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WAVE PROPAGATION IN SHALLOW-WATER ACOUSTIC

RANDOM WAVEGUIDES∗

CHRISTOPHE GOMEZ†

Abstract. In shallow-water waveguides a propagating field can be decomposed in three kinds
of modes: the propagating modes, the radiating modes and the evanescent modes. In this paper we
consider the propagation of a wave in a randomly perturbed waveguide and we analyze the coupling
between these three kinds of modes using an asymptotic analysis based on a separation of scales
technique. Then, we derive the asymptotic form of the distribution of the mode amplitudes and the
coupled power equation for propagating modes. From this equation, we show that the total energy
carried by the propagating modes decreases exponentially with the size of the random section and
we give an expression of the decay rate. Moreover, we show that the mean propagating mode powers
converge to the solution of a diffusion equation in the limit of a large number of propagating modes.
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1. Introduction

Acoustic wave propagation in shallow-water waveguides has been studied for a
long time because of its numerous domains of applications. One of the most important
applications is submarine detection with active or passive sonars, but it can also
be used in underwater communication, mines or archaeological artifacts detection,
and to study the ocean’s structure or ocean biology. Shallow-waters are complicated
media because they have indices of refraction with spatial and time dependences.
However, the sound speed in water, which is about 1500 m/s, is sufficiently large
with respect to the motions of water masses to consider this medium as being time
independent. Moreover, the presence of spatial inhomogeneities in the water produces
a mode coupling which can induce significant effects over large propagation distances.

In shallow-water waveguides the transverse section can be represented as a semi-
infinite interval (see Figure 1.1) and then a wave field can be decomposed into three
kinds of modes: the propagating modes which propagate over long distances, the
evanescent modes which decrease exponentially with the propagation distance, and
the radiating modes representing modes which penetrate under the bottom of the
water. The main purpose of this paper is to analyze how the propagating mode
powers are affected by the radiating and evanescent modes. This analysis is carried
out using an asymptotic analysis based on a separation of scale technique, where
the wavelength and the correlation lengths of the inhomogeneities, which are of the
same order, are small compared to the propagation distance. Moreover, the relative
fluctuations of the medium parameters are small on the scale of the square root of
the wave length over the propagation distance. This is the interesting scaling regime
corresponding to propagating modes and where the coupling via the environment
gives a strong mode coupling. In the terminology of [7] this is the so-called weakly
heterogeneous regime.

Wave propagation in random waveguides with a bounded cross-section and Dirich-
let boundary conditions (see Figure 1.1) has been studied, for instance, in [7, chapter
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20] or [9]. In this case we have only two kinds of modes: the propagating and the
evanescent modes. In such a model an asymptotic analysis of the mode powers shows
total energy conservation and an equipartition of the energy carried by the propa-
gating modes. In [9] coupled power equations are derived under the assumption that
evanescent modes are negligible. In [8] the role of evanescent modes is studied in the
absence of radiating modes. In this paper we take into account the influence of the
radiating and the evanescent modes on the coupled power equations. In this case
we show a mode-dependent and frequency-dependent attenuation on the propagating
modes in Theorem 6.1, that is, the total energy carried by the propagating modes
decreases exponentially with the size of the random section and we give an expression
of the decay rate. Moreover, in the limit of a large number of propagating modes
N(ω)≫1, we show in Theorems 6.2 and 6.5 that the propagating mode powers con-
verge to the solution of a diffusion equation. All the results of this paper are also
valid for electromagnetic wave propagation in dielectric waveguides and optical fibers
[19, 20, 26, 27, 31].

The organization of this paper is as follows: in Section 2 we present the waveguide
model, and in Section 3 we present the mode decomposition for a monochromatic
wave associated to that model and studied in detail in [30]. In Section 4 we study
the mode coupling when the three kinds of modes are taken into account. In the
same spirit as in [7, Chapter 20], we derive the coupled mode equations, and we study
the energy flux for the propagating and the radiating modes and the influence of the
evanescent modes on the two other kinds of modes. In Section 5, under the forward
scattering approximation, we study the asymptotic form of the joint distribution of
the propagating and radiating mode amplitudes. We apply this result in Section 6 to
derive the coupled power equations for the propagating modes, which were already
obtained in [15] or [20] for instance. In this section we study the influence of the
radiating and evanescent modes on the mean propagating mode powers. We show that
the total energy carried by the propagating modes decreases exponentially with the
size of the random section and we give an expression of the decay rate. In other words,
the radiating modes induce a mode-dependent and frequency-dependent attenuation
on the propagating modes, which is why these modes are sometimes called dissipative
modes. Finally, under the assumption that nearest-neighbor coupling is the main
power transfer mechanism, we derive the continuum approximation to the coupled
power equation. More precisely, we show that the mean propagating mode powers
converge to the solution of a diffusion equation in the limit of a large number of
propagating modes. We can refer to [15, 20] for further references and discussions
about diffusion models. In that regime, we can also observe the exponential decay
behavior caused by the radiative loss.

2. Waveguide model

We consider a two-dimensional linear acoustic wave model. The conservation
equations of mass and linear momentum are given by

ρ(x,z)
∂u

∂t
+∇p=F,

1

K(x,z)

∂p

∂t
+∇.u=0,

(2.1)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the
medium, K is the bulk modulus, and the source is modeled by the forcing term
F(t,x,z). The third coordinate z represents the propagation axis along the waveguide.
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Fig. 1.1. Illustration of two kinds of waveguides. In (a) we show a shallow-water waveguide

model with an unbounded cross-section. In (b) we show a waveguide with a bounded cross-section.

Fig. 2.1. Illustration of the shallow-water waveguide model.

The transverse section of the waveguide is the semi-infinite interval [0,+∞), and
x∈ [0,+∞) represents the transverse coordinate. Let d>0, and assume that the
medium parameters are given by

1

K(x,z)
=





K̄−1
(
n2(x)+

√
ǫV (x,z)

)
, if x∈ [0,d], z∈ [0,L/ǫ],

K̄−1n2(x), if




x∈ [0,+∞), z∈ (−∞,0)∪(L/ǫ,+∞)
or
x∈ (d,+∞), z∈ (−∞,+∞).

ρ(x,z)= ρ̄ if x∈ [0,+∞), z∈R.

In this paper we consider the Pekeris waveguide model. This kind of model has been
studied for half a century [25], and in this model the index of refraction n(x) is given
by

n(x)=

{
n1>1, if x∈ [0,d),
1, if x∈ [d,+∞).

(2.2)

This profile can model an ocean with a constant sound speed. Such conditions
can be found during the winter in Earth’s mid latitudes and in water shallower than
about 30 meters [17, 13]. The Pekeris profile leads us to simplified algebra but it
underestimates the complexity of the medium. However, the analysis that we present
in this paper can be extended to more general profiles n(x) with general boundary
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conditions. In the Pekeris model that we consider n1 represents the index of refraction
of the ocean section [0,d], where d is the depth of the ocean, and we assume that the
index of refraction of the bottom of the ocean is equal to 1. This model can also
be used to study the propagation of electromagnetic waves in a dielectric slab or an
optical fiber with randomly perturbed index of refraction [19, 20, 27, 31].

We consider a source pointing in the z-direction, which is localized in the plane
z=LS :

F(t,x,z)=Ψ(t,x)δ(z−LS)ez. (2.3)

Ψ(t,x) represents the profile of the source and ez is the unit vector pointing in the
z-direction. LS<0 is the location of the source on the propagating axis.

The random process (V (x,z),x∈ [0,d],z≥0), which models the spatial inhomo-
geneities, is a continuous real-valued zero-mean stationary Gaussian field with a co-
variance function given by

E [V (x,z1)V (y,z2)]=γ0(x,y)e
−a|z1−z2|. (2.4)

Here a>0, and 1/a is the longitudinal correlation length of the random fluctuation.
Moreover, γ0 : [0,d]× [0,d]→R is a continuous function which is the kernel of a non-
negative operator. Using standard properties of Gaussian processes, we can state the
following results [1, 2]. Let

Fz =σ(V (x,s),x∈ [0,d],s≤ z)

be the σ-algebra generated by (V (x,s),x∈ [0,d],s≤ z). We have the Markov property
(
V (x,z+h),x∈ [0,d]

∣∣∣Fz

)
=
(
V (x,z+h),x∈ [0,d]

∣∣∣σ(V (x,z),x∈ [0,d])
)
,

where the equality holds in law, and this law is the one of a Gaussian field with mean

E
[
V (x,z+h)|Fz

]
= e−ahV (x,z)

and covariance γ0(x,y)
(
1−e−2ah

)
. Moreover, we shall use the following two proper-

ties [2]. First, ∀T >0, ∀K>0, and ∀µ>0,

lim
ǫ→0

P

(
ǫµ sup

z∈[0,T ]

sup
x∈[0,d]

∣∣∣V
(
x,
z

ǫ

)∣∣∣≥K
)
=0. (2.5)

Second, ∀n∈N∗ and ∀z≥0,

E

[
sup

x∈[0,d]

∣∣∣V
(
x,
z

ǫ

)∣∣∣
n
]
=E

[
sup

x∈[0,d]

|V (x,0)|n
]
<+∞. (2.6)

However, one can remark that the process V is unbounded. This fact implies that the
bulk modulus can take negative values. In order to avoid this situation, we can work
on the event

(
∀(x,z)∈ [0,d]× [0,L/ǫ], n1+

√
ǫV (x,z)>0

)
.

In fact, the property (2.5) implies

lim
ǫ→0

P

(
∃(x,z)∈ [0,d]× [0,L/ǫ] : n1+

√
ǫV (x,z)≤0

)

≤ lim
ǫ→0

P

(√
ǫ sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣V
(
x,
z

ǫ

)∣∣∣≥n1
)
=0.
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3. Wave propagation in a homogeneous waveguide

In this section, we assume that the medium parameters are given by

ρ(x,z)= ρ̄ and K(x,z)=
K̄

n2(x)
, ∀(x,z)∈ [0,+∞)×R.

From the conservation equations (2.1), we can derive the wave equation for the pres-
sure field,

∆p− 1

c(x)2
∂2p

∂t2
=∇.F, (3.1)

where c(x)= c/n(x) with c=
√

K̄
ρ̄ , and ∆=∂2x+∂

2
z .

In underwater acoustics the density of air is very small compared to the density
of water, and it is natural to use a pressure-release condition. The pressure is very
weak outside the waveguide, and by continuity the pressure is zero at the free surface
x=0. This consideration leads us to consider the Dirichlet boundary conditions

p(t,0,z)=0 ∀(t,z)∈ [0,+∞)×R.

Throughout this paper we consider linear models of propagation. Therefore, the
pressure p(t,x,z) can be expressed as the superposition of monochromatic waves by
taking its Fourier transform. Here, the Fourier transform and the inverse Fourier
transform, with respect to time, are defined by

f̂(ω)=

∫
f(t)eiωtdt, f(t)=

1

2π

∫
f̂(ω)e−iωtdω.

In the half-space z>LS (resp., z<LS), taking the Fourier transform in (3.1), we
see that p̂(ω,x,z) satisfies the time-harmonic wave equation without source term,

∂2z p̂(ω,x,z)+∂
2
xp̂(ω,x,z)+k

2(ω)n2(x)p̂(ω,x,z)=0, (3.2)

where k(ω)= ω
c is the wavenumber, and with Dirichlet boundary conditions p̂(ω,0,z)=

0 ∀z. The source term implies the following jump conditions for the pressure field
across the plane z=LS :

p̂(ω,x,L+
S )− p̂(ω,x,L−

S ) = Ψ̂(ω,x),
∂z p̂(ω,x,L

+
S )−∂z p̂(ω,x,L−

S ) = 0.
(3.3)

3.1. Spectral decomposition in unperturbed waveguides. This section
is devoted to the presentation of the spectral decomposition of the Pekeris operator
∂2x+k

2(ω)n2(x). The spectral analysis of this operator is carried out in [30]. In this
paper, we are interested in solutions of (3.2) such that

p̂(ω,.,.)1(LS ,+∞)(z)∈C0
(
(LS ,+∞),H1

0 (0,+∞)∩H2(0,+∞)
)
∩C2

(
(LS ,+∞),H

)
,

p̂(ω,.,.)1(−∞,LS)(z)∈C0
(
(−∞,LS),H

1
0 (0,+∞)∩H2(0,+∞)

)
∩C2

(
(−∞,LS),H

)
,

where H=L2(0,+∞). H is equipped with the inner product defined by

∀(h1,h2)∈H×H,
〈
h1,h2

〉
H
=

∫ +∞

0

h1(x)h2(x)dx.
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Consequently, in the half-space z>LS (resp., z<LS) we can consider (3.2) as the
operator-differential equation

d2

dz2
p̂(ω,.,z)+R(ω)

(
p̂(ω,.,z)

)
=0 (3.4)

in H, where R(ω) is an unbounded operator on H with domain

D(R(ω))=H1
0 (0,+∞)∩H2(0,+∞),

and defined by

R(ω)(y)=
d2

dx2
y+k2(ω)n2(x)y, ∀y∈D(R(ω)).

According to [30], R(ω) is a self-adjoint operator on the Hilbert space H, and its
spectrum is given by

Sp
(
R(ω)

)
=
(
−∞,k2(ω)

]
∪
{
β2
N(ω)(ω), . . . ,β

2
1(ω)

}
. (3.5)

More precisely, ∀j∈
{
1, . . . ,N(ω)

}
, the modal wavenumber βj(ω) is positive and

k2(ω)<β2
N(ω)(ω)< · · ·<β2

1(ω)<n
2
1k

2(ω).

Moreover, there exists a resolution of the identity Πω of R(ω) such that ∀y∈H and
∀r∈R,

Πω(r,+∞)(y)(x)=

N(ω)∑

j=1

〈
y,φj(ω,.)

〉
H
φj(ω,x)1(r,+∞)

(
βj(ω)

2
)

+

∫ k2(ω)

r

〈
y,φγ(ω,.)

〉
H
φγ(ω,x)dγ1(−∞,k2(ω))(r),

and ∀y∈D(R(ω)) and ∀r∈R,

Πω(r,+∞)(R(ω)(y))(x)=

N(ω)∑

j=1

βj(ω)
2
〈
y,φj(ω,.)

〉
H
φj(ω,x)1(r,+∞)

(
βj(ω)

2
)

+

∫ k2(ω)

r

γ
〈
y,φγ(ω,x)

〉
H
φγ(ω,x)dγ1(−∞,k2(ω))(r).

Let us describe these decompositions.
Discrete part of the decomposition

∀j∈
{
1, . . . ,N(ω)

}
, the jth eigenvector is given by [30]

φj(ω,x)=

{
Aj(ω)sin(σj(ω)x/d), if 0≤x≤d,

Aj(ω)sin(σj(ω))e
−ζj(ω) x−d

d , if d≤x, (3.6)

where

σj(ω)=d
√
n21k

2(ω)−β2
j (ω), ζj(ω)=d

√
β2
j (ω)−k2(ω),
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and

Aj(ω)=

√√√√ 2/d

1+
sin2(σj(ω))

ζj(ω) − sin(2σj(ω))
2σj(ω)

. (3.7)

According to [30], σ1(ω), . . . ,σN(ω)(ω) are the solutions on (0,n1k(ω)dθ) of the equa-
tion

tan(y)=− y√
(n1kdθ)2−y2

, (3.8)

such that 0<σ1(ω)< · · ·<σN(ω)(ω)<n1k(ω)dθ, and with θ=
√

1−1/n21. This last

equation admits exactly one solution over each interval of the form
(
π/2+(j−

1)π,π/2+jπ
)
for j∈{1, . . . ,N(ω)}, where

N(ω)=

[
n1k(ω)d

π
θ

]
,

and [·] stands for the integer part. From (3.8) we get the following results which are
used to show the main result of Section 6.2.

