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Abstract
In this paper, we study the decoherence of a wave described by the solution to a Schrödinger

equation with a time-dependent random potential. The random potential is assumed to have
slowly decaying correlations. The main tool to analyze the decoherence behaviors is a prop-
erly rescaled Wigner transform of the solution of the random Schrödinger equation. We exhibit
anomalous wave decoherence effects at different propagation scales.
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Introduction.
The Schrödinger equation with a time-dependent random potential has attracted lots of attention
because of its large domains of applications [10, 13, 14, 15, 22, 34]. It is widely used for instance in
wave propagation under the paraxial or parabolic approximation [3, 4, 5, 6, 8]. This field of research
was recently stimulated [8, 19, 28, 29, 33, 21] by data collections in wave propagation experiments
showing that the medium of propagation presented some long-range effects [12, 32]. Most of the
theoretical studies regarding wave propagation in long-range random media hold in one dimensional
propagation media, which are very convenient for mathematical studies but not relevant in many
applications.

We consider the random Schrödinger equation

i∂tφ+ 1
2∆xφ−

√
εV (t,x)φ = 0, t ≥ 0 and x ∈ Rd,

φ(0,x) = φ0(x),

with a random potential V (t,x), which is a spatially and temporally homogeneous mean-zero random
field. Here, t ≥ 0 represents the temporal variable, x ∈ Rd the spatial variable with d ≥ 1, and ε� 1
is a small parameter which represents the relative strength of the random fluctuations. A classical
tool to study the decoherence of the field φ is the Wigner transform defined by

W (t,x,k) = 1
(2π)d

∫
dyeik·yφ

(
t,x− y

2

)
φ
(
t,x + y

2

)
,

which analyzes the correlations of the field φ around the point x. Decaying correlations of φ with
respect to time correspond to the wave decoherence phenomenon. If V = 0, we have W (t,x,k) =
W0(x − tk,k). In this case, the momentum of W is preserved during the propagation, there is no
variation of the momentum with respect to time, meaning there is no wave decoherence.

We refer to [20, 26] for the basic properties of the Wigner transform. In our problem the amplitude
of the random perturbations are small, so significant effects are observed for long time and distance
of propagation. Consequently, we consider the rescaled field

φε(t,x) = φ
( t
εs
,

x
εs

)
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which satisfies the scaled random Schrödinger equation

iεs∂tφε + ε2s

2 ∆xφε −
√
εV
( t
εs
,

x
εs

)
φε = 0, t ≥ 0 and x ∈ Rd,

φε(0,x) = φ0,ε(x),

and where s ∈ (0, 1] is the propagation scale parameter. If the random potential V has
rapidly decaying correlations, it has been shown [8] that the field φε does not show significant random
perturbations before the propagation scale e−1 (s = 1). More precisely, the Fourier transform of the
field φε properly scaled converges point-wise to a stochastic complex Gaussian limit with a one-time
statistic of an Ornstein-Uhlenbeck process. The wave decoherence has been studied in this context in
many papers [4, 5, 13, 14, 15, 16, 17, 22, 27, 34] thanks to the Wigner transform for s = 1

Wε(t,x,k) = 1
(2π)d

∫
dyeik·yφε

(
t,x− εy

2

)
φε

(
t,x + ε

y
2

)
= 1

(2π)d

∫
dyeik·yφ

( t
ε
,

x
ε
− y

2

)
φ
( t
ε
,

x
ε

+ y
2

) (1)

which analyzes the decoherence of φε on spatial correlation scales of order ε at the macroscopic prop-
agation scale ε−1, and the decoherence of φ on spatial correlation scales of order 1 at the microscopic
propagation scale. The Wigner transform is also interpreted as the phase space density energy of φε.

In several context involving rapidly decorrelating random potential, it has been shown that the
expectation of the Wigner transform E[Wε(t,x,k)] converges as ε goes to 0 to the solution W of the
radiative transport equation

∂tW + k · ∇xW =
∫
dpσ(p,k)(W (t,x,p)−W (t,x,k)), (2)

where the transfer coefficient σ(p,k) depends on the power spectrum of the two-point correlation
function of the random potential V . Moreover, in some cases [3, 5, 6, 16], it has been shown that
the limit W is often self-averaging, that is, Wε converges in probability to the deterministic limit W
for the weak topology on L2(R2d). In other words, the wave decoherence described by the radiative
transfer equation (2) does not depend on the particular realization of the random medium.

In this paper, we investigate the decoherence of a wave described by a Schrödinger equation
involving a random potential V with slowly decaying correlations. In this context, the behavior
of the field φε evolves on different propagation scales e−s [8, 21]. In [8, Theorem 1.2] the authors
study φε itself on the propagation scales e−s, with s = 1/(2κ) and κ > 1/2, and show that the
Fourier transform properly scaled of φε converge point-wise in distribution to a complex exponential
function of a fractional Brownian motion with Hurst index κ, where κ depends on the statistic of the
random potential. This result means that e−s, with s = 1/(2κ) < 1, is the first propagation scale on
which the random perturbations become significant, and induces a random phase modulation on the
wave. In [21, Theorem 2.2] the author study the phase space density energy of φε, which describes
the wave decoherence, in the case s = 1, and shows that the Wigner transform (1) of φε converges
in probability for the weak topology on L2(R2d) to the unique solution of a deterministic radiative
transfer equation similar to (2) obtained under rapidly decaying correlations. In other words, the
wave decoherence holds on the propagation scale e−1 (s = 1), and does not depend on the particular
realization of the random potential. However, even if the radiative transfer equation has similar
structure in both cases, for rapidly and slowly decaying correlations, the long-range correlations
have a striking effect. In contrast with the rapidly decorrelating case [4], the scattering coefficient
Σ(k) =

∫
dpσ(k,p) = +∞ is not defined anymore. The radiative transfer equation is however still well

defined because of the difference W (t,x,p)−W (t,x,k) which balances the singularity introduced by
the long-range correlation assumption. Moreover, this long-range correlations imply an instantaneous
regularizing effect of the radiative transfer equation [21, Theorem 3.1]. Consequently, these results
show a qualitative and thorough difference between the rapidly and slowly deccorelating cases. In
fact, in contrast with the rapidly decorrelating case, for which the phase and the phase space density
evolve on the same propagation scale e−1 [8], the phase of φε and its phase space energy now evolve
on different propagation scales.

The main goal of this paper is to study the decoherence of a wave satisfying the Schrödinger
equation involving a random potential V with slowly decaying correlations for the propagation scale
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parameters s ∈ (1/(2κ), 1). In fact, for s > 1/(2κ) the random phase modulation obtained for
s = 1/(2κ) produces very fast oscillations on the wave, so that for sufficiently large propagation scale
parameters s > 1/(2κ) the wave coherence is broken on a certain spatial scales. Let us note that for a
given propagation scale parameter s, the wave decoherence can be too small on certain spatial scale.
For instance, in [21], the author show using the Wigner transform (1) that there is no significant wave
decoherence on φε on spatial scales of order ε, before s = 1. As we will see in Section 3, for s < 1
wave decoherence takes place first on large spatial scales and then propagates to the smaller ones
as the propagation scale parameter s increase. The larger the propagation scale parameter s is the
smaller the spatial scale is to observe wave decoherence (see Figure 2). To exhibit wave decoherence
for s < 1, we need a properly scaled Wigner transform of the field φε. Depending on the propagation
scale parameter s, we show that this scaled Wigner transform converges in probability, for the weak
topology on L2(R2d), to the unique solution of a fractional diffusion equation. This momentum
diffusion equation describes the wave decoherence mechanism, and show that it does not depend on
the particular realization of the random potential. The anomalous momentum diffusions obtained for
s ∈ (1/(2κ), 1] allow us to exhibit a damping coefficient, describing the decoherence rate, obeying a
power law with exponent in (0, 1).

The organization of this paper is as follows: In Section 1, we present the random Schrödinger
equation that will be studied in this paper; then we present the construction of the random potential;
finally, we introduce the long-range correlation assumption used throughout this paper. The results
stated in Section 2 and Section 4 have been shown in [8] and [21] respectively, but we recall these
results to provide a self-contained presentation of the wave decoherence phenomenon. In Section 2,
we present the behavior of the field φε on the scale s = 1/(2κ). In Section 3, we state the main
result of this paper. We present the asymptotic behavior in long-range random media of a properly
scaled Wigner transform over the intermediate range of propagation scale parameter s ∈ (1/(2κ), 1).
In Section 4, we describe the asymptotic evolution in long-range random media of the phase space
energy density of the solution of the random Schrödinger equation for s = 1. Finally, Section 5 is
devoted to the proofs of Theorem 3.1 and Theorem 3.2.

