. Locally uniform convergence to an equilibrium for nonlinear parabolic equations
on RN , Indiana Univ. Math. J. 64 (2015), 787–824.

[9] A. Ducrot. On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly
supported initial data, Nonlinearity 28 (2015), 1043–1076.

[10] P. C. Fife and J. B. McLeod. The approach of solutions of non-linear diffusion equations to traveling
front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335–361.

[11] R.A. Fisher. The advance of advantageous genes, Ann. Eugenics 7 (1937), 335–369.

[12] J. Garnier, L. Roques, and F. Hamel. Success rate of a biological invasion in terms of the spatial
distribution of the founding population, Bull. Math. Biol. 74 (2012), 453–473.
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