Lemma 3.1. Let α>1/3. We have as N(ω)→+∞

sup
j∈{1,...,N(ω)−[N(ω)α]−1}

|σj+1(ω)−σj(ω)−π|=O
(
N(ω)

1
2− 3

2α
)
.

sup
j∈{1,...,N(ω)−[N(ω)α]−2}

∣∣σj+2(ω)−2σj+1(ω)+σj(ω)right|=O
(
N(ω)1−3α

)
.

Let us note that, ∀η∈ [0,1[, we have

sup
j∈{1,...,N(ω)η}

|σj(ω)−jπ|=O(N(ω)η−1),

and

lim
N(ω)→+∞

sup
j∈{1,...,N(ω)η}

‖φj(ω,.)−φj(∞, .)‖H =0

with

φj(∞,x)=

{√
2
d sin(j

π
dx), if x∈ [0,d],

0, if x≥d.

This result means that in the limit of a large number of propagating modes the
low order propagating modes are very similar in shape to those of a perfect bounded
waveguide with pressure-release boundary conditions at x=0 and x=d (see Figure 1.1
(b)). Indeed, according to (3.6), in the limit of a large number of propagating modes,
the low order propagating modes have a small amplitude near the bottom. This
approximation does not hold anymore for high order propagating modes. However, the
results of Lemma 3.1 mean that for the high order propagating modes the distribution
of solutions of (3.8) approaches the distribution of the eigenvalues of the transverse
Laplacian associated to a perfect bounded waveguide with pressure-release boundary
conditions at x=0 and x=1.
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Continuous part of the decomposition

For γ∈ (−∞,k2(ω)), we have [30]

φγ(ω,x)={
Aγ(ω)sin(η(ω)x/d), if 0≤x≤d,

Aγ(ω)
(
sin(η(ω))cos

(
ξ(ω)x−d

d

)
+ η(ω)

ξ(ω) cos(η(ω))sin
(
ξ(ω)x−d

d

))
, if d≤x,

where

η(ω)=d
√
n21k

2(ω)−γ, ξ(ω)=d
√
k2(ω)−γ,

and

Aγ(ω)=

√
dξ(ω)

π
(
ξ2(ω)sin2(η(ω))+η2(ω)cos2(η(ω))

) . (3.9)

It is easy to check that the function γ 7→Aγ(ω) is continuous on
(
−∞,k2(ω)

)
and

Aγ(ω) ∼
γ→−∞

1√
π|γ|1/4 . (3.10)

We remark that φγ(ω,.) does not belong to H. Then
〈
y,φγ(ω,.)

〉
H

is not defined in
the classical way. In fact, we have

〈
y,φγ(ω,.)

〉
H
= lim

M→+∞

∫ M

0

y(x)φγ(ω,x)dx,

where the limit holds on L2
(
−∞,k2(ω)

)
. Moreover, we have, ∀y∈H,

‖y‖2H =‖Πω(−∞,+∞)(y)‖2H =

N(ω)∑

j=1

∣∣〈y,φj(ω,.)
〉
H

∣∣2+
∫ k2(ω)

−∞

∣∣〈y,φγ(ω,.)
〉
H

∣∣2dγ,

and therefore the map which assigns to every element of H the coefficients of its
spectral decomposition

Θω :H −→ Hω

y −→
((〈

y,φj(ω,.)
〉
H

)
j=1,...,N(ω)

,
(〈
y,φγ(ω,.)

〉
H

)
γ∈(−∞,k2(ω))

)

is an isometry from H onto Hω =CN(ω)×L2
(
−∞,k2(ω)

)
.

3.2. Modal decomposition. In this section we apply the spectral decompo-
sition introduced in Section 3.1 on a solution p̂(ω,x,z) of the equation (3.4). Conse-
quently, we get the modal decomposition for p̂(ω,x,z) in the half-space z>LS ,

p̂(ω,x,z)=

N(ω)∑

j=1

p̂j(ω,z)φj(ω,x)+

∫ k2(ω)

0

p̂γ(ω,z)φγ(ω,x)dγ+

∫ 0

−∞
p̂γ(ω,z)φγ(ω,x)dγ,

where

p̂j(ω,z)=Θω ◦Πω({j})(p̂(ω,.,z)) for j∈{1, . . . ,N(ω)},
(p̂γ(ω,z))γ∈(0,k2(ω))=Θω ◦Πω(0,k

2(ω))(p̂(ω,.,z)), and

(p̂γ(ω,z))γ∈(−∞,0)=Θω ◦Πω(−∞,0)(p̂(ω,.,z)).

(3.11)
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For j∈
{
1, . . . ,N(ω)

}
, Θω ◦Πω({j}) represents the projection onto the jth propagating

mode, and p̂j(ω,z) is the amplitude of the jth propagating mode. Θω ◦Πω(0,k
2(ω))

represents the projection onto the radiating modes, and p̂γ(ω,z) is the amplitude
of the γth radiating mode for almost every γ∈ (0,k2(ω)). Finally, Θω ◦Πω(−∞,0)
represents the projection onto the evanescent modes and p̂γ(ω,z) is the amplitude of
the γth evanescent mode for almost every γ∈ (−∞,0).

Consequently, p̂(ω,z) satisfies

d2

dz2
p̂j(ω,z)+β

2
j (ω)p̂j(ω,z)=0,

d2

dz2
p̂γ(ω,z)+γ p̂γ(ω,z)=0

in Hω. Therefore, the pressure field can be written as an expansion over the complete
set of modes

p̂(ω,x,z) =



N(ω)∑

j=1

âj,0(ω)√
βj(ω)

eiβj(ω)zφj(ω,x)+

∫ k2(ω)

0

âγ,0(ω)

γ1/4
ei

√
γzφγ(ω,x)dγ

+

∫ 0

−∞

ĉγ,0(ω)

|γ|1/4 e
−
√

|γ|zφγ(ω,x)dγ

]
1(LS ,+∞)(z)

+



N(ω)∑

j=1

b̂j,0(ω)√
βj(ω)

e−iβj(ω)zφj(ω,x)+

∫ k2(ω)

0

b̂γ,0(ω)

γ1/4
e−i

√
γzφγ(ω,x)dγ

+

∫ 0

−∞

d̂γ,0(ω)

|γ|1/4 e
√

|γ|zφγ(ω,x)dγ

]
1(−∞,LS)(z), (3.12)

under the assumption that
(
ĉγ,0(ω)e

−
√

|γ|LS/|γ|1/4
)
γ
and

(
d̂γ,0(ω)e

√
|γ|LS/|γ|1/4

)
γ

belong to the space L2(−∞,0), and with the radiation condition for the evanescent
modes

lim
z→+∞

∥∥Πω(−∞,0)
(
p̂(ω,.,z)

)∥∥2
H
=0.

This condition means that the energy carried by the evanescent modes decays as the
propagation distance becomes large. In the previous decomposition, âj,0(ω) (resp.,

b̂j,0(ω)) is the amplitude of the jth right-going (resp., left-going) mode propagating

in the right half-space z>LS (resp., left half-space z<LS), âγ,0(ω) (resp., b̂γ,0(ω))
is the amplitude of the γth right-going (resp., left-going) mode radiating in the right

half-space z>LS (resp., left half-space z<LS), and ĉγ,0(ω) (resp., d̂γ,0(ω)) is the
amplitude of the γth right-going (resp., left-going) evanescent mode in the right half-
space z>LS (resp., left half-space z<LS).

We assume that the profile Ψ(t,x) of the source term (2.3) is given, in the fre-
quency domain, by

Ψ̂(ω,x)= f̂(ω)



N(ω)∑

j=1

φj(ω,x0)φj(ω,x)+

∫

(−S,−ξ)∪(ξ,k2(ω))

φγ(ω,x0)φγ(ω,x)dγ


 ,

(3.13)
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where x0∈ (0,d). The bound S in the spectral decomposition of the source profile

was introduced to have Ψ̂(ω,.)∈H, and ξ was introduced for technical reasons as
discussed below. Note that S can be arbitrarily large and ξ can be arbitrarily small.
Therefore, the spatial profile in (3.13) is an approximation of a Dirac distribution at
x0, which models a point source at x0.

Applying Θω on (3.3) and using (3.12), we obtain

âj,0(ω)=−b̂j,0(ω)=
√
βj(ω)

2
f̂(ω)φj(ω,x0)e

−iβj(ω)LS ∀j∈
{
1, . . . ,N(ω)

}
,

âγ,0(ω)=−b̂γ,0(ω)=
{

γ1/4

2 f̂(ω)φγ(ω,x0)e
−i

√
γLS for almost every γ∈ (ξ,k2(ω)),

0 for almost every γ∈ (0,ξ),

ĉγ,0(ω)=−γ
1/4

2
f̂(ω)φγ(ω,x0)e

√
|γ|LS , d̂γ,0(ω)=

γ1/4

2
f̂(ω)φγ(ω,x0)e

−
√

|γ|LS

for almost every γ∈ (−S,−ξ), and

ĉγ,0(ω)= d̂γ,0(ω)=0

for almost every γ∈ (−∞,−S)∪(−ξ,0).
4. Mode coupling in random waveguides

In this section we study the expansion of p̂(ω,x,z) when a random section [0,L/ǫ]
is inserted between two homogeneous waveguides (see Figure 2.1). In this section the
medium parameters are given by

1

K(x,z)
=





K̄−1
(
n2(x)+

√
ǫV (x,z)

)
, if x∈ [0,d], z∈ [0,L/ǫ],

K̄−1n2(x), if





x∈ [0,+∞), z∈ (−∞,0)∪(L/ǫ,+∞),
or
x∈ (d,+∞), z∈ (−∞,+∞).

ρ(x,z)= ρ̄ if x∈ [0,+∞), z∈R,

where n(x) is the Pekeris profile defined by (2.2). However, the analysis that we
present can be extended to more general profiles n(x).

In the perturbed section, the pressure field can be decomposed using the resolution
of the identity Πω of the unperturbed waveguide:

p̂(ω,x,z)=

N(ω)∑

j=1

p̂j(ω,z)φj(ω,x)+

∫ k2(ω)

0

p̂γ(ω,z)φγ(ω,x)dγ+

∫ 0

−∞
p̂γ(ω,z)φγ(ω,x)dγ,

where p̂(ω,z)=Θω(p̂(ω,.,z)) as in (3.11). In what follows, we consider solutions of
the form

p̂(ω,x,z)=

N(ω)∑

j=1

p̂j(ω,z)φj(ω,x)+

∫

(−∞,−ξ)∪(ξ,k2(ω))

p̂γ(ω,z)φγ(ω,x)dγ.

According to (3.13) this assumption is tantamount to cancel the coupling to an ar-
bitrarily small band of modes (−ξ,ξ) (which are the quasi-stationary modes), that
is, Πω(−ξ,ξ)(V (.,z)p̂(ω,.,z))=0. This assumption leads us to simplified algebra in
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the proof of Theorem 5.4. In such a decomposition, the radiating and the evanescent
part are separated by the small band (−ξ,ξ) with ξ≪1. The goal is to isolate the
transition mode 0 between the radiating and the evanescent parts of the spectrum
Sp
(
R(ω)

)
given by (3.5). Moreover, we assume that ǫ≪ ξ and therefore that we have

two distinct scales. In this paper, we shall consider first the asymptotic when ǫ goes
to 0 and then the asymptotic when ξ goes to 0.

4.1. Coupled mode equations. In this section we give the coupled mode
equations, which describe the coupling mechanism between the amplitudes of the
three kinds of modes.

In the random section [0,L/ǫ] the pressure field p̂(ω,z) satisfies the following
coupled equations in Hω:

d2

dz2
p̂j(ω,z)+β

2
j (ω)p̂j(ω,z)+

√
ǫk2(ω)

N(ω)∑

l=1

Cω
jl(z)p̂l(ω,z)

+
√
ǫk2(ω)

∫

(−∞,−ξ)∪(ξ,k2(ω))

Cω
jγ′(z)p̂γ′(ω,z)dγ′=0,

d2

dz2
p̂γ(ω,z)+γ p̂γ(ω,z)+

√
ǫk2(ω)

N(ω)∑

l=1

Cω
γl(z)p̂l(ω,z)

+
√
ǫk2(ω)

∫

(−∞,−ξ)∪(ξ,k2(ω))

Cω
γγ′(z)p̂γ′(ω,z)dγ′=0,

(4.1)

where

Cω
jl(z)=

〈
φj(ω,.),φl(ω,.)V (.,z)

〉
H
=

∫ d

0

φj(ω,x)φl(ω,x)V (x,z)dx,

Cω
jγ(z)=Cγj(z)=

〈
φj(ω,.),φγ(ω,.)V (.,z)

〉
H
=

∫ d

0

φj(ω,x)φγ(ω,x)V (x,z)dx,

Cω
γγ′(z)=

〈
φγ(ω,.),φγ′(ω,.)V (.,z)

〉
H
=

∫ d

0

φγ(ω,x)φγ′(ω,x)V (x,z)dx.

(4.2)

We recall that p̂(ω,.,.)∈C0
(
(0,+∞),H1

0 (0,+∞)∩H2(0,+∞)
)
∩C2

(
(0,+∞),H

)
,

∫ −ξ

−∞
γ2|p̂γ(ω,z)|2dγ <+∞. (4.3)

In the previous coupled equation the coefficients Cω(z) represent the coupling between
the three kinds of modes, which are the propagating, radiating, and evanescent modes.

Next, we introduce the amplitudes of the generalized right- and left-going modes
â(ω,z) and b̂(ω,z), which are given by

p̂j(ω,z)=
1√
βj(ω)

(
âj(ω,z)e

iβj(ω)z+ b̂j(ω,z)e
−iβj(ω)z

)
,

d

dz
p̂j(ω,z)= i

√
βj(ω)

(
âj(ω,z)e

iβj(ω)z− b̂j(ω,z)e−iβj(ω)z
)
,

p̂γ(ω,z)=
1

γ1/4

(
âγ(ω,z)e

i
√
γz+ b̂γ(ω,z)e

−i
√
γz
)
,

d

dz
p̂γ(ω,z)= iγ

1/4
(
âγ(ω,z)e

i
√
γz− b̂γ(ω,z)e−i

√
γz
)
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∀j∈
{
1, . . . ,N(ω)

}
and almost every γ∈ (ξ,k2(ω)). Let

Hω
ξ =CN(ω)×L2(ξ,k2(ω)).