Acknowledgment
This work was supported by AFOSR FA9550-10-1-0194 Grant. I wish to thank Lenya Ryzhik for his
suggestions.

1 The Random Schrödinger equation
This section introduces first the random Schrödinger equation studied in this paper. Then, we present
the construction of the random potential with long-range correlation properties. Finally, we introduce
the Wigner transform which is the main tool in this paper to study the Schrödinger equation.

We consider the dimensionless form of the Schrödinger equation on Rd with a time-dependent
random potential:

i∂tφ+ 1
2∆xφ− ε

1−γ
2 V

( t
εγ
,x
)
φ = 0, (3)

with γ ∈ [0, 1). γ is a parameter which characterizes the correlation length in time. If γ = 0 the
correlation length in space and time are of the same order, but if γ ∈ (0, 1) the correlation length
in time is small compared to the correlation length in space. In (3) the strength of the random
perturbation are small, so we consider the rescaled field

φε(t,x) = φ
( t
εs
,

x
εs

)
, with s ∈ (0, 1],

to observe significant effects after a sufficiently large propagation distance and propagation time. The
parameter s ∈ (0, 1] represents the propagation scale parameter. Therefore, the scaled field
φε satisfies the scaled Schrödinger equation

iεs∂tφε + ε2s

2 ∆xφε − ε
1−γ

2 V
( t

εs+γ
,

x
εs

)
φε = 0 with φε(0,x) = φ0,ε(x). (4)

Here ∆x is the Laplacian on Rd given by ∆ =
∑d
j=1 ∂

2
xj . (V (t,x),x ∈ Rd, t ≥ 0) is the random

potential, whose properties are described in the next section. The initial datum φ0,ε(x) = φ0,ε(x, ζ)
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is a random function with respect to a probability space (S, µ(dζ)), and independent to the random
potential V . This randomness on the initial data is called mixture of states. This terminology comes
from the quantum mechanics, and the reason for introducing this additional randomness will be
explained more precisely in Section 1.3.

1.1 Random potential
This section is devoted to the construction of the random potential V , and is also a short remainder
about some properties of Gaussian random fields that we use in the proof of Theorem 3.1 and Theorem
3.2. All the properties of the random field V exposed in this section result from the standard properties
of Gaussian random fields presented in [1, 2] for instance.

In this paper, the random potential (V (t,x), t ≥ 0, x ∈ Rd) is modeled using a stationary contin-
uous random process in space and time. We construct our potential in the Fourier space as follows.
Let R̂0 be a nonnegative function with support included in a compact subset of Rd containing 0, such
that R̂0 ∈ L1(Rd), R̂0(−p) = R̂0(p), and R̂0 has a singularity in 0. Let us consider

H =
{
ϕ such that

∫
Rd
dpR̂0(p)|ϕ(p)|2 < +∞

}
,

which is a Hilbert space equipped with the inner product〈
ϕ,ψ

〉
H =

∫
dp R̂0(p)ϕ(p)ψ(p) ∀(ϕ,ψ) ∈ H2.

Let us consider (V̂ (t, ·))t≥0 be a stationary continuous zero-mean Gaussian field on H′ with autocor-
relation function given by

E[V̂ (t1, dp1)V̂ (t2, dp2)] = (2π)dR(t1 − t2,p1)δ(p1 + p2),

and
E[V̂ (t1, dp1)V̂ (t2, dp2)] = (2π)dR(t1 − t2,p1)δ(p1 − p2),

and where H′ is the dual space of H. In other words, ∀n ∈ N∗, ∀(ϕ1, . . . , ϕn) ∈ Hn and ∀(t1 . . . , tn) ∈
[0,+∞)n, (〈

V̂ (t1), ϕ1
〉
H′,H , . . . ,

〈
V̂ (tn), ϕn

〉
H′,H

)
is a zero-mean Gaussian vector with covariance matrix given by: ∀(j, l) ∈ {1, . . . , n}2

E
[〈
V̂ (tj), ϕj

〉
H′,H

〈
V̂ (tl), ϕl

〉
H′,H

]
=
∫
R
dp ϕj(p)ϕl(−p)R(t1 − t2,p)

and
E
[〈
V̂ (tj), ϕj

〉
H′,H

〈
V̂ (tl), ϕl

〉
H′,H

]
=
∫
R
dp ϕj(p)ϕl(p)R(t1 − t2,p).

Here, the spatial power spectrum is given by

R(t,p) = e−g(p)|t|R̂0(p), (5)

where the nonnegative function g is the spectral gap, and such that g(p) = g(−p). Particular
assumptions involving the spectral gap g will be introduced at the end of this section to ensure the
long-range correlation property of the potential V in (4).

According to the shape of the autocorrelation function (5), we have the following proposition.

Proposition 1.1 Let
Ft = σ(V̂ (s, ·), s ≤ t) (6)

be the σ-algebra generated by (V̂ (s, ·), s ≤ t). We have

E
[
V̂ (t+ h, ·)|Ft

]
= e−g(p)hV̂ (t, ·) (7)

and ∀(ϕ,ψ) ∈ H2

E
[〈
V̂ (t+ h), ϕ

〉
H′,H

〈
V̂ (t+ h), ψ

〉
H′,H − E

[〈
V̂ (t+ h), ϕ

〉
H′,H|Ft

]
E
[〈
V̂ (t+ h), ψ

〉
H′,H|Ft

]∣∣∣Ft]
=
∫
dp ϕ(p)ψ(−p)R̂0(p)

(
1− e−2g(p)h

)
.

(8)
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These two properties will be used in the proof of Theorem 3.1 and Theorem 3.2, which are based on
the perturbed-test-function method.

Let us note that
〈
V̂ , ϕ

〉
H′,H is a real-valued gaussian process once ϕ ∈ H satisfies ϕ(p) = ϕ(−p).

According to this last remark, let us introduce the real random potential V defined by

V (t,x) =
〈
V̂ (t, ·), ex

〉
H′,H = 1

(2π)d

∫
Rd
V̂ (t, dp)eip·x, (9)

where ex ∈ H is defined by ex(p) = eip·x/(2π)d. Consequently, the random potential V is a stationary
real-valued zero-mean Gaussian field with a covariance function given by: ∀(t1, t2) ∈ [0,+∞)2 and
∀(x1,x2) ∈ R2d

R(t1 − t2,x1 − x2) = E
[
V (t1,x1)V (t2,x2)

]
= 1

(2π)d

∫
dpR(t1 − t2,p)eip·(x1−x2)

= 1
(2π)d+1

∫
dωdpR̂(ω,p)eiω(t1−t2)eip·(x1−x2),

(10)

where

R̂(ω,p) = 2g(p)R̂0(p)
ω2 + g2(p) . (11)

According to the previous construction and [2, Theorem 2.2.1] the random potential V is contin-
uous and bounded with probability one on each compact subset K of R× Rd. This fact comes from
the continuity relation

E
[(
V (t1, x)− V (t2, y)

)2]1/2 ≤ C (∫ dpR̂0(p)
)(
|t1 − t2|+ |x− y|

)
,

∀(t1, t2,x,y) ∈ [0, T ]2 ×K2. Moreover, we have the following proposition.

Proposition 1.2 ∀µ > 0, η > 0, and ∀K compact subset of Rd

lim
ε→0

P
(
εµ sup

x∈K
sup
t∈[0,T ]

∣∣∣V ( t

ε1+γ ,
x
ε

)∣∣∣ > η
)

= 0. (12)

According to [2, Theorem 2.1.1], this limit (12) holds exponentially fast as ε→ 0.

1.2 Slowly decorrelating assumption
In this paper we are interested in the Schrödinger equation with a random potential with long-range
correlations. Let us introduce some additional assumptions on the spectral gap g of the spatial power
spectrum (5) in order to give slowly decaying correlations to the random potential V defined by (9).