From (4.1), we obtain the coupled mode equation in Hω
ξ ×Hω

ξ ×L2(−∞,−ξ) for the

amplitudes
(
â(ω,z), b̂(ω,z), p̂(ω,z)

)
:

d

dz
âj(ω,z)=

√
ǫ
ik2(ω)

2

N(ω)∑

l=1

Cω
jl(z)√
βjβl

(
âl(ω,z)e

i(βl−βj)z+ b̂l(ω,z)e
−i(βl+βj)z

)

+
√
ǫ
ik2(ω)

2

∫ k2(ω)

ξ

Cω
jγ′(z)√
βj
√
γ′

(
âγ′(ω,z)ei(

√
γ′−βj)z+ b̂γ′(ω,z)e−i(

√
γ′+βj)z

)
dγ′

+
√
ǫ
ik2(ω)

2

∫ −ξ

−∞

Cω
jγ′(z)√
βj

p̂γ′(ω,z)dγ′e−iβjz, (4.4)

d

dz
âγ(ω,z)=

√
ǫ
ik2(ω)

2

N(ω)∑

l=1

Cω
γl(z)√√
γβl

(
âl(ω,z)e

i(βl−
√
γ)z+ b̂l(ω,z)e

−i(βl+
√
γ)z
)

+
√
ǫ
ik2(ω)

2

∫ k2(ω)

ξ

Cω
γγ′(z)

γ1/4γ′1/4

(
âγ′(ω,z)ei(

√
γ′−√

γ)z+ b̂γ′(ω,z)e−i(
√
γ′+

√
γ)z
)
dγ′

+
√
ǫ
ik2(ω)

2

∫ −ξ

−∞

Cω
γγ′(z)

γ1/4
p̂γ′(ω,z)dγ′e−iγz, (4.5)

d

dz
b̂j(ω,z)=−

√
ǫ
ik2(ω)

2

N(ω)∑

l=1

Cω
jl(z)√
βjβl

(
âl(ω,z)e

i(βl+βj)z+ b̂l(ω,z)e
−i(βl−βj)z

)

−
√
ǫ
ik2(ω)

2

∫ k2(ω)

ξ

Cω
jγ′(z)√
βj
√
γ′

(
âγ′(ω,z)ei(

√
γ′+βj)z+ b̂γ′(ω,z)e−i(

√
γ′−βj)z

)
dγ′

−
√
ǫ
ik2(ω)

2

∫ −ξ

−∞

Cω
jγ′(z)√
βj

p̂γ′(ω,z)dγ′e−iβjz, (4.6)

d

dz
b̂γ(ω,z)=−

√
ǫ
ik2(ω)

2

N(ω)∑

l=1

Cω
γl(z)√√
γβl

(
âl(ω,z)e

i(βl+
√
γ)z+ b̂l(ω,z)e

−i(βl−
√
γ)z
)

−
√
ǫ
ik2(ω)

2

∫ k2(ω)

ξ

Cω
γγ′(z)

γ1/4γ′1/4

(
âγ′(ω,z)ei(

√
γ′+

√
γ)z+ b̂γ′(ω,z)e−i(

√
γ′−√

γ)z
)
dγ′

−
√
ǫ
ik2(ω)

2

∫ −ξ

−∞

Cω
γγ′(z)

γ1/4
p̂γ′(ω,z)dγ′e−i

√
γz, (4.7)

d2

dz2
p̂γ(ω,z)+γ p̂γ(ω,z)+

√
ǫgγ(ω,z)=0, (4.8)
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where

gγ(ω,z)=k
2(ω)

N(ω)∑

l=1

Cω
γl(z)√
βl

(
âl(ω,z)e

iβlz+ b̂l(ω,z)e
−iβlz

)

+k2(ω)

∫ k2(ω)

ξ

Cω
γγ′(z)

γ′1/4

(
âγ′(ω,z)ei

√
γ′z+ b̂γ′(ω,z)e−i

√
γ′z
)
dγ′

+k2(ω)

∫ −ξ

−∞
Cω

γγ′(z)p̂γ′(ω,z)dγ′. (4.9)

Let us note that in absence of random perturbations, the amplitudes â(ω,z) and

b̂(ω,z) are constant.

We assume that a pulse is emitted at the source plane LS<0 and propagates
toward the randomly perturbed slab [0,L/ǫ]. Using the previous section, the form of
this incident field at z=0 is given by

p̂(ω,x,0)=

N(ω)∑

j=1

âj,0(ω)√
βj(ω)

φj(ω,x)+

∫ k2(ω)

ξ

âγ,0(ω)

γ1/4
φγ(ω,x)dγ

+

∫ −ξ

−S

ĉγ,0(ω)

|γ|1/4 φγ(ω,x)dγ. (4.10)

Consequently, by the continuity of the pressure field across the interfaces z=0 and
z=L/ǫ, the coupled mode system is complemented with the boundary conditions

â(ω,0)= â0(ω) and b̂

(
ω,
L

ǫ

)
=0

in Hω
ξ . For j∈

{
1, . . . ,N(ω)

}
, âj,0(ω) represents the initial amplitude of the jth prop-

agating mode, and for γ∈ (ξ,k2(ω)), âγ,0(ω) represents the initial amplitude of the
γth radiating mode at z=0. Moreover, for γ∈ (−S,−ξ), ĉγ,0(ω) represents the initial
amplitude of the γth evanescent mode at z=0. The second condition implies that no
wave comes from the right (homogeneous) section of the waveguide.

4.2. Energy flux for the propagating and radiating modes. In this
section we study the energy flux for the propagating and radiating modes, and the
influence of the evanescent modes on this flux.

We begin this section by recalling the radiation condition for the evanescent modes

lim
z→+∞

∥∥Πω(−∞,−ξ)
(
p̂(ω,.,z)

)∥∥2
H
=0.

This condition means, in the homogeneous right half-space, that the energy carried
by the evanescent modes decay as the propagation distance becomes large. From the
radiation condition and (4.8), we obtain, for almost every γ∈ (−∞,−ξ),

p̂γ(ω,z)=

√
ǫ

2
√

|γ|

∫ z∧L/ǫ

0

gγ(ω,u)e
√

|γ|(u−z)du+

√
ǫ

2
√

|γ|

∫ L/ǫ

z∧L/ǫ

gγ(ω,u)e
√

|γ|(z−u)du

+φγ(ω,x0)e
−
√

|γ|(z−LS)1(−S,−ξ)(γ) (4.11)
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∀z∈ [0,+∞). According to (3.12), the relation (4.11) can be viewed as a perturbation
of the form of the evanescent mode without a random perturbation. Using the same
arguments as in [8] and [7, Chapter 20], we obtain, ∀z∈ [0,L/ǫ],

‖â(ω,z)‖2Hω
ξ
−‖b̂(ω,z)‖2Hω

ξ
=‖â0(ω)‖2Hω

ξ
−‖b̂0(ω)‖2Hω

ξ
− ǫ

2

∫ −ξ

−∞

Gγ(ω,z)√
|γ|

dγ

−
√
ǫ

∫ −ξ

−S

φγ(ω,x0)e
√

|γ|LS

∫ z

0

Im
(
gγ(ω,u)

)
e−

√
|γ|ududγ,

(4.12)

where

Gγ(ω,z)=

∫ z

0

∫ L/ǫ

z

Im
(
gγ(ω,u)gγ(ω,v)

)
e
√

|γ|(u−v)dvdu.

The last term on the right side of the previous relation has the factor φγ(ω,x0)e
√

|γ|LS

which is the form of the evanescent mode at z=0 without a random perturbation.
Therefore, if LS is far away from 0 and whatever the source (evanescent modes decay
exponentially from LS to 0), or if there is no excitation of modes γ∈ (−∞,−ξ) by the
source (that is when S= ξ), we can get the conservation of the global energy flux for
the propagating and radiating modes:

‖â(ω,L/ǫ)‖2Hω
ξ
+‖b̂(ω,0)‖2Hω

ξ
=‖â0(ω)‖2Hω

ξ
.

However, from (4.12) and even if there are no evanescent modes in (4.10), the local
energy flux is not conserved. The energy related to the evanescent modes is given by
the last two terms on the right side in (4.12). The energy carried by the evanescent
modes over the section [0,L/ǫ] is at most of order

√
ǫ sup
z∈[0,L]

sup
x∈[0,d]

∣∣∣V
(
x,
z

ǫ

)∣∣∣
2

sup
z∈[0,L/ǫ]

‖â(ω,z)‖Hω
ξ
+‖b̂(ω,z)‖Hω

ξ
+‖p̂(ω,z)‖L1(−∞,−ξ).

However, it is difficult to get good a priori estimates for

sup
z∈[0,L/ǫ]

‖â(ω,z)‖2Hω
ξ
+‖b̂(ω,z)‖2Hω

ξ
+‖p̂(ω,z)‖2L1(−∞,−ξ). (4.13)

For this reason, let us introduce the stopping “time”

Lǫ=inf

(
L>0, sup

z∈[0,L/ǫ]

‖â(ω,z)‖2Hω
ξ
+‖b̂(ω,z)‖2Hω

ξ
+‖p̂(ω,z)‖2L1(−∞,−ξ)≥

1√
ǫ

)
.

The role of this stopping “time” is to limit the size of the random section to en-
sure that the quantity (4.13) is not too large. Consequently, the energy carried
by the evanescent modes over the section [0,L/ǫ] for L≤Lǫ, is at most of order

O
(
ǫ1/4 supz∈[0,L/ǫ] supx∈[0,d]|V (x,z)|2

)
, and according to (2.5) the local energy flux

for the propagating and the radiating modes is conserved in the asymptotic ǫ→0.
More precisely, we can show that ∀η>0,

lim
ǫ→0

P

(
sup

z∈[0,L/ǫ]

∣∣∣‖â(ω,z)‖2Hω
ξ
−‖b̂(ω,z)‖2Hω

ξ
−‖â0(ω)‖2Hω

ξ
+‖b̂0(ω)‖2Hω

ξ

∣∣∣>η,L≤Lǫ

)
=0.

(4.14)
However, under the forward scattering approximation introduced in Section 4.4, the
condition L≤Lǫ is readily fulfilled in the limit ǫ→0, that is we have limǫ→0P(L

ǫ≤
L)=0.
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4.3. Influence of the evanescent modes on the propagating and radiat-

ing modes. In this section we analyze the influence of the evanescent modes on
the coupling mechanism between the propagating and the radiating modes.

First of all, we recall that Θω ◦Πω(−∞,−ξ)
(
p̂(ω,.,z)

)
represents the evanescent

part of the pressure field p̂(ω,.,z), where Θω and Πω are defined in Section 3.1. In
this section we consider the Banach space F =L1(−∞,−ξ) equipped with the norm

‖y‖F =

∫ −ξ

−∞
|yγ |dγ.

Substituting (4.9) into (4.11), we obtain

(Id−
√
ǫΦω)

(
Θω ◦Πω(−∞,−ξ)

(
p̂(ω,.,.)

))
=
√
ǫp̃(ω,.)+ p̃0(ω,.). (4.15)

This equation holds in the Banach space
(
C
(
[0,+∞),F

)
,‖.‖∞,F

)
, where

‖y‖∞,F =sup
z≥0

‖y(z)‖F , ∀y∈C
(
[0,+∞),F

)
.

In (4.15), Φω is a linear bounded operator, from
(
C
(
[0,+∞),F

)
,‖.‖∞,F

)
to itself,

defined by

Φω
γ (y)(z)=

k2(ω)

2
√

|γ|

∫ z∧L/ǫ

0

∫ −ξ

−∞
Cω

γγ′(u)yγ′(u)dγ′e
√

|γ|(u−z)du

+
k2(ω)

2
√

|γ|

∫ L/ǫ

z∧L/ǫ

∫ −ξ

−∞
Cω

γγ′(u)yγ′(u)dγ′e
√

|γ|(z−u)du

∀z∈ [0,+∞), and, for almost every γ∈ (−∞,−ξ),

p̃γ(ω,z)=
k2(ω)

2
√

|γ|

∫ z∧L/ǫ

0

[N(ω)∑

l=1

Cω
γl(u)√
βl

(
âl(ω,u)e

iβlu+ b̂l(ω,u)e
−iβlu

)

+

∫ k2(ω)

ξ

Cω
γγ′(u)

γ′1/4
(
âγ′(ω,u)ei

√
γ′u+ b̂γ′(ω,u)e−i

√
γ′u
)]
dγ′e

√
|γ|(u−z)du

+
k2(ω)

2
√
|γ|

∫ L/ǫ

z∧L/ǫ

[N(ω)∑

l=1

Cω
γl(u)√
βl

(
âl(ω,u)e

iβlu+ b̂l(ω,u)e
−iβlu

)

+

∫ k2(ω)

ξ

Cω
γγ′(u)

γ′1/4
(
âγ′(ω,u)ei

√
γ′u+ b̂γ′(ω,u)e−i

√
γ′u
)]
dγ′e

√
|γ|(z−u)du

∀z∈ [0,+∞). Finally, for almost every γ∈ (−∞,−ξ) and ∀z∈ [0,+∞),

p̃γ,0(ω,z)=φγ(ω,x0)e
−
√

|γ|(z−LS)1(−S,−ξ)(γ).

We remark that Θω ◦Πω(−∞,−ξ)
(
p̂(ω,.,.)

)
∈C
(
[0,+∞),F

)
by (4.3). Moreover,

p̃(ω,.)∈C
(
[0,+∞),F

)
since

∫ −ξ

−∞
Aγ(ω)
|γ| dγ <+∞, where Aγ(ω) is defined by (3.9) and

satisfies (3.10). We can check that the norm of the operator Φω is bounded by

‖Φω‖≤K(ξ,d) sup
z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)| .
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Consequently, using (2.5), limǫ→0P(Id−
√
ǫΦω is invertible)=1. Then, the condition

(Id−√
ǫΦω is invertible) is satisfied in the asymptotic ǫ→0. As a result, on the event

(Id−√
ǫΦω is invertible), and using (4.4), (4.5), (4.6), and (4.7), we have

Θω ◦Πω(−∞,−ξ)
(
p̂(ω,.,.)

)
=
√
ǫp̃2(ω,.)+ p̃0(ω,.)+

√
ǫΦω(p̃0(ω,.))

+O
(
ǫ sup
z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)|2 sup
z∈[0,L/ǫ]

‖â(ω,z)‖Hω
ξ
+‖b̂(ω,z)‖Hω

ξ
+‖p̂(ω,z)‖F

)

in C
(
[0,+∞),F

)
, where

p̃γ,2(ω,z)=
k2(ω)

2
√

|γ|

∫ z∧L/ǫ

0

[N(ω)∑

l=1

Cγl(u)√
βl

(
âl(ω,z∧L/ǫ)eiβlu+ b̂l(ω,z∧L/ǫ)e−iβlu

)

+

∫ k2(ω)

ξ

Cγγ′(u)

γ′1/4
(
âγ′(ω,z∧L/ǫ)ei

√
γ′u+ b̂γ′(ω,z∧L/ǫ)e−i

√
γ′u
)]
dγ′e

√
|γ|(u−z)du

+
k2(ω)

2
√

|γ|

∫ L/ǫ

z∧L/ǫ

[N(ω)∑

l=1

Cγl(u)√
βl

(
âl(ω,z∧L/ǫ)eiβlu+ b̂l(ω,z∧L/ǫ)e−iβlu

)

+

∫ k2(ω)

ξ

Cγγ′(u)

γ′1/4
(
âγ′(ω,z∧L/ǫ)ei

√
γ′u+ b̂γ′(ω,z∧L/ǫ)e−i

√
γ′u
)]
dγ′e

√
|γ|(z−u)du,

∀z∈ [0,+∞). Consequently, we can rewrite (4.4), (4.5), (4.6), and (4.7) in a closed
form in Hω

ξ ×Hω
ξ . ∀z∈ [0,L/ǫ], we obtain

d

dz
â(ω,z)=

√
ǫHaa(ω,z)

(
â(ω,z)

)
+
√
ǫHab(ω,z)

(
b̂(ω,z)

)
+
√
ǫRa,LS (ω,z)

+ǫGaa(ω,z)
(
â(ω,z)

)
+ǫGab(ω,z)

(
b̂(ω,z)

)
+ǫR̃

a,LS
(ω,z)

+O
(
ǫ3/2 sup

z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)|2 sup
z∈[0,L/ǫ]

‖â(ω,z)‖Hω
ξ
+‖b̂(ω,z)‖Hω

ξ
+‖p̂(ω,z)‖F

)
,

d

dz
b̂(ω,z)=

√
ǫHba(ω,z)

(
â(ω,z)

)
+
√
ǫHbb(ω,z)

(
b̂(ω,z)

)
+
√
ǫRb,LS (ω,z)

+ǫGba(ω,z)
(
â(ω,z)

)
+ǫGbb(ω,z)

(
b̂(ω,z)

)
+ǫR̃

b,LS
(ω,z)

+O
(
ǫ3/2 sup

z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)|2 sup
z∈[0,L/ǫ]

‖â(ω,z)‖Hω
ξ
+‖b̂(ω,z)‖Hω

ξ
+‖p̂(ω,z)‖F

)
.

Let us recall that these equations hold on the event
(
Id−√

ǫΦω is invertible
)

with limǫ→0P(Id−
√
ǫΦω is invertible)=1. In these equations, Haa(ω,z), Hab(ω,z),

Hba(ω,z), Hbb(ω,z), Gaa(ω,z), Gab(ω,z), Gba(ω,z) and Gbb(ω,z) are operators from
Hω

ξ to itself defined by:

Haa
j (ω,z)(y)=Hbb

j (ω,z)(y)=
ik2(ω)

2

[N(ω)∑

l=1

Cω
jl(z)√

βj(ω)βl(ω)
yle

i(βl(ω)−βj(ω))z

+

∫ k2(ω)

ξ

Cω
jγ′(z)√

βj(ω)
√
γ′
yγ′ei(

√
γ′−βj(ω))zdγ′

]
, (4.16)
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Haa
γ (ω,z)(y)=Hbb

γ (ω,z)(y)=
ik2(ω)

2

[N(ω)∑

l=1

Cω
γl(z)√√
γβl(ω)

yle
i(βl(ω)−√

γ)z

+

∫ k2(ω)

ξ

Cω
γγ′(z)

γ1/4γ′1/4
yγ′ei(

√
γ′−√

γ)zdγ′
]
, (4.17)

Hab
j (ω,z)(y)=Hba

j (ω,z)(y)=
ik2(ω)

2

[N(ω)∑

l=1

Cω
jl(z)√

βj(ω)βl(ω)
yle

−i(βl(ω)+βj(ω))z

+

∫ k2(ω)

ξ

Cω
jγ′(z)√

βj(ω)
√
γ′
yγ′e−i(

√
γ′+βj(ω))zdγ′

]
,(4.18)

Hab
γ (ω,z)(y)=Hba

γ (ω,z)(y)=
ik2(ω)

2

[N(ω)∑

l=1

Cω
γl(z)√√
γβl(ω)

yle
−i(βl(ω)+

√
γ)z

+

∫ k2(ω)

ξ

Cγγ′(z)

γ1/4γ′1/4
yγ′e−i(

√
γ′+

√
γ)zdγ′

]
, (4.19)

Gaa
j (ω,z)(y)=Gbb

j (ω,z)(y)

=
ik4(ω)

4

[N(ω)∑

l=1

∫ −ξ

−∞

[∫ z

0

Cω
jγ′(z)Cω

γ′l(u)√
βj(ω)|γ′|βl(ω)

eiβl(ω)u−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
jγ′(z)Cω

γ′l(u)√
βj(ω)|γ′|βl(ω)

eiβl(ω)u−
√

|γ′|(u−z)du
]
dγ′e−iβj(ω)zyl

]

+
ik4(ω)

4

[∫ k2(ω)

ξ

∫ −ξ

−∞

[∫ z

0

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

√
γ′′

ei
√
γ′′u−

√
|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

√
γ′′

ei
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ′′

]
,(4.20)

Gaa
γ (ω,z)(y)=Gbb

γ (ω,z)(y)

=
ik4(ω)

4

[N(ω)∑

l=1

∫ −ξ

−∞

[∫ z

0

Cω
γγ′(z)Cω

γ′l(u)√√
γ|γ′|βl(ω)

eiβl(ω)u−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
γγ′(z)Cω

γ′l(u)√√
γ|γ′|βl(ω)

eiβl(ω)u−
√

|γ′|(u−z)du
]
dγ′e−i

√
γzyl

]

+
ik4(ω)

4

[∫ k2(ω)

ξ

∫ −ξ

−∞

[∫ z

0

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|√γ′′

ei
√
γ′′u−

√
|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|√γ′′

ei
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ′′

]
, (4.21)
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Gab
j (ω,z)(y)=Gba

j (ω,z)(y)

=
ik4(ω)

4

[N(ω)∑

l=1

∫ −ξ

−∞

[∫ z

0

Cω
jγ′(z)Cω

γ′l(u)√
βj(ω)|γ′|βl(ω)

e−iβl(ω)u−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
jγ′(z)Cω

γ′l(u)√
βj(ω)|γ′|βl(ω)

e−iβl(ω)u−
√

|γ′|(u−z)du
]
dγ′e−iβj(ω)zyl

]

+
ik4(ω)

4

[∫ k2(ω)

ξ

∫ −ξ

−∞

[∫ z

0

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

√
γ′′

e−i
√
γ′′u−

√
|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

√
γ′′

e−i
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−iβj(ω)zyγ′′dγ′′

]
, (4.22)

Gab
γ (ω,z)(y)=Gba

γ (ω,z)(y)

=
ik4(ω)

4

[N(ω)∑

l=1

∫ −ξ

−∞

[∫ z

0

Cω
γγ′(z)Cω

γ′l(u)√√
γ|γ′|βl(ω)

e−iβl(ω)u−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
γγ′(z)Cω

γ′l(u)√√
γ|γ′|βl(ω)

e−iβl(ω)u−
√

|γ′|(u−z)du
]
dγ′e−i

√
γzyl

]

+
ik4(ω)

4

[∫ k2(ω)

ξ

∫ −ξ

−∞

[∫ z

0

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|√γ′′

e−i
√
γ′′u−

√
|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|√γ′′

e−i
√
γ′′u−

√
|γ′|(u−z)du

]
dγ′e−i

√
γzyγ′′dγ′′

]
. (4.23)

The operatorsHaa(ω,z) andHab(ω,z) represent the coupling between the propagating

and the radiating modes with themselves, while the operators Gaa(ω,z) and Gab(ω,z)
represent the coupling between the evanescent modes with the propagating and the

radiating modes. Moreover, Ra,LS (ω,z), R̃
a,LS

(ω,z), Rb,LS (ω,z), and R̃
b,LS

(ω,z)
represent the influence of the evanescent modes produced by the source term on the
propagating and the radiating modes. These terms are defined by

R
a,LS
j (ω,z)=R

b,LS
j (ω,z)=

ik2(ω)

2

∫ −ξ

−S

Cω
jγ′(z)

√

βj(ω)
φγ′(ω,x0)e

−
√

|γ′|(z−LS)
dγ

′
e
−iβj(ω)z

,(4.24)

R
a,LS
γ (ω,z)=R

b,LS
γ (ω,z)=

ik2(ω)

2

∫ −ξ

−S

Cω
γγ′(z)

|γ|1/4 φγ′(ω,x0)e
−
√

|γ′|(z−LS)
dγ

′
e
−i

√
γz
, (4.25)

R̃
a,LS

j (ω,z)= R̃
b,LS

j (ω,z)

=
ik4(ω)

4

∫ −ξ

−∞

∫ −ξ

−S

[∫ z

0

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

φγ′′(ω,x0)e
−
√

|γ′′|(u−LS)e−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
jγ′(z)Cω

γ′γ′′(u)√
βj(ω)|γ′|

φγ′′(ω,x0)e
−
√

|γ′′|(u−LS)e−
√

|γ′|(u−z)du

]
dγ′′dγ′e−iβj(ω)z,

(4.26)
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R̃
a,LS

γ (ω,z)= R̃
b,LS

γ (ω,z)

=
ik4(ω)

4

∫ −ξ

−∞

∫ −ξ

−S

[∫ z

0

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|

φγ′′(ω,x0)e
−
√

|γ′′|(u−LS)e−
√

|γ′|(z−u)du

+

∫ L/ǫ

z

Cω
γγ′(z)Cω

γ′γ′′(u)√√
γ|γ′|

φγ′′(ω,x0)e
−
√

|γ′′|(u−LS)e−
√

|γ′|(u−z)du

]
dγ′′dγ′e−i

√
γz.

(4.27)

4.4. Forward scattering approximation. In this section we introduce
the forward scattering approximation, which is widely used in the literature. In this
approximation the coupling between forward- and backward-propagating modes is
assumed to be negligible compared to the coupling between the forward-propagating
modes. We refer to [9, 11] for justifications on the validity of this approximation.

The justification of this approximation is as follows: the coupling between a right-
going propagating mode and a left-going propagating mode involves a coefficient of
the form

∫ +∞

0

E[Cω
jl(0)C

ω
jl(z)]cos

(
(βl(ω)+βj(ω))z

)
dz,

and the coupling between two right-going propagating modes or two left-going prop-
agating modes involves a coefficient of the form

∫ +∞

0

E[Cω
jl(0)C

ω
jl(z)]cos

(
(βl(ω)−βj(ω))z

)
dz,

∀(j,l)∈
{
1, . . . ,N(ω)

}2
. Therefore, if we assume that

∫ +∞

0

E[Cω
jl(0)C

ω
jl(z)]cos

(
(βl(ω)+βj(ω))z

)
dz=0, ∀(j,l)∈

{
1, . . . ,N(ω)

}2
,

then there is no coupling between right-going and left-going propagating modes, which
justifies the forward scattering approximation, but there is still coupling between
right-going propagating modes which will be described in Section 5.

In our context the operator R(ω), introduced in Section 3.1, has a continuous
spectrum and it becomes technically complex to apply a limit theorem for the rescaled
process (â(ω,z/ǫ), b̂(ω,z/ǫ)). The reason is the following: this process is not bounded
and the stopping times which are the first exit times of closed balls are not lower
semicontinuous for the topology of C([0,L],Hω

ξ,w), where Hω
ξ,w stands for Hω

ξ equipped

with the weak topology. In our context the continuous part (ξ,k2(ω)) of the spectrum
imposes us to use the norm ‖.‖Hω

ξ
to control some quantities. Moreover, according to

Theorem 5.4, in which the energy of the limit process is not conserved, it seems not
possible to show a limit theorem on C

(
[0,L],(Hω

ξ ,‖.‖Hω
ξ
)
)
in view of (4.14). In [7] and

[9] there is a finite number of propagating modes, so that the weak topology and the
strong topology are the same. In [11] the number of propagating modes increases as
ǫ goes to 0. However, in this last case, the problem can be corrected by considering
the first exit times of a closed ball related to the weak topology and by considering
the process in an appropriate finite-dimensional dual space.

In our context if we forget these technical problems, according to [7, 9] the forward
scattering approximation should be valid in the asymptotic ǫ→0 under the assump-
tion that the power spectral density of the process V , i.e. the Fourier transform of its
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z-autocorrelation function, possesses a cut-off wavenumber. In other words, we can
consider the case where

∫ +∞

0

E[Cω
jl(0)C

ω
jl(z)]cos

(
(βl(ω)+βj(ω))z

)
dz=0, ∀(j,l)∈

{
1, . . . ,N(ω)

}2
.

Let us remark that the continuous part (0,k2(ω)) of the spectrum, which corresponds
to the radiating modes, does not play any role in the previous assumption. The reason
is that the radiating part of the process plays no role in the coupling mechanism as
we can see in Theorems 5.4 and 5.5 below and therefore remains constant.

Finally, we shall therefore consider the so-called forward equation, that is we
consider the simplified equation on [0,L/ǫ],

d

dz
â(ω,z)=

√
ǫHaa(ω,z)(â(ω,z))+

√
ǫRa,LS (ω,z)

+ǫGaa(ω,z)(â(ω,z))+ǫR̃
a,LS

(ω,z)

+O
(
ǫ3/2 sup

z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)|2 sup
z∈[0,L/ǫ]

‖â(ω,z)‖Hω
ξ
+‖p̂(ω,z)‖F

)

in Hω
ξ .

5. Coupled mode processes

In this section, we study the asymptotic behavior, first as ǫ→0, and second as
ξ→0, of the statistical properties of the coupling mechanism in terms of a diffusion
process.

Let us define the rescaled process

âǫ(ω,z)= â
(
ω,
z

ǫ

)
, ∀z∈ [0,L].

This scaling corresponds to the size of the random section [0,L/ǫ]. This process
satisfies the rescaled coupled mode equations on [0,L]:

d

dz
âǫ(ω,z)=

1√
ǫ
Haa

(
ω,
z

ǫ

)
(âǫ(ω,z))+

1√
ǫ
Ra,LS

(
ω,
z

ǫ

)

+Gaa
(
ω,
z

ǫ

)
(âǫ(ω,z))+R̃

a,LS
(
ω,
z

ǫ

)

+O
(√

ǫ sup
z∈[0,L/ǫ]

sup
x∈[0,d]

|V (x,z)|2 sup
z∈[0,L]

‖âǫ(ω,z)‖Hω
ξ
+‖p̂(ω,z/ǫ)‖F

)
(5.1)

in Hω
ξ , with the initial condition âǫ(ω,0)= â0(ω). Using Gronwall’s inequality, we

have the following result [12].

Proposition 5.1. ∀L>0,

lim
ǫ→0

P(Lǫ≤L)=0,

where

Lǫ=inf
(
L>0, sup

z∈[0,L/ǫ]

‖â(ω,z)‖2Hω
ξ
+‖p̂(ω,z)‖2F ≥ 1√

ǫ

)
.

According to Section 4.2, we have, ∀η>0,

lim
ǫ→0

P

(
sup

z∈[0,L]

∣∣∣‖âǫ(ω,z)‖2Hω
ξ
−‖â0(ω)‖2Hω

ξ

∣∣∣>η
)
=0,
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that is, the local energy flux for the propagating and the radiating modes is conserved
in the asymptotic ǫ→0. As a result, the amplitude âǫ(ω,z) is asymptotically uniformly
bounded in the limit ǫ→0 on [0,L].

Let us introduce âǫ1(ω,.) — the unique solution of the differential equation on
[0,L].

d

dz
âǫ1(ω,z)=

1√
ǫ
Haa

(
ω,
z

ǫ

)
(âǫ1(ω,z))+Gaa

(
ω,
z

ǫ

)
(âǫ1(ω,z)) (5.2)

in Hω
ξ , with initial condition âǫ1(ω,0)= â0(ω). Using Proposition 5.1, the relation

between the solution of the full system (5.1) and the one of the simplified system
(5.2) is given by the following proposition [12].

Proposition 5.2.

∀η>0 and ∀µ>0, lim
ǫ→0

P

(
sup

z∈[µ,L]

‖âǫ(ω,z)− âǫ1(ω,z)‖Hω
ξ
>η

)
=0.

Proposition 5.2 means that the information about the evanescent part of the source
profile is lost in the asymptotic ǫ→0. In fact, the coupling mechanism described by
the system (5.1) implies that the information about the evanescent part of the source
profile is transmitted to the propagating modes through the coefficients Ra,LS (ω,z)

and R̃
a,LS

(ω,z) defined by (4.24), (4.25), (4.26), and (4.27). In these expressions we

have the term φγ′(ω,x)e−
√

|γ′|(z−LS), which comes from the right-hand side of (4.11)
and which is the form of evanescent modes without a random perturbation. This
term is responsible for the loss of information about the evanescent part of the source
profile because of its exponentially decreasing behavior.

Finally, we introduce the transfer operator Tξ,ǫ(ω,z) from Hω
ξ to itself, which is

the unique operator solution of the differential equation

d

dz
Tξ,ǫ(ω,z)=

1√
ǫ
Haa

(
ω,
z

ǫ

)
Tξ,ǫ(ω,z)+Gaa

(
ω,
z

ǫ

)
Tξ,ǫ(ω,z) (5.3)

with Tξ,ǫ(ω,0)= Id. Then,

∀z∈ [0,L], â1(ω,z)=Tξ,ǫ(ω,z)(â0(ω)),

and we get the following result.

Proposition 5.3.

∀η>0 and ∀µ>0, lim
ǫ→0

P

(
sup

z∈[µ,L]

‖âǫ(ω,z)−Tξ,ǫ(ω,z)(â0(ω))‖2Hω
ξ
>η

)
=0.