Let us note that ∀t ≥ 0, the random field V (t, ·) has spatial slowly decaying correlations. In fact,
if we freeze the temporal variable, the autocorrelation function of the random potential V (t, ·) is given
by

R(t,x) = E[V (t,x + y)V (t,y)] =
∫
dpR̂0(p)e−ix·p

where R̂0(p) is assumed to have a singularity in 0, so that R(t, ·) 6∈ L1(Rd). As a result, (V (t))t≥0
models a family of random fields on Rd with spatial long-range correlations which evolves with respect
to time. However, since (3) is a time evolution problem, we have to take care of the evolution of the
random perturbation V with respect to the temporal variable. In fact, if V has rapidly decaying
correlation in time, (V (t1), V (t2)) has now rapidly decaying spatial correlations, and the evolution
problem (3) behaves like in the mixing case addressed in [7]. As a result, even if at each fixed time
the spatial correlations are slowly decaying, the resulting time evolution problem behaves as if the
random potential has rapidly decaying correlations. Consequently, we have to introduce a long-range
correlation assumption with respect to the temporal variable. Let us note that ∀(s,x,y) ∈ R+ ×R2d

∫ +∞

0
dt
∣∣E[V (t+ s,x + y)V (s,y)

]∣∣ = +∞⇐⇒
∫
dp R̂0(p)

g(p) = +∞. (13)
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Consequently, throughout this paper we say that the family (V (t))t≥0 of random fields with spatial
long-range correlations has slowly decaying correlations in time if∫

dp R̂0(p)
g(p) = +∞, (14)

and rapidly decaying correlations in time otherwise. For the sake of simplicity, we assume throughout
this paper that,

g(p) = ν|p|2β and R̂0(p) = a(p)
|p|d+2(α−1) . (15)

where, a is a continuous function with a compact support such that a(0) > 0. This configuration has
been considered in [8] to study the propagation of the field φε in a random media with long-range
correlations. To consider the same setting of [8] we have to assume that β ∈ (0, 1/2], α ∈ (1/2, 1),
and α+ β > 1. As a result,

R̂0(p)
g(p) ∼

a(0)
|p|d+θ with θ = 2(α+ β − 1) ∈ (0, 1). (16)

These assumptions permit to model a random field V (t,x) with spatial long-range correlations for
each time t ≥ 0 and with slowly decaying correlations in time.

1.3 Wigner transform
In this paper we study wave decoherence phenomena happening on different propagation scales. To
exhibit these phenomena, we need to consider different spatial correlation scales (see Figure 2). In
this paper we consider the Wigner transform of the field φε, satisfying the Schrödinger equation (4)
and averaged with respect to the randomness of the initial data, defined by:

Wε(t,x,k) = 1
(2π)d

∫
Rd×S

dyµ(dζ)eik·yφ
( t
εs
,

x
εs
− y

2εsc , ζ
)
φ
( t
εs
,

x
εs

+ y
2εsc , ζ

)
= 1

(2π)d

∫
Rd×S

dyµ(dζ)eik·yφε
(
t,x− εs−sc y

2 , ζ
)
φε

(
t,x + εs−sc

y
2 , ζ

)
,

(17)

where sc ∈ [0, s] is the spatial correlation parameter, and (S, µ(dζ)) is a probability space. We
discuss below the reason of introducing this probability space, and we refer to [20, 26] for the basic
properties of the Wigner distribution.

The scaled Wigner transform (17) is well suited to study the evolution of the correlations of the
field φε around x. It captures decorrelations of the field φ on the spatial correlation scale ε−sc , on the
microscopic propagation scale. Or in the same way, it captures decorrelations of the field φε on the
spatial correlation scale εs−sc , on the macroscopic propagation scale ε−s. Let us note that the cases
sc < s study the local decoherence of the wave, while the case s = sc study the nonlocal decoherence
of the wave.

According to [21] no significant loss of coherence of the wave can be exhibited on the correlation
scale sc = 0 before s = 1. Then, the idea is to study the wave decoherence on larger spatial scales
sc > 0. Let us note that for a rapidly deccorelating potential V , no wave decoherence effects can be
observed except for the radiative transfer scaling sc = 0 and s = 1 [8]. The reason will be explain
formally in Section 3.

However, to observe decoherence effects of the field φε on the spatial correlation scales εs−sc , we
need a proper initial condition φ0,ε in (4), which oscillates at the same scale (see Figure 1). Moreover,
a natural way to introduce randomness on the initial condition is as follow. Let S = Rd and µ(ζ)
be a nonnegative rapidly decreasing function such that ‖µ‖L1(Rd) = 1, and so that (Rd, µ(dζ)) is a
probability space. Throughout this paper we assume that the initial condition φ0,ε in (4) is given by

φ0,ε(x) = φ0(x) exp(iζ · x/εs−sc). (18)

This initial condition represents a plane wave with initial propagation direction ζ ∈ Rd, oscillating on
the scale εs−sc , and with amplitude or envelope φ0. The initial direction ζ of the wave is distributed
according to µ(dζ), so that the Wigner transform (17) is average according to the distribution of

6
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Figure 1: Illustration of the initial condition (18). (a) and (b) represent low spatial frequency initial
conditions compared to the spatial frequency of the random medium ε−s on the macroscopic scale
ε−s. (a) represents the case sc = s and has a spatial frequency of order 1 on the macroscopic scale
ε−s (and a spatial frequency of order εs on the microscopic scale). (b) represents the case sc < s and
has a spatial frequency of order εs−sc on the macroscopic scale ε−s (and a spatial frequency of order
εsc on the microscopic scale). (c) represents the case sc = 0 and s = 1, and has a spatial frequency of
order ε on the macroscopic scale ε−1 (and a spatial frequency of order 1 on the microscopic scale).

the initial direction of the wave. Let us note that the spatial frequency of the initial condition
(∼ εs−sc) is low compared to the one of the random medium (∼ εs) on the macroscopic scale ε−s.
In rapidly deccorelating random media such low spatial frequency sources do not interact with the
random medium, but as we will in Section 3, this kind of initial conditions interact strongly with
slowly decorrelating random media. This result can be useful in passive imaging of a target in slowly
deccorelating random media [18].

The main reason to introduce this additional randomness through the initial data φ0,ε is to make
possible the weak convergence in L2(R2d) of the initial Wigner transform, that is

∀λ ∈ L2(R2d), lim
ε

〈
Wε(0), λ

〉
L2(R2d) =

〈
W0, λ

〉
L2(R2d),

where

Wε(0,x,k) = W0,ε(x,k) = 1
(2π)d

∫
R2d

dyµ(dζ)ei(k−ζ)·yφ0(x− εs−scy/2)φ0(x + εs−scy/2), (19)

with
W0(x,k) = |φ0(x)|2µ̂(k),

if sc < c, and
W0(x,k) = 1

(2π)d

∫
R2d

dyµ(dζ)ei(k−ζ)·yφ0(x− y/2)φ0(x + y/2)

7



if s = sc. Consequently, thanks to the Banach-Steinhaus Theorem, W0,ε is uniformly bounded in
L2(R2d) with respect to ε. We need such a convergence on the initial Wigner transform Wε(0) since
we study Wε in L2(R2d) equipped with the weak topology. As it will be discussed in Section 3, it is
not possible to expect a convergence result in L2(R2d) equipped with the strong topology (except for
the case s = sc).

As described in Section 3, the spatial correlation parameter sc depends on the propagation scale
parameter s, it is proportional to 1− s. The larger the propagation scale parameter is the shorter the
decoherence scale parameter is.

The Wigner distribution (17) satisfies the following evolution equation

∂tWε(t,x,k) + εsck · ∇xWε(t,x,k) =

ε(1−γ)/2−s
∫
Rd

V̂
(

t
εs+γ , dp

)
(2π)di eip·x/ε

s
(
Wε

(
t,x,k− p

2εsc
)
−Wε

(
t,x,k + p

2εsc
))
,

(20)

with initial conditions Wε(0,x,k) = W0,ε(x,k), and where W0,ε is defined by (19). Equation (20) can
be recast in the weak sense as follows: ∀λ ∈ S(R2d), where S(R2d) stands for the space of rapidly
decaying functions,

〈
Wε(t), λ

〉
L2(R2d) −

〈
Wε(0), λ

〉
L2(R2d) =

∫ t

0

〈
Wε, ε

sck · ∇xλ+ ε(1−γ)/2−sLε(s)λ
〉
L2(R2d)ds,

where

Lελ(t,x,k) = 1
(2π)di

∫
Rd
V̂
( t

εs+γ
, dp

)
eip·x/ε

s
(
λ
(

x,k− p
2εsc

)
− λ
(

x,k + p
2εsc

))
. (21)

Let us assume that V = 0, so that the Wigner transform is given byWε(t,x,k) = W0(x−εsctk,k).
Therefore, the momentum of Wε is conserve during the propagation, meaning there is no variation of
the momentum with respect to time, that is there is no wave decoherence. The dispersion term k ·∇x
is of order εsc so that Wε captures the wave dispersion only for sc = 0. The transfer equation (20)
describes the loss of coherence of the field φε through the random operator LεWε(t)(t,x,k). However,
depending on the scale of observation the loss of coherence of the wave may not be significant. In
fact, according to [21] no significant wave decoherence can be exhibited on the correlation scale sc = 0
before s = 1.