5.1. Limit theorem. This section presents the basic theoretical results of
this paper. In [9] and [15], the authors used the limit theorem stated in [24] since the
number of propagating modes was fixed. However, in our configuration, in addition
to the N(ω)-discrete propagating modes the wave field consists of a continuum of
radiating modes. The two following results are based on a diffusion-approximation
result for the solution of an ordinary differential equation with random coefficients.
This result is an extension of that stated in [24] to the case of processes with values
in a Hilbert space.
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Theorem 5.4. ∀L>0 and ∀y∈Hω
ξ =CN(ω)×L2(ξ,k2(ω)), the family(

Tξ,ǫ(ω,.)(y)
)
ǫ∈(0,1)

, solutions of the differential equation (5.3), converges in

distribution in C([0,L],Hω
ξ,w) as ǫ→0 to a limit denoted by Tξ(ω,.)(y). Here Hω

ξ,w

stands for the Hilbert space Hω
ξ equipped with the weak topology. This limit is the

unique diffusion process on Hω
ξ , starting from y, associated to the infinitesimal

generator

Lω
ξ =Lω

1 +Lω
2,ξ+Lω

3,ξ,

where

Lω
1 =

1

2

N(ω)∑

j,l=1
j 6=l

Γc
jl(ω)

(
TjTj∂Tl

∂Tl
+TlTl∂Tj

∂Tj
−TjTl∂Tj

∂Tl
−TjTl∂Tj

∂Tl

)

+
1

2

N(ω)∑

j,l=1

Γ1
jl(ω)

(
TjTl∂Tj

∂Tl
+TjTl∂Tj

∂Tl
−TjTl∂Tj

∂Tl
−TjTl∂Tj

∂Tl

)

+
1

2

N(ω)∑

j=1

(
Γc
jj(ω)−Γ1

jj(ω)
)(
Tj∂Tj

+Tj∂Tj

)
+
i

2

N(ω)∑

j=1

Γs
jj(ω)

(
Tj∂Tj

−Tj∂Tj

)
,

and

Lω
2,ξ =−1

2

N(ω)∑

j=1

(
Λc,ξ
j (ω)+ iΛs,ξ

j (ω)
)
Tj∂Tj

+
(
Λc,ξ
j (ω)− iΛs,ξ

j (ω)
)
Tj∂Tj

,

Lω
3,ξ = i

N(ω)∑

j=1

κξj(ω)
(
Tj∂Tj

−Tj∂Tj

)
.

Here, we have considered the classical complex derivative with the following nota-
tion: If v=v1+ iv2, then ∂v =

1
2 (∂v1

− i∂v2
) and ∂v =

1
2 (∂v1

+ i∂v2
). We have used the

following notations: ∀(j,l)∈
{
1, . . . ,N(ω)

}2
and j 6= l,

Γc
jl(ω)=

k4(ω)

2βj(ω)βl(ω)

∫ +∞

0

E
[
Cω

jl(0)C
ω
jl(z)

]
cos
(
(βl(ω)−βj(ω))z

)
dz,

Γc
jj(ω)=−

N(ω)∑

l=1
l 6=j

Γc
jl(ω),

Γs
jl(ω)=

k4(ω)

2βj(ω)βl(ω)

∫ +∞

0

E
[
Cω

jl(0)C
ω
jl(z)

]
sin
(
(βl(ω)−βj(ω))z

)
dz,

Γs
jj(ω)=−

N(ω)∑

l=1
l 6=j

Γs
jl(ω),

and ∀(j,l)∈
{
1, . . . ,N(ω)

}2
,
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Γ1
jl(ω)=

k4(ω)

2βj(ω)βl(ω)

∫ +∞

0

E
[
Cω

jj(0)C
ω
ll (z)

]
dz,

Λc,ξ
j (ω)=

∫ k2(ω)

ξ

k4(ω)

2
√
γ′βj(ω)

∫ +∞

0

E
[
Cω

jγ′(0)Cω
jγ′(z)

]
cos
(
(
√
γ′−βj(ω))z

)
dzdγ′,

Λs,ξ
j (ω)=

∫ k2(ω)

ξ

k4(ω)

2
√
γ′βj(ω)

∫ +∞

0

E
[
Cω

jγ′(0)Cω
jγ′(z)

]
sin
(
(
√
γ′−βj(ω))z

)
dzdγ′,

κξj(ω)=

∫ −ξ

−∞

k4(ω)

2βj(ω)
√

|γ′|

∫ +∞

0

E
[
Cω

jγ′(0)Cω
jγ′(z)

]
cos
(
βj(ω)z

)
e−

√
|γ′|zdzdγ′.

The coupling coefficients Cω(z) are defined by (4.2). We obtain the following result
in the asymptotic ξ→0.

Theorem 5.5. ∀L>0 and ∀y∈Hω
0 =CN(ω)×L2(0,k2(ω)), the family(

Tξ(ω,.)(y)
)
ξ∈(0,1)

converges in distribution in C([0,L],(Hω
0 ,‖.‖Hω

0
)) as ξ→0 to

a limit denoted by T0(ω,.)(y). This limit is the unique diffusion process on Hω
0 ,

starting from y, associated to the infinitesimal generator

Lω =Lω
1 +Lω

2 +Lω
3 ,

where

Lω
2 =−1

2

N(ω)∑

j=1

(
Λc
j(ω)+ iΛ

s
j(ω)

)
Tj∂Tj

+
(
Λc
j(ω)− iΛs

j(ω)
)
Tj∂Tj

,

Lω
3 = i

N(ω)∑

j=1

κj(ω)
(
Tj∂Tj

−Tj∂Tj

)
.

Here, we have, ∀j∈
{
1, . . . ,N(ω)

}
,

Λc
j(ω)= lim

ξ→0
Λc,ξ
j (ω), Λs

j(ω)= lim
ξ→0

Λs,ξ
j (ω), and κj(ω)= lim

ξ→0
κξj(ω).

Theorem 5.4 and 5.5 describe the asymptotic behavior, first as ǫ→0 and second
as ξ→0, of the statistical properties of the transfer operator Tξ,ǫ(ω,L) in terms of
a diffusion process. In the appendix we give the sketches of proofs of Theorem 5.4
and 5.5. They are based on a martingale approach using the perturbed-test-function
method. In a first step we show the tightness of the processes, and in a second step
we characterize all subsequence limits by means of a well-posed martingale problem
in a Hilbert space. However, the full proofs of Theorem 5.4 and 5.5 are given in [12].

The infinitesimal generator Lω is composed of three parts which represent different
behaviors on the diffusion process, and it involves only the N(ω)-discrete coordinates.
The first operator Lω

1 describes the coupling between the N(ω)-propagating modes.
This part is of the form of the infinitesimal generator obtained in [7, 9], and the total
energy is conserved. The second operator Lω

2 describes the coupling between the prop-
agating modes with the radiating modes. This part implies a mode-dependent and
frequency-dependent attenuation on the N(ω)-propagating modes that we study in
Section 6.1, and a mode-dependent and frequency-dependent phase modulation. The
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third operator Lω
3 describes the coupling between the propagating and the evanescent

modes, and implies a mode-dependent and frequency-dependent phase modulation.
The purely imaginary part of the operator Lω does not remove energy from the prop-
agating modes but gives an effective dispersion.

Moreover, because the infinitesimal generator Lω involves only the N(ω)-discrete
coordinate, the amplitude of the radiating modes remain constant on L2(0,k2(ω)) and
the statistical properties of the propagating and the radiating modes are independent.
From this decoupling it is not possible for the random fluctuations of the medium to
cause energy transfer form the radiating modes to the propagating modes. Conse-
quently, the propagating modes can lose energy into the radiating modes and get lost
into the bottom of the ocean as we will see in Section 6.1.

Let us remark that the convergence in Theorem 5.4 holds also on
C([0,L],(Hω

ξ ,‖.‖Hω
ξ
)) for the N(ω)-discrete propagating mode amplitudes.

5.2. Mean mode amplitudes. In this section we study the asymptotic
mean mode amplitudes. From Theorem 5.5, we get the following result about the
mean mode amplitudes.

Proposition 5.6. ∀y∈Hω
0 , ∀z∈ [0,L], and ∀j∈

{
1, . . . ,N(ω)

}
,

lim
ξ→0

lim
ǫ→0

E

[
T

ξ,ǫ
j (ω,z)(y)

]
=E

[
T0

j (ω,z)(y)
]

=exp

[(
Γc
jj(ω)−Γ1

jj(ω)−Λc
j(ω)

2

)
z+ i

(
Γs
jj(ω)−Λs

jj(ω)

2
+kj(ω)

)
z

]
yj(ω).

(5.4)

First, let us recall that the mean amplitude of the radiating part remains constant on
L2(0,k2(ω)). Second, ∀j∈

{
1, . . . ,N(ω)

}
, the coefficient (Γ1

jj(ω)+Λc
j(ω)−Γc

jj(ω))/2

is nonnegative. In fact, for (j,l)∈{1, . . . ,N(ω)}2 such that j 6= l, Γc
jl(ω) and Γ1

jj(ω) are
nonnegative because they are proportional to the power spectral density of Cω

jl and
Cω

jj at βl(ω)−βj(ω) and 0 wavenumbers. Therefore, −Γc
jj(ω) is also nonnegative.

Moreover, Λc
j(ω) is also nonnegative because it is proportional to the integral over

(0,k2(ω)) of the power spectral density of Cω
jγ at

√
γ−βj(ω) wavenumber.

The exponential decay rate for the mean jth-propagating mode is given by

∣∣∣E
[
T0

j (ω,L)(y)
]∣∣∣=

∣∣yj
∣∣exp

[
−
(
Γ1
jj(ω)−Γc

jj(ω)+Λc
j(ω)

2

)
L

]
,

which depends on the effective coupling between the propagating modes, and the
coupling between the propagating and the radiating modes. This exponential decay
corresponds to a loss of coherence of the transmitted field.

6. Coupled power equations

This section is devoted to the analysis of the asymptotic mean mode powers of the
propagating modes. More precisely, we study the asymptotic effects of the coupling
between the propagating modes and the radiating modes. Let

T l
j (ω,z)= lim

ξ→0
lim
ǫ→0

E

[∣∣Tξ,ǫ
j (ω,L)(yl)

∣∣2
]
=E

[∣∣T0
j (ω,z)(y

l)
∣∣2
]

(6.1)

be the asymptotic mean mode power of the jth propagating modes. T l
j (ω,L) is

the expected power of the jth propagating mode at the propagation distance z=L.
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Fig. 6.1. Illustration of the radiative loss in the shallow-water random waveguide model.

Here yl∈Hω
0 is defined by ylj = δjl and y

l
γ =0 for γ∈ (0,k2(ω)), and where δjl is the

Kronecker symbol. The initial condition yl means that an impulse equal to one
charges only the lth propagating mode. From Theorem 5.5, we have the coupled
power equations:

d

dz
T l
j (ω,z)=−Λc

j(ω)T l
j (ω,z)+

N(ω)∑

n=1
n6=j

Γc
nj(ω)

(
T l
n(ω,z)−T l

j (ω,z)
)
, (6.2)

with initial conditions T l
j (ω,0)= δjl. These equations describe the transfer of energy

between the propagating modes and Γc(ω) is the energy transport matrix. In our
context, we also have the coefficients Λc

j(ω) given by the coupling between the prop-
agating modes and the radiating modes. These coefficients, defined in Theorem 5.5,
are responsible for the radiative loss of energy in the ocean bottom (see Figure 6.1).
This loss of energy is described more precisely in the following section.

6.1. Exponential decay of the propagating modes energy. In this
section, we assume that at least one of the coefficients Λc(ω) is positive. With this
assumption, we show that the total energy carried by the propagating modes decays
exponentially with the size L of the random section. In the opposite situation, that is
when there is no radiative loss Λc(ω)=0, it has been shown in [7] and [9, Chapter 20]
that the energy of the propagating modes is conserved and for large L the asymptotic
distribution of the energy becomes uniform over the propagating modes.

Let us define

SN(ω)
+ =

{
X ∈RN(ω), Xj ≥0 ∀j∈{1, . . . ,N(ω)} and ‖X‖22,RN(ω) =

〈
X,X

〉
RN(ω) =1

}

with
〈
X,Y

〉
RN(ω) =

∑N(ω)
j=1 XjYj for (X,Y )∈ (RN(ω))2, and

Λc
d(ω)=diag

(
Λc
1(ω), . . . ,Λ

c
N(ω)(ω)

)
.
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Theorem 6.1. Let us assume that the energy transport matrix Γc(ω) is irreducible.

Then we have

lim
L→+∞

1

L
ln



N(ω)∑

j=1

T l
j (ω,L)


=−Λ∞(ω),

with

Λ∞(ω)= inf
X∈SN(ω)

+

〈(
−Γc(ω)+Λc

d(ω)
)
X,X

〉
RN(ω) , (6.3)

which is positive as soon as one of the coefficients Λc
j(ω) is positive.

This result means that the expected powers of the propagating modes decays
exponentially with the propagation distance, and the decay rate can be expressed in
terms of a variational formula over a finite-dimensional space.

Proof. The coupled power equations admit a probabilistic representation in

terms of a jump Markov process. If we denote by
(
Y

N(ω)
t

)
t≥0

a jump Markov process

with state space {1, . . . ,N(ω)} and intensity matrix Γc(ω), then we have, using the
Feynman-Kac formula,

T l
j (ω,z)=E

[
exp

(
−
∫ z

0

Λc

Y
N(ω)
s

(ω)ds

)
1(

Y
N(ω)
z =j

)

∣∣∣Y N(ω)
0 = l

]
. (6.4)

Moreover, we have supposed that Γc(ω) is irreducible. Then
(
Y

N(ω)
t

)
t≥0

in an er-

godic process with invariant measure µN(ω), which is the uniform distribution over
{1, . . . ,N(ω)}. That is, µN(ω)(j)=1/N(ω) ∀j∈{1, . . . ,N(ω)}. Let us consider the local
time

lT (j)=

∫ T

0

1(

Y
N(ω)
s =j

)ds

for j∈{1, . . . ,N(ω)} and T >0, which corresponds to the time spent by the process(
Y

N(ω)
t

)
t≥0

in the state j during the time interval [0,T ]. According to [5], we have a

large deviation principle for 1
T lT viewed as a random process with values in MN(ω)

1 ,
which is the set of probability measures on {1, . . . ,N(ω)}. More precisely, we have

lim
L→+∞

1

L
lnE

[
exp

(
−L

〈
Λc,

1

L
lL
〉
RN(ω)

)∣∣∣Y N(ω)
0 = l

]

= lim
L→+∞

1

L
lnE

[
exp

(
−
∫ L

0

Λc

Y
N(ω)
s

ds
)∣∣∣Y N(ω)

0 = l
]

=− inf
µ∈MN(ω)

1

(
I(µ)+

〈
Λc(ω),µ

〉)
,

with

I(µ)=
∥∥(−Γc(ω)

)1/2√
µ
∥∥2
2,RN(ω) =

〈(
−Γc(ω)

)√
µ,
√
µ
〉
RN(ω) .

Consequently,

lim
L→+∞

1

L
ln



N(ω)∑

j=1

T l
j (ω,L)


=−Λ∞(ω).
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Finally, using the compactness of SN(ω)
+ , Λ∞(ω) is positive because −Γc(ω) and Λc

d(ω)
are two nonnegative matrices, and 0 is a simple eigenvalue of −Γc(ω) by the Perron-
Frobenius theorem.

The expression (6.3) of Λ∞(ω) is not simple. However, we have the following
inequalities:

min
j∈{1,...,N(ω)}

Λc
j(ω) ≤ Λ∞(ω) ≤ Λ(ω)=

1

N(ω)

N(ω)∑

j=1

Λc
j(ω). (6.5)

To finish this section, let us investigate some special cases in which we can give a
simple expression of Λ∞(ω).

First, we assume that ∀j∈{1, . . . ,N(ω)}, Λc
j(ω)=Λ(ω)>0. In this case, using

(6.5),

Λ∞(ω)=Λ(ω).

This means that if all the coefficients which represent the radiation losses are equal,
the decay rate of the total energy of the propagating modes is given by this coefficient.

Second, we assume that the coupling matrix is small, that is, we replace Γc(ω)
by τΓc(ω) with τ≪1. If ∀j∈{1, . . . ,N(ω)} Λc

j(ω)>0, we have

lim
τ→0

Λτ
∞(ω)= min

j∈{1,...,N(ω)}
Λc
j(ω).

From (6.5), this is the smallest value that Λ∞(ω) can take. This result is consistent
with the fact that the coupling process on the transfer of energy between propagating
modes is negligible and the decay rate of the energy of a particular propagating
mode j is given by its own decay coefficient Λj(ω). Then, for the total energy of
propagating modes the decay rate is given by the minimum of those decay coefficients.
Consequently, if there exists Λc

j0
(ω)=0, we have

lim
τ→0

Λτ
∞(ω)=0.

The reason is that the energy of the j0th propagating mode stays approximately
constant with a weak transfer of energy, and

lim
τ→0

1

τ
Λτ
∞(ω)= inf

X∈Ṽ

〈(
−Γc(ω)

)
X,X

〉
RN(ω) >0,

where Ṽ =
{
X ∈SN(ω)

+ , suppX⊂{1, . . . ,N(ω)}\supp(Λc(ω))
}
, because

√
µN(ω) 6∈ Ṽ .

Now, we assume that the coupling matrix is large, that is we replace Γc(ω) by
1
τ Γ

c(ω) with τ≪1. In this case, we have

lim
τ→0

Λτ
∞(ω)=Λ(ω).

From (6.5), this is the largest value that Λ∞(ω) can take. The strong coupling pro-
duces a uniform distribution of energy over the propagating modes and the decay
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Fig. 6.2. Illustration of negligible radiation losses in the shallow-water random waveguide model.

rate becomes
〈
Λc(ω),µN(ω)

〉
RN(ω) =Λ(ω) for each mode. A more convenient way to

get this result is to use a probabilistic representation. In fact, we have

T l
j (ω,z)=E

[
exp

(
−
∫ z

0

Λc

Y
N(ω)

s/τ

(ω)

)
1(

Y
N(ω)
z =j

)

∣∣∣Y N(ω)
0 = l

]

=E

[
exp

(
−z τ

z

∫ z/τ

0

Λc

Y
N(ω)
s

(ω)

)
1(

Y
N(ω)

z/τ
=j

)

∣∣∣Y N(ω)
0 = l

]
,

where
(
Y

N(ω)
t

)
t≥0

is a jump Markov process with state space {1, . . . ,N(ω)} and in-

tensity matrix Γc(ω). Using the ergodic properties of
(
Y

N(ω)
t

)
t≥0

, we get that

lim
τ→0

T τ,l
j (ω,L)=

1

N(ω)
exp

(
−Λ(ω)L

)
.

Finally, if we assume that the radiation losses are negligible, that is we replace Λc(ω)
by τΛc(ω) with τ≪1, we have

lim
τ→0

Λτ
∞(ω)=0.

In fact, if the radiative loss is negligible, the coupling process becomes dominant, and
we can show that

∀L>0, sup
z∈[0,L]

‖T τ,l
j (ω,z)−T 0,l

j (ω,z)‖2,RN(ω) =O(τ),

where T 0,l(ω,.) satisfies (6.2) without the coefficient Λc(ω). In this situation

T 0,l
j (ω,L)=P

(
Y

N(ω)
L = j

∣∣∣Y N(ω)
0 = l

)
,

and the total energy is conserved (see Figure 6.2), and

lim
τ→0

1

τ
Λτ
∞(ω)=Λ(ω)>0.

As it was already observed in [9] the modal energy distribution converges as L→+∞
to a uniform distribution:

lim
L→+∞

T 0,l
j (ω,L)=

1

N(ω)
.
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6.2. Continuum approximation to coupled power equations. In this
section, under the assumption that the nearest-neighbor coupling introduced in Sec-
tion 6.2.1 is the main power transfer mechanism, we give an approximate solution
of the coupled power equations (6.2) in the limit of a large number of propagating
modes N(ω)≫1. Let us note that the limit of a large number of propagating modes
N(ω)≫1 corresponds to the regime ωd≫1. Next, we analyze the energy carried by
the propagating modes in this regime.

The coupled power equations can be approximated in the limit of a large number
of propagating modes N(ω)≫1 by a diffusion equation. This approximation has
already been obtained in [15] for instance, in which we can find further references
about this topic. We can also refer to [20] for more discussions on this approximation.
For an application of such a diffusion model to acoustic propagation in random sound
channels we refer to [21], and for applications to time reversal of waves we refer to
[11].

Using the form of the covariance function (2.4), we find

Γc
jl(ω)=

ak4(ω)Ij,l(ω)

2βj(ω)βl(ω)(a2+(βj(ω)−βl(ω))2)

and

Λc
j(ω)=

∫ k2(ω)

0

ak4(ω)Ij,γ(ω)

2βj(ω)
√
γ(a2+(βj(ω)−

√
γ)2)

dγ,

where

Ijl=
1

4
A2

jA
2
l

[
S
(
σj−σl,σj−σl

)
+S
(
σj+σl,σj+σl

)

−S
(
σj−σl,σj+σl

)
−S
(
σj+σl,σj−σl

)]
,

Ijγ =
1

4
A2

jA
2
γ

[
S
(
σj−η,σj−η

)
+S
(
σj+η,σj+η

)

−S
(
σj−η,σj+η

)
−S
(
σj+η,σj−η

)]
,

with S(v1,v2)=
∫ d

0

∫ d

0
γ0(x1,x2)cos

(
v1

d x1
)
cos
(
v2

d x2
)
dx1dx2, and where Aj(ω), Aγ(ω),

σj(ω), η(ω), φj(ω,x), and φγ(ω,x) are defined in Section 3.1.

6.2.1. Band-limiting idealization. In this section, we introduce a band-
limiting idealization hypothesis in which the power spectral density of the random
fluctuations is assumed to be limited in both the transverse and the longitudinal
directions. We assume that the support of S lies in the square

[
− 3π

2 ,
3π
2

]
×
[
− 3π

2 ,
3π
2

]
.

Then,

Ijl(ω)=

{
1
4A

2
j (ω)A

2
l (ω)S

(
σj(ω)−σl(ω),σj(ω)−σl(ω)

)
, if |j− l|=1,

0, otherwise,

and

Ijγ(ω)=

{
1
4A

2
j (ω)A

2
l (ω)S

(
σj(ω)−η(ω),σj(ω)−η(ω)

)
, if |σj(ω)−η(ω)|≤ 3π

2 ,
0, otherwise.
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From this assumption we obtain ∀0<γ<k2(ω) and j∈{1, . . . ,N(ω)−2},

η(ω)−σj(ω)≥n1k(ω)d
√

1− 1

n21
−σj(ω)π

(
n1k(ω)d

π
θ−N(ω)

)

︸ ︷︷ ︸
∈[0,1)

+2π.

Then, for j∈{1, . . . ,N(ω)−2},

inf
0<γ<k2

η(ω)−σj(ω)>
3π

2
,

and Λc
j(ω)=0, ∀j∈{1, . . . ,N(ω)−2}. Consequently, the coupled power equations (6.2)

become

d

dz
T l
N (z)=−Λc

NT l
N (z)+Γc

N−1N

(
T l
N−1(z)−T l

N (z)
)
,

d

dz
T l
N−1(z)=−Λc

N−1T l
N−1(z)+Γc

N−1N−2

(
T l
N−2(z)−T l

N−1(z)
)

+Γc
N−1N

(
T l
N (z)−T l

N−1(z)
)
,

d

dz
T l
j (z)=Γc

j−1j

(
T l
j−1(z)−T l

j (z)
)
+Γc

j+1j

(
T l
j+1(z)−T l

j (z)
)
for j∈{2, . . . ,N−2},

d

dz
T l
1 (z)=Γc

21

(
T l
2 (z)−T l

1 (z)
)
,

(6.6)

with T l
j (0)= δjl.

The band-limiting idealization hypothesis is tantamount to a nearest-neighbor
coupling. More precisely, this assumption implies that ∀(j,l)∈{1, . . . ,N(ω)}2, the jth
mode amplitude can exchange informations with the lth amplitude mode if they are
direct neighbors, that is, if they satisfy |j− l|≤1.

6.2.2. Continuum approximation. The evolution of the mean mode pow-
ers of the propagating modes can be described, in the limit of a large number of
propagating modes N(ω)≫1, by a diffusion model. This diffusive continuous model
is equipped with boundary conditions which take into account the effect of the radi-
ating modes at the bottom and the free surface of the waveguide (see Figure 6.1)

Let, ∀ϕ∈C0([0,1]), ∀u∈ [0,1], and z≥0,

T N(ω)
ϕ (z,u)=T [N(ω)u]

ϕ (ω,z)=
N∑

j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (ω,z),

where ϕ 7→T N(ω)
ϕ (z,.) can be extended to an operator from L2(0,1) to itself. Here,

L2(0,1) is equipped with the inner product defined as follows: ∀(ϕ,ψ)∈L2(0,1)2,〈
ϕ,ψ

〉
L2(0,1)

=
∫ 1

0
ϕ(v)ψ(v)dv.

Theorem 6.2. We have

1. ∀ϕ∈L2(0,1) and ∀z≥0,

lim
N(ω)→+∞

T N(ω)
ϕ (z,u)=Tϕ(z,u) in L2(0,1),
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where Tϕ(z,u) satisfies the partial differential equation : ∀(z,u)∈ (0,+∞)×
(0,1),

∂

∂z
Tϕ(z,u)=

∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)
(z,u),

with the boundary conditions: ∀z>0

∂

∂u
Tϕ(z,0)=0, Tϕ(z,1)=0, and Tϕ(0,u)=ϕ(u).

2. ∀u∈ [0,1], ∀z≥0, and ∀ϕ∈C0([0,1]) such that ϕ(1)=0, we have

lim
N(ω)→+∞

T N(ω)
ϕ (z,u)=Tϕ(z,u).

Here,

a∞(u)=
a0

1−
(
1− π2

a2d2

)
(θu)2

,

with a0=
π2S0

2an4
1d

4θ2 , θ=
√

1−1/n21, S0=
∫ d

0

∫ d

0
γ0(x1,x2)cos

(
π
dx1

)
cos
(
π
dx2

)
dx1dx2. n1

is the index of refraction in the ocean section [0,d], 1/a is the correlation length of

the random inhomogeneities in the longitudinal direction, and γ0 is the covariance

function of the random inhomogeneities in the transverse direction.

This theorem is a continuum approximation in the limit of a large number of
propagating modes N(ω)≫1. This approximation gives us, in the limit of a large
number of propagating modes, a diffusion model for the transfer of energy between
the N(ω)-discrete propagating modes, with a reflecting boundary condition at x=0
(the top of the waveguide in Figure 2.1) and an absorbing boundary condition at u=1
(the bottom of the waveguide in Figure 2.1) which represents the radiative loss (see
Figure 6.1).

The sketch of proof of Theorem 6.2 is given in Section A.3. This proof is based
on a probabilistic representation of T l

j (ω,z) in terms of a jump Markov process, and
on a martingale approach. The full proof of Theorem 6.2 is given in [12].

6.2.3. Exponential decay in the continuum approximation. In the
limit of a large number of propagating modes N(ω)≫1, we also observe that the
energy carried by the continuum of propagating modes decays exponentially with
the propagation distance. The exponential decay of the energy in the continuum
approximation is given by the following result.

Theorem 6.3. ∀ϕ∈L2(0,1)\{0} such that ϕ≥0, and ∀u∈ [0,1),

lim
L→+∞

1

L
ln[Tϕ(L,u)]=−Λ∞,

where

Λ∞= inf
ϕ∈D

∫ 1

0

a∞(v)ϕ′(v)2dv>0

and

D=

{
ϕ∈C∞([0,1]), ‖ϕ‖L2(0,1)=1,

∂

∂v
ϕ(0)=0, ϕ(1)=0

}
.



112 SHALLOW-WATER PROPAGATION

This result means that the energy carried by each propagating mode decays expo-
nentially with the propagation distance, and the decay rate can be expressed in terms
of a variational formula. Consequently, the spatial inhomogeneities of the medium
and the geometry of the shallow-water waveguide lead us to an exponential decay
phenomenon caused by the radiative loss into the ocean bottom.

Proof. We can see that the operator P∞= ∂
∂v

(
a∞(·) ∂

∂v

)
on L2([0,1]), with

domain

D(P∞)=

{
ϕ∈H2(0,1),

∂

∂v
ϕ(0)=0, ϕ(1)=0

}
,

is self-adjoint. P∞ has a compact resolvent Rλ=(λId−P∞)−1 because [0,1] is a
compact set and then it has a point spectrum (λj)j≥1 with eigenvectors denoted by
(φ∞,j)j≥1. Moreover, all the eigenspaces are finite-dimensional subspaces of D(P∞)
and ∀ϕ∈D(P∞)\{0},

〈
P∞(ϕ),ϕ

〉
L2(0,1)

<0.

Let us organize the point spectrum in the nonincreasing way, · · ·<λ2<λ1<0. We
have

Tϕ(L,v)=
∑

j≥1

〈
ϕ,φ∞,j

〉
L2(0,1)

eλjLφ∞,j(v).

Lemma 6.4. λ1 is a simple eigenvalue and one can choose φ∞,1 such that φ∞,1(v)>0
∀v∈ [0,1).

Proof. This lemma is a consequence of the Krein-Rutman theorem, but not its
strongest form [28]. Indeed, the set of nonnegative functions in L2(0,1) has an empty
interior. However, using the smoothness of the eigenvectors, the proof also works in
our case. The full proof of Lemma 6.4 is given in [12].

As a result, ∀ϕ∈L2(0,1)\{0} such that ϕ≥0, ∀v∈ [0,1) we get

lim
L→+∞

1

L
ln[Tϕ(L,v)]=λ1,

and

λ1= sup
ϕ∈D(P∞)

‖ϕ‖L2([0,1])=1

〈
P∞(ϕ),ϕ

〉
L2([0,1])

=−Λ∞<0.

In Theorem 6.3, we take ϕ∈L2(0,1)\{0} such that ϕ≥0, which can be considered
as being the initial repartition of energy over the continuum of modes. However, the
result of Theorem 6.3 is also valid for any ϕ∈L2(0,1)\{0} such that

〈
ϕ,φ∞,1

〉
L2(0,d)

>

0.

6.3. Continuum approximation to coupled power equation with neg-

ligible radiation losses. In the case of negligible radiation losses, we also get
a continuous diffusive model for the coupled power equations in the limit of a large
number of propagating modes N(ω)≫1. This diffusive continuous model is equipped
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with boundary conditions which take into account the negligible effect of the radiation
losses at the bottom and the free surface of the waveguide (see Figure 6.2).

Now, let us assume that the radiation losses are negligible, that is, Λc(ω)= τ Λ̃c(ω)
with τ≪1. We have already remarked that, if the radiation losses are negligible, then
the coupling process is predominant and we have

∀L>0, sup
z∈[0,L]

‖T τ,l
j (ω,z)−T 0,l

j (ω,z)‖2,RN(ω) =O(τ),

where T 0,l(ω,.) satisfies

d

dz
T 0,l
N (z)=Γc

N−1N

(
T 0,l
N−1(z)−T 0,l

N (z)
)
,

d

dz
T 0,l
j (z)=Γc

j−1j

(
T 0,l
j−1(z)−T 0,l

j (z)
)
+Γc

j+1j

(
T 0,l
j+1(z)−T 0,l

j (z)
)
,

for j∈{2, . . . ,N−1}, and
d

dz
T 0,l
1 (z)=Γc

21

(
T 0,l
2 (z)−T 0,l

1 (z)
)
,

with T 0,l
j (0)= δjl.

6.3.1. Continuum approximation. Let, ∀ϕ∈C0([0,1]), ∀u∈ [0,1], and z≥0,

T N(ω)
ϕ (z,u)=T [N(ω)u]

ϕ (z)=

N(ω)∑

j=1

ϕ
( j

N(ω)

)
T [N(ω)u]
j (z),

where ϕ 7→T N(ω)
ϕ (z,.) can be extended into an operator from L2(0,1) to itself.

Theorem 6.5. We have

1. ∀ϕ∈L2(0,1) and ∀z≥0,

lim
N(ω)→+∞

T N(ω)
ϕ (z,u)=Tϕ(z,u) in L2(0,1),

where Tϕ(z,u) satisfies the partial differential equation : ∀(z,u)∈ (0,+∞)×
(0,1),

∂

∂z
Tϕ(z,u)=

∂

∂u

(
a∞(·) ∂

∂u
Tϕ
)
(z,u),

with the boundary conditions: ∀z>0

∂

∂u
Tϕ(z,0)=0,

∂

∂v
Tϕ(z,1)=0, and Tϕ(0,u)=ϕ(u).