Let us introduce some notations which are used in Section 3 and Section 4. Let

Br =
{
λ ∈ L2(R2d), ‖λ‖L2(R2d) ≤ r

}
, with r = sup

ε
‖W0,ε‖L2(R2d) < +∞

be the closed ball with radius r, and {gn, n ≥ 1} be a dense subset of Br. We equip Br with the
distance dBr defined by

dBr (λ, µ) =
+∞∑
j=1

1
2j
∣∣∣〈λ− µ, gn〉L2(R2d)

∣∣∣
∀(λ, µ) ∈ (Br)2, so that (Br, dBr ) is a compact metric space. Therefore, (Wε)ε is a family of process
with values in (Br, dBr ), since ‖Wε(t)‖L2(R2d) = ‖W0,ε‖L2(R2d). The topology generated by the metric
dBr is equivalent to the weak topology on L2(R2d) restricted to Br.

The three following sections describe in a chronological order the effects produced by the random
medium on the wave propagation.

2 Phase Modulation Scaling s = 1/(2κγ)
This section describes the first effects caused by the small random fluctuations of the medium on
the wave propagation. The following theorem presents the asymptotic behavior of the phase of φε
solution of (4). Theorem 2.1 has been shown [8] in the case γ = 0 and sc = 0, but nevertheless, its
proof remains the same as the one of [8, Theorem 1.2]. We state this result in order to provide a
complete and self-contained presentation of the wave propagation in long-range random media. Under
the long-range correlation assumption in time (14) and medium parameters given by (15), we have
the following result.
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Theorem 2.1 Let us assume that the autocorrelation function R(t,x) of the random perturbations is
given by (5), (10), and (15), and let

κ0 = α+ 2β − 1
2β and κγ = κ0

1− γ
(
α+β−1

β

) for γ ∈ (0, 1].

Let us consider the process ζ̂κγ ,ε(t,k) defined by

ζ̂κγ ,ε(t,k) = 1
εd(s−sc)

φ̂ε

(
t,

k
εs−sc

)
ei|k|

2t/(2εs−2sc ), for s = 1/(2κγ), and sc ≤ s,

where φε satisfies (4) with initial data (18). For each t ≥ 0, k ∈ Rd fixed, ζ̂κγ ,ε(t,k) converges in
distribution to

ζ̂(t,k) = ζ̂0(k) exp
(
i
√
D(α, β,k)Bκγ (t)

)
,

where (Bκγ (t))t is a standard fractional Brownian motion with Hurst index κγ . Here

ζ̂0(k) = φ̂0(ζ − k) if sc = s,

and
ζ̂0(k) = φ0(0)δ(ζ − k) otherwise.

Moreover,

D(α, β,k) = a(0)
(2π)dκγ(2κγ − 1)

∫ +∞

0
dρ

e−νρ

ρ2α−1

∫
Sd−1

dS(u)ei|k|ρu·e1 if β = 1
2 , γ = 0, and sc = 0,

and

D(α, β,k) = D(α, β) = a(0)Ωd
(2π)dκγ(2κγ − 1)

∫ +∞

0
dρ
e−νρ

2β

ρ2α−1 otherwise,

where, Ωd is the surface area of the unit sphere in Rd, and e1 ∈ Sd−1.

In Theorem 2.1, ζ̂0 represents the direction of the wave, and exp(i
√
D(α, β,k)Bκγ (t)) represents

the random phase modulation induces by the slowly decorrelating perturbation of the medium. As
a result, in long-range random media macroscopic effects may happen on the field φε at a shorter
scale s = 1/(2κγ) < 1 without induced loss of coherence of the field φε. These effects are just a
phase modulation given by a fractional Brownian motion with Hurst index κγ , which depends on the
statistic of the random potential V . Consequently, the phase and the phase space energy of the field
φε do not evolve on the same scale. However, the scale s = 1/(2κγ) < 1 is "universal" in the sense
that a random phase modulation appears on the wave whatever the order of the low frequency initial
condition, that is ∀sc ∈ [0, 1/(2κγ)].

[8] is the first paper showing a qualitative difference between the random effects induced on a wave
propagating in long range and in rapidly decorrelating random media in time (13), for propagation
media of dimension strictly greater than 1. In fact, it has been shown in [8] that the field φε propagating
in a rapidly decorrelating medium does not evolve before the scale s = 1, more precisely the phase and
the phase space energy evolves at the same propagation scale e−1 (s = 1), so that no significant wave
decoherence can be observed before this propagation scale. In rapidly decorrelating random media
the scale s = 1 is "universal", in the sense that it does not depend on the statistic of the random
potential V .

For propagation scale parameter s > 1/(2κγ) fast random oscillations begin to appear on the wave
up to break the wave coherence, first on the large spatial correlation scales, and then as s increase,
the wave decoherence is transmitted to smaller spatial correlation scales (see Figure 2).

3 Wave Decoherence for s ∈ (1/(2κγ), 1)
This section presents the main result of this paper, it describes the loss of coherence of the field φε
occurring after the onset of the random phase modulation described in Section 2. On propagation
scales e−s with s > 1/(2κγ) but strictly less than 1, the random phase modulation obtained in
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the Section 2 begins to oscillate very fast up to break the wave coherence, and produce momentum
diffusion effect. However, according to [21] the wave decoherence does not take place for sc = 0.
To study this diffusion phenomenon we need the scaled Wigner transform (17) to capture the wave
decoherence for spatial correlation parameters sc > 0. Using the notation introduced in Section 1.3,
we have the following results.

In Theorem 3.1, Theorem 3.2, and Theorem 4.1, we show that the good spatial correlation length
is sc = (1− s)/θ, so that for sc ≤ s, we have s ≥ 1/(1 + θ) ≥ 1/(2κγ), where θ is defined by (16) and
κγ in Theorem 2.1. As a result, no decoherence effect can be observed before the propagation scaling
s = 1/(1 + θ) for any spatial correlation parameter sc ≤ s. Theorem 3.1 below deals with the case
s > 1/(1 + θ) for which one can describe the wave decoherence in term of a fractional diffusion, while
Theorem 3.2 deals with the critical case sc = s = 1/(1 + θ) for which there is no wave decoherence,
but a random phase modulation of the Wigner transform.

Theorem 3.1 Let us assume that the autocorrelation function R(t,x) of the random perturbations is
given by (5), (10), and (15). For s ∈ (1/(2κγ), 1), and

sc = 1− s
θ

< s,

where θ ∈ (0, 1) is defined by (16), the family of scaled Wigner transform (Wε)ε∈(0,1) defined by (17)
and solution of the transport equation (20), converges in probability on C([0,+∞), (Br, dBr )) as ε→ 0
to a limit denoted by W . More precisely, ∀T > 0 and ∀η > 0,

lim
ε→0

P

(
sup
t∈[0,T ]

dBr (Wε(t),W (t)) > η

)
= 0.

W is the unique solution uniformly bounded in L2(R2d) of the fractional diffusion equation

∂tW = −σ(θ)(−∆k)θ/2W, (22)

with W (0,x,k) = W0(x,k). Here, (−∆k)θ/2 is the fractional Laplacian with Hurst index θ ∈ (0, 1),
and

σ(θ) = 2a(0)θΓ(1− θ)
(2π)d

∫
Sd−1

dS(u)|e1 · u|θ

with e1 ∈ Sd−1 and Γ(z) =
∫ +∞

0 t1−ze−tdt. Moreover, W is given by the following formula

W (t,x,k) = 1
(2π)d

∫
dqeik·qe−σ(θ)|q|θŴk

0 (x,q), (23)

where Ŵk
0 stands for the Fourier transform of W0 with respect to the variable k.

Let us note that we cannot expect a convergence on L2(R2d) equipped with the strong topology.
In fact, the following conservation relation ‖Wε(t)‖L2(R2d) = ‖W0,ε‖L2(R2d), is not true anymore for
the limit W . Moreover, let us note that the Wigner distribution Wε is self-averaging as ε goes
to 0, that is the limit W is not random anymore. This self-averaging phenomenon of the Wigner
distribution has already been observed in several studies [3, 5, 6, 21] for s = 1, and is very useful in
applications. The proof of Theorem 3.1 is given in Section 5 and is based on an asymptotic analysis
using perturbed-test-function and martingale techniques.

Equation (22) describes the loss of coherence of the field φε for the particular spatial correlation
parameter sc through a momentum diffusion. This fractional diffusion exhibits a damping term
obeying to a power law with exponent θ ∈ (0, 1) describing the decoherence rate of the field φε. An
important point is that the wave decoherence mechanism is deterministic, it does not depend on the
particular realization of the random medium. Finally, let us note that W does not evolves in x. In
fact, in (20) the dispersion term k · ∇x is of order εsc since the wave dispersion evolves on a spatial
scale sc = 0, and Wε captures only spatial variations happening on a spatial scale sc > 0.

The following theorem investigates the special case sc = s = 1/(1 + θ), with either γ > 0 or
β < 1/2. This special case study the decoherence of the wave envelop φ0 (18) itself and not its local
decoherence. The case γ = 0 and β = 1/2, and s = sc has been addressed in Theorem 3.1, since in
this particular case 1/(1+θ) = 1/(2κ0). As a result, the Wigner transform does not evolves (no phase
modulation as in Theorem 3.2 nor momentum diffusion) and then there is no wave decoherence.
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Theorem 3.2 Let us assume that the autocorrelation function R(t,x) of the random perturbations is
given by (5), (10), and (15). For either γ > 0 or β < 1/2, and

sc = s = 1
1 + θ

,

where θ ∈ (0, 1) is defined by (16), the family of scaled Wigner transform (Wε)ε∈(0,1) defined by (17)
and solution of the transport equation (20), converges in distribution on C([0,+∞), L2(R2d)) as ε→ 0
to a limit W defined by

W (t,x,k) = 1
(2π)d

∫
dqŴk

0 (x,q) exp
(
ik · q + i

∫
Bt(dp)eip·x(e−iq·p/2 − eiq·p/2)

)
.

W is the unique solution of the stochastic differential equation

dW (t,x,k) = − σ(θ)(−∆k)θ/2W (t,x,k)

+ 2ia(0)
(2π)d

∫
Bt(dp)eix·p

(
W
(
t,x,k− p

2 )−W
(
t,x,k + p

2 )
)
,

(24)

with W (0,x,k) = W0(x,k). Here, (Bt)t is a complex Brownian motion on H′θ the dual space of

Hθ =
{
ϕ such that

∫
dp
|p|d+θ |ϕ(p)|2 < +∞

}
,

with covariance function

E
[
Bt(ϕ1)Bs(ϕ2)

]
= s∧t

∫
dp
|p|d+θϕ1(p)ϕ2(−p) and E

[
Bt(ϕ1)Bs(ϕ2)

]
= s∧t

∫
dp
|p|d+θϕ1(p)ϕ2(p).

Moreover, (−∆k)θ/2 is the fractional Laplacian with Hurst index θ ∈ (0, 1), and

σ(θ) = 2a(0)θΓ(1− θ)
(2π)d

∫
Sd−1

dS(u)|e1 · u|θ

with e1 ∈ Sd−1 and Γ(z) =
∫ +∞

0 t1−ze−tdt.

This limiting Wigner transform is random because the wave does not propagate enough to be
self-averaging. In fact, as shown in Theorem 3.1 ∀s > 1/(1 + θ) the limiting Wigner transform is
self-averaging and is equal to the expectation of the limiting Wigner transform obtain in the case
sc = s = 1/(1 + θ).

Let us note that the convergence holds on L2(R2d) equipped with the strong topology. In fact,
the conservation relation ‖Wε(t)‖L2(R2d) = ‖W0,ε‖L2(R2d) is still true for the limiting process W .
This conservation for the limiting process means that there is no loss of coherence of the wave for
sc = s = 1/(1 + θ). However, in this scaling the limit W is a stochastic process, which is given in
the Fourier domain by a random phase modulation. As illustrated in Figure 2, the random phase
modulation of the Wigner transform is caused by the fast phase modulation of the field φε itself
obtained in Theorem 2.1. For s ∈ (1/(2κγ), 1/(1 + θ)) this random phase modulation oscillates very
fast up to the scales s = 1/(1 + θ), and produce a phase modulation (if γ > 0 or β < 1/2) on the
Wigner transform. Afterwards, on the scales s > 1/(1 + θ) this random phase modulation of the
Wigner transform oscillates very fast and then breaks the wave coherence. The phase modulation of
the Wigner transform average out and then describes the wave decoherence for s ∈ (1/(1 + θ), 1).

Theorem 3.1 and Theorem 3.2 show a qualitative difference between the random effects induced
on a wave propagating in long range and in rapidly decorrelating random media in time (13). As
previously noted, it has been shown in [8] for rapidly decorrelating random media that the field φe
does not evolve before the scale s = 1, so that there is no wave decoherence before s = 1. In this case
the phase and the phase space energy of the wave, which describes the wave decoherence, evolve on
the same scale. Let us give a probabilistic interpretation to illustrate the difference of the random
effects caused by the long range and rapidly decorrelating random media. The wave decoherence is
given by the random operator (21), which after homogenization gives rise to an operator of the form

ε1−s
∫
dpσ(p)

(
λ
(
k + p

εsc

)
− λ(k)

)
.
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(a)

Phase modulation

Wave decoherence

(b)

Wave decoherence

Phase
modulation

Figure 2: Schematic representation of the behavior of the wave. s is the propagation scale parameter
and sc is the spatial correlation parameter. The phase modulation effects appear for s = 1/(2κγ).
Afterward, wave decoherence appears on the low spatial correlation scales first, and then propagates
to the higher one according to the formula sc = (1−s)/θ. In (a) we represent the behavior of the wave
in the case where γ > 0 or β < 1/2. The dot represents the transition between the phase modulation
effects and the wave decoherence effects (see Theorem 3.2). In (b) we represent the behavior of the
wave in the case where γ = 0 and β = 1/2.

Formally, the momentum diffusion of the Wigner is given by the variations of a stochastic jump
process [31] with infinitesimal generator given by the previous one, which characterizes its variations.
Since σ(p) ∈ L1(R), the variation of the jump process are therefore bounded by O(ε1−s) for all sc.
That is why we cannot observe wave decoherence in rapidly decorrelating random media for sc > 0.
The variations of the jump process become significant only for the scaling s = 1 and sc = 0, and that
is why we can observe wave decoherence only at this scaling. However, for long-range random media
the variations of the jump process are large and given by

ε1−s
∫
dp a(p)
|p|d+θ

(
λ
(
k + p

εsc
)− λ(k)

)
∼
ε→0

ε1−s−θsca(0)
∫

dp
|p|d+θ

(
λ(k + p)− λ(k)

)
.

As a result the large variations can balance the small term ε1−s and give rise to significant momentum
diffusion. In rapidly decorrelating random media the wave decoherence is only significant for sc = 0
and for a sufficiently large propagation distance, while for the long-range random media the wave
decoherence occurs first on the large correlation scale sc and propagates to the smaller ones as the
propagation scale increase, up to the scaling sc = 0 and s = 1 (see Figure 2). We will see in the
next section that the wave decoherence mechanism in the scaling s = 1 and sc = 0 for long-range and
rapidly decorrelating random media is exactly the same, but however, this decoherence mechanism
has different regularity properties in both cases.

Let us remark that the spatial frequency of the initial condition (18) which is of order εs−sc is
low compared to the one of the random medium (∼ εs) on the macroscopic scale ε−s. In rapidly
deccorelating random media such low frequency sources do not interact with the random medium.
However, as we have seen in Theorem 3.1 low frequency initial conditions interact strongly with
slowly decorrelating random media. This fact can be useful in passive imaging of a target in a slowly
decorrelating random medium [18].

4 The Radiative Transport Scaling s = 1 and sc = 0
This section describes the evolution of the phase space energy density, where the momentum diffusion
and the dispersion are of order 1. The following results have been proved in [21], but we state these
results in order to provide a complete and self-contained presentation of the wave propagation in
long-range random media.