2. ∀u∈ [0,1), ∀z≥0, and ∀ϕ∈C0([0,1]) such that ϕ(1)=0, we have

lim
N(ω)→+∞

T N(ω)
ϕ (z,u)=Tϕ(z,u).

Here,

a∞(u)=
a0

1−
(
1− π2

a2d2

)
(θu)2

,
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with a0=
π2S0

2an4
1d

4θ2 , θ=
√

1−1/n21, S0=
∫ d

0

∫ d

0
γ0(x1,x2)cos

(
π
dx1

)
cos
(
π
dx2

)
dx1dx2. n1

is the index of refraction in the ocean section [0,d], 1/a is the correlation length of

the random inhomogeneities in the longitudinal direction, and γ0 is the covariance

function of the random inhomogeneities in the transverse direction.

This theorem is a continuum approximation in the limit of a large number of
propagating modes in the case where the radiation losses are negligible. This ap-
proximation gives us, in the limit of a large number of propagating modes N(ω)≫1,
a diffusion model for the transfer of energy between the N(ω)-discrete propagating
modes with two reflecting boundary conditions at u=0 (the top of the waveguide in
Figure 2.1) and u=1 (the bottom of the waveguide in Figure 2.1). Here, the two re-
flecting boundary conditions mean that there is no radiative loss anymore (see Figure
6.2).

The proof of Theorem 6.5 uses the same method as the one of Theorem 6.2, and
we refer to [12] for a complete proof of Theorem 6.5.

6.3.2. Asymptotic behavior of T (L,v) as L→+∞. In the case where
the radiation losses are negligible, we have seen in Section 6.1 that the decay rate
satisfies limτ→0Λ

τ
∞(ω)=0 and T 0,l(ω,L) converges to the uniform distribution over

{1, . . . ,N(ω)} as L→+∞ [9]. In the limit of a large number of propagating modes,
we have the following continuous version.

Theorem 6.6. ∀ϕ∈L2(0,1) and ∀u∈ [0,1],

lim
L→+∞

Tϕ(L,u)=
∫ 1

0

ϕ(v)dv,

that is, the energy carried by the continuum of propagating modes converges exponen-

tially fast to the uniform distribution over [0,1] as L→+∞. As a result, the energy

is conserved and the modal energy distribution converges to a uniform distribution as
L→+∞.

Proof. We can see that the operator P∞= ∂
∂v

(
a∞(·) ∂

∂v

)
on L2([0,1]), with

domain

D(P∞)=

{
ϕ∈H2(0,1),

∂

∂v
ϕ(0)=0,

∂

∂v
ϕ(1)=0

}
,

is self-adjoint. Moreover, P∞ has a compact resolvant because [0,1] is a compact set
and then it has a point spectrum (λj)j≥0 with eigenvectors denoted by (φ∞,j)j≥0.
Moreover, all the eigenspaces are finite-dimensional subspaces of D(P∞) and ∀ϕ∈
D(P∞)\{0},

〈
P∞(ϕ),ϕ

〉
L2(0,1)

≤0.

Let us remark that λ0=0 is a simple eigenvalue with eigenvector φ∞,0=1. Then, the
spectrum is included in (−∞,0] and we have the following decomposition:

Tϕ(z,v)=
∫ 1

0

ϕ(v)dv+
∑

j≥1

〈
ϕ,φ∞,j

〉
L2(0,1)

eλjzφ∞,j(v).

Therefore, ∀u∈ [0,1],

lim
L→+∞

Tϕ(L,u)=
∫ 1

0

ϕ(v)dv,

with exponential rate λ1<0.
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Conclusion. In this paper we have analyzed the propagation of waves in a
shallow-water acoustic waveguide with random perturbations. In such a waveguide,
the wave field can be decomposed into three kinds of modes, which are the propagat-
ing, the radiating, and the evanescent modes, and the random perturbations produce
a coupling between these modes.

We have shown that the evolution of the propagating mode amplitudes can be
described as a diffusion process (Theorems 5.4 and 5.5). This diffusion takes into
account the main coupling mechanisms: the coupling with the evanescent modes
induces a mode-dependent and frequency-dependent phase modulation on the prop-
agating modes, and the coupling with the radiating modes, in addition to a mode-
dependent and frequency-dependent phase modulation, induces a mode-dependent
and frequency-dependent attenuation on the propagating modes. In other words, the
propagating modes lose energy in the form of radiation into the bottom of the waveg-
uide and their total energy decays exponentially with the propagation distance. We
can express the decay rate in terms of a variational formula over a finite-dimensional
space (Theorem 6.1).

Under the assumption that nearest neighbor-coupling is the main power transfer
mechanism, the evolution of the mean mode powers of the propagating modes can
be described, in the limit of a large number of propagating modes, by a continuous
diffusive model with boundary conditions which take into account the effect of the
radiation losses at the bottom and the free surface of the waveguide. In this regime,
we observe that the energy carried by the continuum of propagating modes also decay
exponentially with the propagation distance. The exponential decay rate can be
expressed in terms of a variational formula (Theorem 6.3).

The diffusive systems obtained in this paper can be used to analyze pulse propa-
gation and refocusing during time-reversal experiments in underwater acoustics [11].

Appendix A.

In this appendix, we present the sketches of the proofs of Theorems 5.4, 5.5 and
6.2. Full proofs of these theorems can be found in [12].

A.1. Proof of Theorem 5.4. The proof of this theorem is based on a
martingale approach using the perturbed-test-function method. However, the process(
Tξ,ǫ(z)

)
z≥0

is not adapted with respect to the filtration Fǫ
z =Fz/ǫ. The proof of this

theorem is in two parts. The first part of the proof consists in simplifying the problem
and introducing a new process for which the martingale approach can be used. The
first part of the proof follows the ideas of [16]. The second part of the proof of this
theorem is based on a martingale approach using the perturbed-test-function method
and follows the ideas developed in [4].

Let us introduce T̃
ξ,ǫ

(.) — the unique solution of the differential equation

d

dz
T̃

ξ,ǫ
(z)=

1√
ǫ
Haa

(z
ǫ

)
T̃

ξ,ǫ
(ω,z)+

〈
Gaa

〉
T̃

ξ,ǫ
(z),

with Tξ,ǫ(0)= Id, and where
〈
Gaa

〉
is defined, ∀y∈Hξ, by

〈
Gaa

〉
j
(y)=

∫ −ξ

−∞

ik4

2βj
√
|γ′|

∫ +∞

0

E
[
Cjγ′(0)Cjγ′(z)

]
cos
(
βjz
)
e−

√
|γ′|zdzdγ′yj ,

∀j∈
{
1, . . . ,N

}
, and

〈
Gaa

〉
γ
(y)=0 for almost every γ∈ (ξ,k2). We have the following

proposition that describes the relation between the two processes Tξ,ǫ(z) and T̃
ξ,ǫ

(z).
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Proposition A.1.

∀y∈Hξ and ∀η>0, lim
ǫ→0

P

(
sup

z∈[0,L]

‖Tξ,ǫ(z)(y)−T̃
ξ,ǫ

(z)(y)‖2Hω
ξ
>η

)
=0.

Let us remark that the new process
(
T̃

ξ,ǫ
(z)
)
z≥0

is adapted to the filtration Fǫ
z

and ‖T̃ξ,ǫ
(z)(y)‖2Hξ

=‖y‖2Hξ
, ∀z≥0. Let ry =‖y‖Hξ

,

Bry,Hξ
=
{
λ∈Hξ,‖λ‖Hξ

=
√

〈λ,λ〉Hξ
≤ ry

}
,

the closed ball with radius ry, and {gn,n≥1} a dense subset of Bry,Hξ
. We equip

Bry,Hξ
with the distance dBry,Hξ

defined by

dBry,Hξ
(λ,µ)=

+∞∑

j=1

1

2j

∣∣∣
〈
λ−µ,gn

〉
Hξ

∣∣∣

∀(λ,µ)∈Bry,Hξ

2. As a result, (BHξ
,dBry,Hξ

) is a compact metric space. From the

definition of the metric dBry,Hξ
, we have the following criterion.

Theorem A.2. A family of processes (Xǫ)ǫ∈(0,1) is tight in

C([0,+∞),(Bry ,Hξ
,dBry,Hξ

)) if and only if
(〈
Xǫ,λ

〉
Hξ

)
ǫ∈(0,1)

is tight on C([0,+∞),C)

∀λ∈Hξ.

This last theorem looks like the tightness criterion of Mitoma and Fouque [23, 6].

For any λ∈Hξ, we set T̃
ξ,ǫ

λ (z)(y)=
〈
T̃

ξ,ǫ
(z)(y),λ

〉
Hξ

. According to Theorem A.2, the

family (T̃
ξ,ǫ

(.)(y))ǫ is tight on C([0,+∞),(Bry ,Hξ
,dBry,Hξ

)) if and only if the family

(T̃
ξ,ǫ

λ (.)(y))ǫ is tight on C([0,+∞),C) ∀λ∈Hξ. Furthermore, (T̃
ξ,ǫ

(.)(y))ǫ is a family

of continuous processes, so it is sufficient to prove that, ∀λ∈Hξ, (T̃
ξ,ǫ

λ (.)(y))ǫ is tight
in the space of cad-lag functions D([0,+∞),C) equipped with the Skorokhod topology.
According to Proposition A.1, to study the convergence in distribution of the process(
Tξ,ǫ(.)(y)

)
ǫ
it suffices to study this convergence for

(
T̃

ξ,ǫ
(.)(y)

)
ǫ
.

We consider the complex case for more convenient manipulations. The proof of
this theorem is based on the perturbed-test-function approach. Using the notion of a
pseudogenerator, we prove tightness and characterize all subsequence limits.

We recall the techniques developed by Kurtz and Kushner. Let Mǫ be the set of
all Fǫ-measurable functions f(t) for which supt≤T E [|f(t)|]<+∞ and where T >0 is

fixed. The p− lim and the pseudogenerator are defined as follows. Let f and fδ be in
Mǫ ∀δ>0. We say that f =p− limδ f

δ if

sup
t,δ

E[|fδ(t)|]<+∞ and lim
δ→0

E[|fδ(t)−f(t)|]=0 ∀t.

The domain of Aǫ is denoted by D(Aǫ). We say that f ∈D(Aǫ) and Aǫf =g if f and
g are in D(Aǫ) and

p− lim
δ→0

[
Eǫ
t[f(t+δ)]−f(t)

δ
−g(t)

]
=0,
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where Eǫ
t is the conditional expectation given Fǫ

t and Fǫ
t =Ft/ǫ. A useful result about

Aǫ is given by the following theorem.

Theorem A.3. Let f ∈D(Aǫ). Then

M ǫ
f (t)=f(t)−

∫ t

0

Aǫf(u)du

is an (Fǫ
t )-martingale.

Proposition A.4. ∀λ∈Hξ, the family
(
T̃

ξ,ǫ

λ (.)(y)
)
ǫ∈(0,1)

is tight in D([0,+∞),C).

Proof. First, we easily obtain ∀T >0,

lim
M→+∞

lim
ǫ→0

P

(
sup

0≤t≤T
|T̃ξ,ǫ

λ (t)(y)|≥M
)
=0,

since (T̃
ξ,ǫ

(.)(y))ǫ is a bounded process. Second, in [12] we build a function f ǫ1(t)
such that ∀T >0, limǫ sup0≤t≤T |f ǫ1(t)|=0 in probability and {Aǫ (f ǫ0+f

ǫ
1)(t)}ǫ,0≤t≤T

is uniformly integrable. According to Theorem 4 [18], these two facts imply the

tightness of
(
T̃

ξ,ǫ

λ (.)(y)
)
ǫ∈(0,1)

.

We shall consider the classical complex derivative with the following notation: If
v=α+ iβ, then ∂v =

1
2 (∂α− i∂β) and ∂v =

1
2 (∂α+ i∂β). Let f be a smooth function

and f ǫ0(t)=f(T̃
ξ,ǫ

λ (t)(y)).

Now, we shall characterize all subsequence limits by showing they are solutions of
a well-posed martingale problem. To do that, we consider a convergent subsequence

of (T̃
ξ,ǫ

(.)(y))ǫ∈(0,1) which converges to a limit Tξ(.)(y). For the sake of simplicity

we denote the subsequence by (T̃
ξ,ǫ

(.)(y))ǫ∈(0,1).

Proposition A.5. ∀λ∈Hξ and for all smooth test functions f ,

f
(
T

ξ
λ(t)(y)

)
−
∫ t

0

∂vf
(
T

ξ
λ(s)(y)

)〈
Jξ(Tξ(s)(y)),λ

〉
Hξ

+∂vf
(
T

ξ
λ(s)(y)

)〈
Jξ(Tξ(s)(y)),λ

〉
Hξ

+∂2vf
(
T

ξ
λ(s)(y)

)〈
K
(
Tξ(s)(y)

)
(λ),λ

〉
Hξ

+∂2vf
(
T

ξ
λ(s)(y)

)〈
K
(
Tξ(s)(y)

)
(λ),λ

〉
Hξ

+∂v∂vf
(
T

ξ
λ(s)(y)

)〈
L
(
Tξ(s)(y)

)
(λ),λ

〉
Hξ

+∂v∂vf
(
T

ξ
λ(s)(y)

)〈
L
(
Tξ(s)(y)

)
(λ),λ

〉
Hξ

ds
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is a martingale, where

Jξ(T)j =

[
Γc
jj−Γ1

jj

2
−Λc,ξ

j + i

(
Γs
jj

2
−Λs,ξ

j +κξj

)]
Tj ,

K(T)(λ)j =−1

2

N∑

l=1

Γ1
jlTjTlλl−

1

2

N∑

l=1
l 6=j

(
Γc
jl+ iΓ

s
jl

)
TjTlλl,

L(T)(λ)j =
1

2

N∑

l=1

Γ1
jlTjTlλl+

1

2

N∑

l=1
l 6=j

Γc
jlTlTlλj ,

and Jξ(T)γ =K(T)(λ)γ =L(T)(λ)γ =0 for almost every γ∈ (ξ,k2), and for (T,λ)∈
H2

ξ .

Proof. Let, for µ>0 and j∈{1,2,3,4},

Ij<µ=
{
(γl)l∈{1,...,j}∈ (ξ,k2)j , ∃(ql)l∈{1,...,4−j}∈{β1, . . . ,βN}4−j

and (µl)l∈{1,...,4}∈{−1,1}4, with
∣∣∣

j∑

l=1

µl
√
γl+

4−j∑

l=1

µl+jql

∣∣∣<µ
}
.

In addition to f ǫ1(t), which also satisfies supt≥0E [|f ǫ1(t)|]=O(
√
ǫ), there exists f ǫ2(t)

and f ǫ3(t), such that supt≥0E [|f ǫ2(t)|]=O(ǫ) and

lim
ǫ→0

sup
0≤t≤T

E [|f ǫ3(t)|]≤K(T,ξ,y)

4∑

j=1

∫

Ij
<µ

dγ1 . . .dγj ,

∀T >0, and

Aǫf ǫ(t)=∂vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
Jξ(T̃

ξ,ǫ
(t)(y)),λ

〉
H

+∂vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
Jξ(T̃

ξ,ǫ
(t)(y)),λ

〉
H

+∂2vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
K
(
T̃

ξ,ǫ
(t)(y)

)
(λ),λ

〉
H

+∂2vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
K
(
T̃

ξ,ǫ
(t)(y)

)
(λ),λ

〉
H

+∂v∂vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
L
(
T̃

ξ,ǫ
(t)(y)

)
(λ),λ

〉
H

+∂v∂vf
(
T̃

ξ,ǫ

λ (t)(y)
)〈
L
(
T̃

ξ,ǫ
(t)(y)

)
(λ),λ

〉
H

+C(ǫ,t),

for f ǫ(t)=f ǫ0(t)+f
ǫ
1(t)+f

ǫ
2(t)+f

ǫ
3(t). Moreover

lim
ǫ→0

sup
0≤t≤T

E [|C(ǫ,t)|]≤K(T,ξ,y)

4∑

j=1

∫

Ij
<µ

dγ1 . . .dγj .

To get this expression we have supposed that the following nondegeneracy condi-
tion holds: the wavenumbers βj are distinct along with their sums and differences.



C. GOMEZ 119

Therefore, by Theorem A.3,
(
M ǫ

fǫ(t)
)
t≥0

is an (Fǫ
t )-martingale. Then for every

bounded continuous function h, every sequence 0<s1< · · ·<sn≤s<t, and every fam-
ily (λj)j∈{1,...,n} with values in Hn

ξ we have

E

[
h
(
T̃

ξ,ǫ

λj
(sj)(y),1≤ j≤n

)(
f ǫ(t)−f ǫ(s)−

∫ t

s

Aǫf ǫ(u)du

)]
=0.

Finally, by letting ǫ→0 and µ→0, we get the desired result.

In order to prove uniqueness, we decompose Tξ(.)(y) into real and imaginary
parts. Let us consider the new process

Yξ(t)=

[
Y1,ξ(t)

Y2,ξ(t)

]
, where Y1,ξ(t)=Re

(
Tξ(t)(y)

)
and Y2,ξ(t)= Im

(
Tξ(t)(y)

)
.

This new process takes its values in Gξ×Gξ, where Gξ =RN ×L2((ξ,k2),R), and we
introduce the operator

Υ :Gξ×Gξ −→Gξ×Gξ,[
T1

T2

]
7−→

[
T2

−T1

]
.

Proposition A.6. ∀f ∈C2
b (Gξ×Gξ),

M ξ
f (t)=f(Y

ξ(t))−
∫ t

0

Lξf(Yξ(s))ds (A.1)

is a continuous martingale, where ∀(Y,λ)∈ (Gξ×Gξ)
2,

Lξf(Y)=
1

2
trace

(
A(Y)D2f(Y)

)
+
〈
Jξ(Y),Df(Y)

〉
Gξ×Gξ

,

with A(Y)(λ)=A1(Y)(λ)+A2(Y)(λ)+A3(Y)(λ). Moreover, for j∈{1, . . . ,N},

Bξ(Y)j =

[
Γc
jj

2
−Λc,ξ

j

]
Yj−

[
Γs
jj

2
+κξj −Λs,ξ

j

]
Υj(Y),

A1(Y)(λ)j =Υj(Y)

N∑

l=1

Γ1
jl

[
Υ1

l (Y)λ1l +Υ2
l (Y)λ2l

]
,

A2(Y)(λ)j =−Yj

N∑

l=1
l 6=j

Γc
jl

[
Y1

l λ
1
l +Y2

l λ
2
l

]
+Υj(Y)

N∑

l=1
l 6=j

Γc
jl

[
Υ1

l (Y)λ1l +Υ2
l (Y)λ2l

]
,

A3(Y)(λ)j =λj

N∑

l=1
l 6=j

Γc
jl

[
(Y1

l )
2+(Y2

l )
2
]
,

and Bξ
γ(Y)=Aγ(Y)(λ)=Aγ(Y)(λ)=Aγ(Y)(λ)=0 for almost every γ∈ (ξ,k2).

Moreover, the martingale problem associated to the generator Lξ is well-posed.

Proof. Following the proof of Theorem 4.1.4 in [32], to prove that M ξ
f is a

martingale it suffices to show that

〈
M ξ(t),λ

〉
Gξ×Gξ

=M ξ
λ(t)=

〈
Yξ(t)−

∫ t

0

Bξ(Yξ(s))ds,λ
〉
Gξ×Gξ
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is a continuous martingale with quadratic variation

<M ξ
λ> (t)=

∫ t

0

〈
A(Yξ(s))(λ),λ

〉
Gξ×Gξ

ds.

Moreover, ∀(Y,λ)∈ (Gξ×Gξ)
2, we have 〈A(Y)(λ),λ〉Gξ×Gξ

≥0 and trace(A(Y))<

+∞. According to Theorem 3.2.2 and 4.4.1 in [32], the martingale problem asso-
ciated to Lξ is well-posed.

A.2. Proof of Theorem 5.5. Let H0=CN ×L2(0,k2), y∈H0, and yξ =
Π(ξ,+∞)(y). As the radiating part Π(0,k2)(Tξ(.)(yξ)) of the process Tξ(.)(yξ) is
constant equal to Π(ξ,k2)(yξ), to prove the tightness of (Tξ(.)(yξ))ξ is suffices to

show the tightness of the finite-dimensional process (Π(k2,+∞)(Tξ(.)(yξ)))ξ. The

tightness is ensured by the fact that the process Tξ(.)(yξ) takes its values in Bry,Hξ

and is the solution of the martingale problem associated to Lξ and starting from yξ.
Now, to characterize all limits of converging subsequences, let us denote by

T0(.)(y) such a limit point. First, for every smooth function f on H0, for every
bounded continuous function h, and every sequence 0<s1< · · ·<sn≤s<t, we have

E

[
h
(
Tξ(sj)(y

ξ),1≤ j≤n
)

×
(
f(Tξ(t)(yξ))−f(Tξ(s)(yξ))−

∫ t

s

Lξf(T
ξ(u)(yξ))du

)]
=0.

Second,

sup
T∈Bry,H0

∣∣∣Lf(T)−Lξf(T)
∣∣∣≤K sup

j∈{1,...,N}

∣∣Λc,ξ
j −Λc

j

∣∣+
∣∣Λs,ξ

j −Λs
j

∣∣+
∣∣κξj −κj

∣∣.

Consequently, T0(.)(y) is a solution of the martingale problem associated to L and
starting from y. With the same arguments as in the proof of the uniqueness in
Theorem 5.4, this martingale problem is well-posed and therefore Tξ(.)(yξ) converges
in distribution to the unique solution of the martingale problem associated to L and
starting from y.

A.3. Proof of Theorem 6.2. The proof of this theorem follows the ideas de-
veloped in [29, Chapter 11]. In order to prove this theorem we use a probabilistic repre-
sentation of T l

j (ω,z) by using the Feynman-Kac formula. To this end, we introduce the

jump Markov process
(
XN

t

)
t≥0

with state space
{
−(N−1)/N,... ,0, . . . ,(N−1)/N

}

and generator given by

LNφ

(
l

N

)
=Γc

l,l+1

(
φ

(
l−1

N

)
−φ
(
l

N

))
+Γc

l+2,l+1

(
φ

(
l+1

N

)
−φ
(
l

N

))

for l∈{1, . . . ,N−2},

LNφ

(
l

N

)
=Γc

|l|+2,|l|+1

(
φ

(
l−1

N

)
−φ
(
l

N

))
+Γc

|l|,|l|+1

(
φ

(
l+1

N

)
−φ
(
l

N

))

for l∈{−(N−2), . . . ,−1},

LNφ(0)=
Γc
2,1

2

(
φ

(
1

N

)
−φ(0)

)
+

Γc
2,1

2

(
φ

(−1

N

)
−φ(0)

)
,
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and

LNφ

(±(N−1)

N

)
=Γc

N−1,N

(
φ

(±(N−2)

N

)
−φ
(±(N−1)

N

))
.

Using the Feynman-Kac formula we obtain, for (j,l)∈{1, . . . ,N}2,

T l
j (ω,L)=E l−1

N

[
e
−Λc

N

∫ L
0

1
(|XN

u |=N−1
N )

du−Λc
N−1

∫ L
0

1
(|XN

u |=N−2
N )

du
1(|XN

L |+ 1
N = j

N )

]
.

Let f be a bounded continuous function on [0,1], and consider T l(ω,L) as a family of
bounded measures on [0,1] by setting

T l
f (ω,L)=E l−1

N

[
e
−Λc

N

∫ L
0

1
(|XN

u |=N−1
N )

du−Λc
N−1

∫ L
0

1
(|XN

u |=N−2
N )

du
f

(
|XN

L |+ 1

N

)]
.

In the first part of the proof we consider the case u∈ [0,1), and in the second part
we shall treat the case u=1.

Let u∈ [0,1) such that l(N)/N→u. We begin by introducing some notations.

Throughout the proof we denote by τ
(l)
j/N the lth passage in j/N , for j∈{−(N−

1), . . . ,N−1}. To avoid the unboundness in LN of the reflecting barriers LNφ(±(N−
1)/N), we introduce the stopping time

ταN = τ
(1)
(N−[Nα])/N ∧τ (1)−(N−[Nα])/N

with α∈ (0,1). Let XN,τ
t =XN

t∧τα
N
, ∀t≥0, be the stopped process and d(N)=(l(N)−

1)/N . We denote by PN
d(N) the law of (XN

t )t≥0 starting from d(N) and by P
N,τ
d(N) the

law of (XN,τ
t )t≥0 starting from d(N). Let

La∞ =
∂

∂v

(
a∞(·) ∂

∂v

)
,

where a∞(·)∈C1(R) is an extension over R of a∞(·), which is defined on [−1,1], and
such that the martingale problem associated to La∞

and starting from v is well posed.
We denote by Pv this unique solution. Using Lemma 3.1 we have the following result
about the convergence of the generator LN .

Lemma A.7. ∀ϕ∈C∞
0 (R), ∀α∈ (2/3,1),

lim
N→+∞

sup
v∈[−N−[Nα]

N ,− 1
N ]∪[ 1

N ,
N−[Nα]

N ]
|LNϕ(v)−La∞

ϕ(v)|=0,

where LNϕ(v) is defined as follows. ∀j∈{1, . . . ,N−2},

LNϕ(v)=Γc
j,j+1

(
ϕ

(
j−1

N

)
−ϕ

(
j

N

))

+Γc
j+1,j+2

(
ϕ

(
j+1

N

)
−ϕ

(
j

N

))

for v∈ [j/N,(j+1)/N), and

LNϕ(v)=Γc
j,j+1

(
ϕ

(−j+1

N

)
−ϕ

(−j
N

))

+Γc
j+1,j+2

(
ϕ

(−j−1

N

)
−ϕ

(−j
N

))
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for v∈ (−(j+1)/N,−j/N ].

A full proof of Lemma A.7 is given in [12]. As a result, we get the following
lemma.

Lemma A.8. P
N,τ
d(N) is tight on D([0,+∞),R).

Proof. According to Theorem 3 in [18, Chapter 3], this lemma is a consequence

of the two following facts. First, the process (XN,τ
t ) is bounded by (N− [Nα])/N .

Second, we use the previous lemma and the fact (XN
t ) satisfies a martingale problem

associated to LN .

Let Mt=σ(x(u), 0≤u≤ t) and τr=inf(u≥0, |x(t)|≥ r) for r∈ (0,1). Moreover,
for ϕ∈C∞

0 (R) we set

Mϕ(t)=ϕ(x(t))−ϕ(0)−
∫ t

0

La∞
ϕ(x(u))du.

Lemma A.9. Let Qu be a limit point of the relatively compact sequence
(
P
N,τ
d(N)

)
N
.

Then, ∀ϕ∈C∞
0 (R) and ∀r∈ (0,1), (Mϕ(t∧τr))t≥0 is a (M)t-martingale under Qu.

Proof. Let
(
P
N ′,τ
d(N ′)

)
N ′

be a converging subsequence. Let 0≤ t1<t2 and Φ be a

bounded continuous Mt1 -measurable function. We have

E
P
N′,τ

d(N′)

(
MN ′

ϕ (t2∧τr)Φ
)
=E

P
N′,τ

d(N′)

(
MN ′

ϕ (t1∧τr)Φ
)
.

Lemma A.7 gives the convergence of the generator LN ′

. However, to correct the
problem in 0 we have, ∀α′∈ (0,1),

E0

[∫ t

0

1(XN′
u =0)du

]
=O

(
1

N ′α′∧(1−α′)

)
.

To finish the proof, we prove a version of Lemma 11.1.1 in [29] adapted to the Sko-
rokhod topology on D([0,+∞),R) [12].

The full details of the proof of Lemmas A.8 and A.9 can be found in [12]. From
Lemma A.9, we have ∀r∈ (0,1), Qu=Pu onMτr . Then, Qu=Pu onMτ1 since τrր τ1
as rր1, and Qu(C([0,+∞),R))=Pu(C([0,+∞),R))=1.

Let f ∈C0([0,1]) with compact support included in [0,1), and let
(
P
N ′,τ
d(N ′)

)
N ′

be

a converging subsequence as in the previous proof. We have

T l(N ′)
f (ω,t)=Ed(N ′)

[
f

(
|XN ′

t |+ 1

N ′

)
1(t<τα

N′)

]
+r(N ′),

with

r(N)=Ed(N)

[
e
−Λc

N

∫ t
0
1
(|XN

u |=N−1
N )

du−Λc
N−1

∫ t
0
1
(|XN

u |=N−2
N )

du

× f

(
|XN

t |+ 1

N

)(
1(τα

N≤t<τ0
N+λ)+1(t≥τ0

N+λ)

)]
,
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where τ0N = τ
(1)
(N−1)/N ∧τ (1)−(N−1)/N and λ∈ (0,t). Consequently,

lim
N ′

Ed(N ′)

[
f

(
|XN ′

t |+ 1

N ′

)
1(t<τα

N′)

]
=EQu [f(|x(t)|)]

and EQu
[
f(|x(t)|)1(τ1≤t)

]
=0 by the Portmanteau theorem (see [12]).

The following lemma represents the loss of energy from the propagating modes
produced by the coupling between the propagating and the radiating modes. More-
over, this lemma gives us the absorbing condition at the boundary u=1 in Theorem
6.2, and then the dissipation behavior in Theorem 6.3.

Lemma A.10. limN ′ r(N ′)=0.

A full proof of this lemma is given in [12]. However, in the following sketch of
proof we give the main ideas.

Proof.

|r(N ′)|≤‖f‖∞
(
Ed(N ′)

[
e
−Λc

N′

∫ t
0
1
(|XN′

u |=N′−1
N′ )

du

1(t≥τ0
N′+λ)

]

+ Pd(N ′)

(
|XN ′

t |+ 1

N ′ ∈supp(f),τ
α
N ′ ≤ t<τ0N ′ +λ

))
.

The first term on the right of the previous inequality goes to 0 as N→+∞, because
the jump process XN can visit ±(N−1)/N sufficiently often during a time interval of
order 1, and Λc

N ≥KN3/2 . Next, for λ≪1, after having visited (N− [Nα])/N (resp.,
−(N− [Nα])/N), the jump process reaches (N−1)/N (resp., −(N−1)/N) after a
very small time. Then, after having visited ±(N− [Nα])/N , XN has a very little
time, of order λ, to reach supp(f). Consequently, the second term on the right of the
previous inequality goes also to 0 as N→+∞ and λ→0.

As a result,
(
T l(N)
f (ω,t)

)
N

is a bounded sequence and all the subsequence limits

of
(
T l(N)
f (ω,t)

)
N

are equal to EPu
[
f(|x(t)|)1(t<τ1)

]
. Consequently,

lim
N

T l(N)
f (ω,t)=EPu

[
f(|x(t)|)1(t<τ1)

]
.

Now, we have to show that this equality holds even for a sequence (l(N))N such

that l(N)/N→u=1, i.e limN T l(N)
f (ω,t)=0. To do this, we write for λ∈ (0,t),

T l(N)
f (ω,t)≤‖f‖∞

(
Pd(N)

(
t<τ

(1)
(N−1)/N)+λ

)

+Ed(N)

[
e
−Λc

N

∫ t
0
1
(XN

u =N−1
N )

du
1(

t≥τ
(1)

(N−1)/N
+λ

)

])
.

The second term on the right in the previous inequality goes to 0 for the same reasons
as in the proof of Lemma A.10. Moreover, we have

Pd(N)

(
t<τ

(1)
(N−1)/N)+λ

)
≤ 1

t−λEd(N)

[
τ
(1)
(N−1)/N)

]
≤K

(
1− l(N)

N

)
.

Consequently, we have ∀u∈ [0,1] and ∀(l(N))N such that l(N)/N→v,

lim
N

T l(N)
f (ω,t)=EPv

[
f(|x(t)|)1(t<τ1)

]
,
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where this limit satisfies the required conditions.
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