The radiative transport scaling is an important scaling since it is the only one for which wave
decoherence happens for rapidly deccorelating random media. This scaling provides also wave de-
coherence for long-range random media, but the momentum diffusion is not exactly the fractional
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diffusion as previously obtained. Even if the decoherence mechanism are the same in long-range and
rapidly decorrelating random media this result lightens an important qualitative difference between
the two kind of random media.

In the radiative transfer scaling in addition to a momentum diffusion, now we also have a dispersion
term k · ∇x. Using the notation introduced in Section 1.3, we have the following result.

Theorem 4.1 Let us assume that the autocorrelation function R(t,x) of the random perturbations is
given by (5), (10), and (15). For γ > 0, the family (Wε)ε∈(0,1) of Wigner transform, solution of the
transport equation (20) with sc = 0, converges in probability on C([0,+∞), (Br, dBr )) as ε → 0 to a
limit denoted by W . More precisely, ∀T > 0 and ∀η > 0,

lim
ε→0

P

(
sup
t∈[0,T ]

dBr (Wε(t),W (t)) > η

)
= 0.

W is the unique classical solution uniformly bounded in L2(R2d) of the radiative transfer equation

∂tW + k · ∇xW = LW, (25)

with W (0,x,k) = W0(x,k). Here, L is defined by

Lϕ(k) =
∫
dpσ(p− k)

(
ϕ(p)− ϕ(k)

)
, (26)

with ϕ ∈ C∞(Rd) and where

σ(p) = 2R̂0(p)
(2π)dg(p) = 2a(p)

(2π)d|p|d+θ .

Moreover, W is given by

W (t,x,k) = 1
(2π)2d

∫
dydqei(x·y+k·q)e

∫ t
0
duΨ(q+uy)

Ŵ0(y,q + ty),

where
Ψ(q) =

∫
dpσ(p)(eip·q − 1),

so that ∀t0 > 0 we have

W ∈ C0
(

(0,+∞),
⋂
k≥0

Hk(R2d)
)
∩ L∞

(
[t0,+∞),

⋂
k≥0

Hk(R2d)
)
.

In Theorem 4.1 Hk(R2d) stands for the kTh. Sobolev space on R2d, and Ŵ0 stands for the Fourier
transform in both variables x and k. Let us note that the case γ = 0, has not been addressed in [21],
because it leads to much more difficult algebra than the cases γ ∈ (0, 1). More precisely, we show in
this case the tightness of the family (Wε)ε and show that all the subsequence limits are deterministic
weak solutions of the same transport equation (25) with

Lϕ(k) =
∫
dpσ

(
p− k, |k|

2 − |p|2

2

)(
ϕ(p)− ϕ(k)

)
with σ(p, ω) = 2g(p)R̂0(p)

(2π)d(g(p)2 + ω2) .

However, it is difficult to show the weak uniqueness of the limiting transfer equation in the slowly
decorrelating case. First, the technique used in the proof of Theorem 4.1 to show the weak uniqueness
leads to very difficult algebra. Second, it should be possible to use the techniques developed in [11].
This kind of techniques use a lower and an upper bound of σ in terms of |k− p|−(d+θ). However, we
just have an upper bound of this form. Nevertheless, we think that the transport equation obtained
in the case γ = 0 is still weakly well posed.

As in Section 3, we cannot expect a convergence on L2(R2d) equipped with the strong topology
since the conservation relation ‖Wε(t)‖L2(R2d) = ‖W0,ε‖L2(R2d) cannot be satisfy by the limit W .
Moreover, the Wigner distribution Wε is also self-averaging as ε goes to 0, that is the limit W is
not random anymore. This self-averaging phenomenon of the Wigner distribution has already been
observed in several studies [3, 5, 6, 21] and is very useful in applications.
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Equation (25) describes the asymptotic evolution of the phase space energy distribution of the
field φε solution of the random Schrödinger equation (4). It describes the dispersion phenomenon
through the transport term k · ∇x, and the wave decoherence through the nonlocal transfer operator
L defined by (26). Finally, the transfer coefficient σ(p−k) describes the energy transfer between the
modes k and p.

An interesting remark is that the result of Theorem 4.1 does not depend on whether
∫
dpσ(p) is

finite or not. In other words, the radiative transfer equation (25) is valid in the two case, slowly and
rapidly decaying correlations in time (13). However, as noted in Theorem 4.1, these equations, in the
both cases, behave in different ways. As it has been discussed in Section 1.2, in the case of rapidly
decaying correlations in time (13), that is

∫
dpσ(p) < +∞, the radiative transfer equation (25) has

the same properties as in the mixing case addressed in [7]. In the case of slowly decaying correlations
in time (13), that is

∫
dpσ(p) = +∞, we observe a regularizing effect of the solutions of (25) which

cannot be observed in the case of rapidly decaying correlations in time. This regularizing property
lightens a important qualitative difference between the cases rapidly and slowly decaying correlations.

Let us note that the momentum diffusion in (25) is not exactly the same diffusion mechanism as the
one obtained in Section 3, but they are very closed. In fact the momentum diffusion given in Theorem
3.1 is described in terms of a fractional Laplacian, while in the radiative transfer regime the momentum
diffusion is described in terms of a nonlocal operator which is not exactly a fractional Laplacian.
However, this two diffusion mechanisms are anomalous diffusions since they lead to damping terms
obeying to a power law with exponent θ ∈ (0, 1). We have to wait for a long time of propagation in the
radiative transfer regime to observe again the momentum diffusion given by a fractional Laplacian.
This approximation in the radiative transfer scaling is proved in [21, Theorem 5.1]

Conclusion
In this paper we have studied the different behaviors happening on a wave propagating in a random
media with long-range correlation properties. We have exhibited three different behaviors over a range
of scale given by Theorem 2.1, Theorem 3.1, Theorem 3.2, and Theorem 4.1. These asymptotic be-
haviors differ strongly from those obtain with the random Schrödinger equation with rapidly decaying
correlations [4, 7, 8], for which all the random effects appear on the wave on the same propagation
scale e−1 (s = 1). In the context of long-range correlations, the effects of the randomness appear
progressively according the scale of propagation. We have seen in Theorem 2.1 that the random
perturbation induce a phase modulation in term of fractional Brownian motion on the wave itself.
This phase modulation begins to oscillate very fast up to produce a phase modulation in the Wigner
transform (Theorem 3.2) on the large spatial scale. Afterward, this phase modulation in the Wigner
transform begins also to oscillate very fast up to average out and then breaks the wave coherence. The
wave decoherence first happens on the large spatial scales and then propagates to smaller one as the
propagation distance increase(Theorem 3.1, Theorem 4.1, and see Figure 2). The wave decoherence
mechanism is described in term of an anomalous momentum diffusion (Theorem 3.1 and Theorem
4.1) since it obeys to a power law with exponent lying in (0, 1). Theorem 3.1 shows that low frequency
initial conditions interact strongly with slowly decorrelating random media. This result can be useful
in passive imaging of a target in a long-range random medium [18].

5 Proof of Theorem 3.1
The proof of Theorem 3.1 is based on the perturbed-test-function approach and follow the techniques
of the proof of [21, Theorem 2.2]. Using the notion of a pseudogenerator, we prove tightness and
characterize all subsequence limits.

5.1 Pseudogenerator
We recall the techniques developed by Kurtz and Kushner [25]. LetMε be the set of all Fε-measurable
functions f(t) for which supt≤T E [|f(t)|] < +∞ and where T > 0 is fixed. Here, Fεt = Ft/ε and (Ft)
is defined by (6). The p − lim and the pseudogenerator are defined as follows. Let f and fδ in Mε
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∀δ > 0. We say that f = p− limδ f
δ if

sup
t,δ

E[|fδ(t)|] < +∞ and lim
δ→0

E[|fδ(t)− f(t)|] = 0 ∀t.

The domain of Aε is denoted by D (Aε). We say that f ∈ D (Aε) and Aεf = g if f and g are in
D (Aε) and

p− lim
δ→0

[
Eεt[f(t+ δ)]− f(t)

δ
− g(t)

]
= 0,

where Eεt is the conditional expectation given Fεt . A useful result about pseudogenerator Aε is given
by the following theorem.

Theorem 5.1 Let f ∈ D (Aε). Then

M ε
f (t) = f(t)− f(0)−

∫ t

0
Aεf(u)du

is an (Fεt )-martingale.

5.2 Tightness
According to the continuity of (Wε)ε∈(0,1) and since supt,ε ‖Wε(t)‖L2(R2d) < +∞, it suffices to prove
the following proposition to show that the process (Wε)ε∈(0,1) is tight in C([0,+∞), L2

w(R2d)).

Proposition 5.1 ∀λ ∈ C∞0 (R2d), the family (Wε,λ)ε∈(0,1) is tight on D ([0,+∞),C).

Proof (of Proposition 5.1) Throughout the proof Proposition 5.1, let λ ∈ C∞0 (R2d), f be a bounded
smooth function, and f ε0(t) = f(Wε,λ(t)). According to the property of the Gaussian potential V [1, 2],
we have ∀T > 0,

E
[

sup
t∈[0,T ]

‖Lελ(t)‖2L2(R2d)
]
< +∞,

so that the following pseudogenerator is well defined:

Aεf ε0(t) = f ′(Wε,λ(t))
[
εscWε,λ1(t) + ε(1−γ)/2−s〈Wε(t),Lε(t)λ

〉
L2(R2d)

]
,

where Lε is defined by (21), and
λ1(x,k) = k · ∇xλ(x,k).

Let

f ε1(t) =ε(1−γ)/2−sf ′(Wε,λ(t))
∫
dxdkWε(t,x,k)

×
∫ +∞

t

Eεt
[ ∫ V̂

(
u

εs+γ , dp
)

(2π)di ei(u−t)p·k/εseip·x/ε
s

×
(
λ
(
x,k− p

2εsc
)
− λ

(
x,k + p

2εsc
))]

du.

Lemma 5.1 ∀T > 0, and η > 0

lim
ε

P
(

sup
0≤t≤T

|f ε1(t)| > η
)

= 0, and lim
ε

sup
t≥0

E [|f ε1(t)|] = 0.

Proof (of Lemma 5.1) Using (7), we have

f ε1(t) = ε
1+γ

2 f ′(Wε,λ(t))
〈
Wε(t),L1,ελ(t)

〉
L2(R2d)

with

L1,ελ(t,x,k) = 1
(2π)di

∫
V̂
(

t
εs+γ , dp

)
g(p)− iεγk · pe

ip·x/εs
(
λ
(
x,k− p

2εsc
)
− λ
(
x,k + p

2εsc
))
.
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Lemma 5.2
lim
ε
ε1+γE

[
sup
t∈[0,T ]

‖L1,ελ(t)‖2L2(R2d)

]
= 0.

Proof (of Lemma 5.2) First,

‖L1,ελ(t)‖2L2(R2d) ≤
1

(2π)d

∫
dxdk

∣∣∣ ∫ V̂
(

t
εs+γ , dp

)
g(p)− iεγk · pe

ip·x/εs
(
λ
(
x,k− p

2εsc
)
− λ
(
x,k + p

2εsc
))∣∣∣2.

Let us fixe x, k, and u. Let

φλ,x,k,u(p) = eip·x/ε

g(p)− iεγk · p

(
λ
(
x,k− p

2εsc
)
− λ

(
x,k + p

2εsc
))
.

According to (16) φλ,x,k,u ∈ H. Consequently, Ṽ =
〈
V̂ , φλ,x,k,u

〉
H′,H is centered Gaussian process

with a pseudo-metric m on [0, T ] given by

m(t1, t2) = E
[(
Ṽ
( t1
εs+γ

)
− Ṽ

( t2
εs+γ

))2
]1/2

.

Then, ∀(t1, t2) ∈ [0, T ]2

m2(t1, t2) ≤ C |t1 − t2|
εs+γ+θsc

(
sup
x,k
|∇kλ(x,k)|2

∫
|p|<1

dp 1
|p|d+θ−1 + sup

x,k
|λ(x,k)|2

∫
|p|>1

dp 1
|p|d+θ

)
and

diam2
m([0, T ]) ≤ C

ε(θ+2β)sc

(∫
|p|<1

dp 1
|p|d+θ+2β−1

∫ 1/2

−1/2
du|∇xλ(x,k + up)|2

+
∫
|p|>1

dp 1
|p|d+θ+2β

(
λ
(
x,k− p

2εsc
)
− λ

(
x,k + p

2εsc
))2)

.

Here, diamm([0, T ]) stands for the diameter of [0, T ] under the pseudo-metric m2. According to [2,
Theorem 2.1.3], we have

E

[
sup
t∈[0,T ]

∣∣∣Ṽ ( t

εs+γ

)∣∣∣2] ≤ C1

(∫ b(x,k)/ε(θ+2β)sc

0

√
ln
(
C2

T

r2εs+γ+θsc

)
dr

)2

,

where

b2(x,k) =C
(∫
|p|<1

dp 1
|p|d+θ+2β−2

∫ 1/2

−1/2
du|∇xλ(x,k + up)|2

+
∫
|p|>1

dp 1
|p|d+θ+2β

(
λ
(
x,k− p

2
)
− λ
(
x,k + p

2
))2)

.

Consequently,

ε1+γE
[

sup
t∈[0,T ]

‖L1,ελ(t)‖2L2(R2d)
]
≤ C

∫
dxdk

(∫ εs+γ−2βscb(x,k)

0

√
ln
(
C2

T

r2

)
dr
)2

≤ Cεs+γ−2βsc
∫
dxdkb(x,k)

∫ 1

0
ln
(
C2

T

r2

)
dr < +∞,

which concludes the proof of Lemma 5.2, since sc = (1− s)/θ and sc < s < (s+ γ)/(2β). �

Then, the proof of Lemma 5.1 is a direct consequence of Lemma 5.2.�

The following lemma insures the tightness of the process (Wε)ε.

Lemma 5.3 ∀T > 0,
{
Aε
(
f ε0 + f ε1

)
(t), ε ∈ (0, 1), 0 ≤ t ≤ T

}
is uniformly integrable.
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Proof (of Lemma 5.3) First, Lemma 5.4 insures that the pseudogenerator at Aε
(
f ε0 +f ε1

)
(t) is well

defined and it is also needed to show the uniform integrability.

Lemma 5.4
sup
ε∈(0,1)

ε1−sE
[
‖Lε
(
L1,ελ(t)

)
(t)‖2L2(R2d)

]
< +∞.

Proof (of Lemma 5.4) A short computation gives

Lε
(
L1,ελ

)(
t,x,k) =∫∫
V̂
( t

εs+γ
, dp1

)
V̂
( t

εs+γ
, dp2

)
ei(p1+p2)·x/εs

×
( 1
g(p2)− iεγ

(
k− p1

2εsc
)
· p2

(
λ
(
x,k− p1

2εsc −
p2

2εsc
)
− λ
(
x,k− p1

2εsc + p2

2εsc
))

− 1
g(p2)− iεγ

(
k + p1

2εsc
)
· p2

(
λ
(
x,k + p1

2εsc −
p2

2εsc
)
− λ
(
x,k + p1

2εsc + p2

2εsc
)))

.

Moreover, the forth order moment of our Gaussian field V̂ is given by

E
[
V̂ (t1, dp1)V̂ (t2, dp2)V̂ ∗(t3, dp3)V̂ ∗(t4, dp4)

]
=

(2π)2dR̃(t1 − t2,p1)R̃(t3 − t4,p3)δ(p1 + p2)δ(p3 + p4)
+ (2π)2dR̃(t1 − t3,p1)R̃(t2 − t4,p3)δ(p1 − p3)δ(p2 − p4)
+ (2π)2dR̃(t1 − t4,p1)R̃(t2 − t3,p3)δ(p1 − p4)δ(p2 − p3),

so that, using the smoothness of λ, (16) and the change of variable p′ = p/εsc , we obtain

ε1−sE
[
‖Lε
(
L1,ελ

)
(t)‖2L2(R2d)

]
≤ ε1−s−θsc

× C
[( ∫

|p|<1
dp 1
|p|d+θ−1

)2
+
(∫
|p|>1

dp 1
|p|d+θ

)2](
‖∇xλ‖2L2(R2d) + ‖λ‖2L2(R2d)

)
< +∞,

That concludes the proof of Lemma 5.4 since sc = (1− s)/θ. �.

In the same way as Lemma 5.4 we have

sup
ε∈(0,1)

E
[
‖Lελ(t)‖2L2(R2d) × ‖L1,ελ(t)‖2L2(R2d)

]
< +∞.

As a result, we obtain

Aε(f ε0 + f ε1)(t) =ε1−sf ′(Wε,λ(t))
[
Wε,λ1(t) +

〈
Wε(t),Lε

(
L1,ελ(t)

)
(t)
〉
L2(R2d)

]
+ ε1−sf ′′(Wε,λ(t))

〈
Wε(t),L1,ελ(t)

〉
L2(R2d)

〈
Wε(t),Lελ(t)

〉
L2(R2d)

+O(ε(1+γ)/2+sc),

and supε,t E[|A(f ε0 + f ε1)(t)|2] < +∞. That conclude the proof of Lemma 5.3 and then the proof of
Proposition 5.1. � �

5.3 Identification of all subsequence limits
In this section, we identify all the subsequence limits of the process (Wε)ε as solutions of a deterministic
diffusion equation. Let us note that in this case all the limit processes are therefore deterministic.
This fact implies that the convergence of the process (Wε)ε also holds in probability. We will see that
this fractional diffusion equation is well posed. In particular, this will imply the convergence of the
process (Wε)ε itself to the unique solution of this diffusion equation.

Proposition 5.2 Let W be an accumulation point of (Wε)ε. Then, W is the unique strong solution
of the diffusion equation

∂tW = −σ(θ)(−∆k)θ/2W, (27)
with W (t) = W0, and

σ(θ) = 2a(0)θΓ(1− θ)
(2π)d

∫
Sd−1

dS(u)|e1 · u|θ.
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Proof (of Proposition 5.2) In this proof we use the following notation

ϕ⊗ ψ(x1,k1,x2,k2) = ϕ(x1,k1)ψ(x2,k2).

Let

f ε2(t) =ε1−sf ′(Wε,λ(t))
〈
Wε(t), H1,ε(t)

〉
L2(R2d)

+ ε1−sf ′′(Wε,λ(t))
〈
Wε(t)⊗Wε(t), H2,ε(t)

〉
L2(R4d),

where

H1,ε(t,x,k) =
1

(2π)2di2

∫ +∞

t

du

∫∫ (
Eεt
[
V̂ (u/εs+γ , dp1)V̂ (u/εs+γ , dp2)

]
− E

[
V̂ (0, dp1)V̂ (0, dp2)

])
× ei(p1+p2)·x/εsei(u−t)(p1+p2)·k/εs

×
[ 1
g(p2)− iεγ

(
k− p1

2εsc
)
· p2

(
λ
(
x,k− p1

2εsc −
p2

2εsc
)
− λ
(
x,k− p1

2εsc + p2

2εsc
))

− 1
g(p2)− iεγ

(
k + p1

2εsc
)
· p2

(
λ
(
x,k + p1

2εsc −
p2

2εsc
)
− λ
(
x,k + p1

2εsc + p2

2εsc
))]

,

and

H2,ε(t,x1,k1,x2,k2) =
1

(2π)2di2

∫ +∞

t

du

∫∫ (
Eεt
[
V̂ (u/εs+γ , dp1)V̂ (u/εs+γ , dp2)

]
− E

[
V̂ (0, dp1)V̂ (0, dp2)

])
× eip1·x1/ε

s

eip2·x2/ε
s

ei(u−t)(p1·k1+p2·k2)/εs 1
g(p1)− iεγk1 · p1

×
(
λ
(
x1,k1 −

p1

2εsc
)
− λ
(
x1,k1 + p1

2εsc
))

×
(
λ
(
x2,k2 −

p2

2εsc
)
− λ
(
x2,k2 + p2

2εsc
))
.

However, according to (8)

Eεt
[
V̂
(
u+ t

εs+γ
, dp1

)
V̂
(
u+ t

εs+γ
, dp2

)]
− E

[
V̂ (0, dp1)V̂ (0, dp2)

]
= e−(g(p1)+g(p2))uV̂

( t

εs+γ
, dp1

)
V̂
( t

εs+γ
, dp2

)
− (2π)de−2g(p1)uR̂0(p1)δ(p1 + p2).

Consequently,

f ε2(t) = ε1+γ
[
f ′(Wε,λ(t))

〈
Wε(t), H̃1,ε(t)

〉
L2(R2d) + f ′′(Wε,λ(t))

〈
Wε(t)⊗Wε(t), H̃2,ε(t)

〉
L2(R4d)

]
,

where

H̃1,ε(t,x,k) = 1
(2π)2di2

∫∫
V̂ (t/εs+γ , dp1)V̂ (t/εs+γ , dp2) ei(p1+p2)·x/εs

(g(p1) + g(p2)− iεγk · (p1 + p2))

×
[ 1
g(p2)− iεγ

(
k− p1

2εsc
)
· p2

(
λ
(
x,k− p1

2εsc −
p2

2εsc
)
− λ
(
x,k− p1

2εsc + p2

2εsc
))

− 1
g(p2)− iεγ

(
k + p1

2εsc
)
· p2

(
λ
(
x,k + p1

2εsc −
p2

2εsc
)
− λ

(
x,k + p1

2εsc + p2

2εsc
))]

− 1
(2π)d

∫
dp R̂0(p)

2g(p)

[ 1
g(p) + iεγ

(
k− p

2εsc
)
· p

(
λ
(
x,k− p

εsc

)
− λ(x,k)

)
− 1

g(p) + iεγ
(
k + p

2εsc
)
· p

(
λ(x,k)− λ

(
x,k + p

εsc
)
)]
,
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and

H̃2,ε(t,x1,k1,x2,k2) = 1
(2π)2di2

∫∫
V̂ (t/εs+γ , dp1)V̂ (t/εs+γ , dp2)

× eip1·x1/ε
s

eip2·x2/ε
s

(g(p1)− iεγk1 · p1)(g(p1) + g(p2)− iεγ(k1 · p1 + k2 · p2))

×
(
λ
(
x1,k1 −

p1

2εsc
)
− λ
(
x1,k1 + p1

2εsc
))

×
(
λ
(
x2,k2 −

p2

2εsc
)
− λ
(
x2,k2 + p2

2εsc
))

− 1
(2π)d

∫
dp R̂0(p)eip·(x1−x2)/εs

(g(p)− iεγk1 · p)(2g(p)− iεγ(k1 − k2) · p)

×
(
λ
(
x1,k1 −

p
2εsc

)
− λ
(
x1,k1 + p

2εsc
))

×
(
λ
(
x2,k2 −

p
2εsc

)
− λ
(
x2,k2 + p

2εsc
))
.

Lemma 5.5
lim
ε

sup
t≥0

E[|f ε2(t)|] = 0.

Proof (of Lemma 5.5) In the same way as in Lemma 5.4, we have

sup
t

E[‖H̃1,ε(t)‖2LR2d + ‖H̃2,ε(t)‖2LR2d ] ≤ ε−(θ+2β)sc

× C
[( ∫

|p|<1
dp 1
|p|d+θ−1

)2
+
(∫
|p|>1

dp 1
|p|d+θ

)2]
×
(
‖D2

xλ‖2L2(R2d) + ‖∇xλ‖2L2(R2d) + ‖λ‖2L2(R2d)

)
,

(28)

and
1 + γ − (θ + 2β)sc > 0⇐⇒ s > (1− γθ/(2β))/(1 + θ/(2β)) = 1/(2κγ),

that concludes the proof of Lemma 5.5 �

Consequently, after a long but straightforward computation, we get

Aε(f ε0 + f ε1 + f ε2)(t) =ε1−sf ′(Wε,λ(t))
〈
Wε(t), G1,ελ

〉
L2(R2d)

+ ε1−sf ′′(Wε,λ(t))
〈
Wε(t)⊗Wε(t), G2,ελ

〉
L2(R4d)

+ o(1),

(29)

where

G1,ελ(x,k) =− 1
(2π)d

∫
dpR̂0(p)

[ 1
g(p)− iεγ

(
k− p

2εsc
)
· p

(
λ(x,k)− λ

(
x,k− p

εsc

))
− 1

g(p)− iεγ
(
k + p

2εsc
)
· p

(
λ
(
x,k + p

εsc

)
− λ(x,k)

)]
,

(30)

and

G2,ελ(x1,k1,x2,k2) =− 1
(2π)d

∫
dp g(p)R̂0(p)eip·(x1−x2)/εs

(g(p)− iεγk1 · p)(2g(p)− iεγ(k1 − k2) · p)

×
(
λ
(
x1,k1 −

p
2εsc

)
− λ
(
x1,k1 + p

2εsc
))

×
(
λ
(
x2,k2 −

p
2εsc

)
− λ
(
x2,k2 + p

2εsc
))
.

(31)

First, making the change of variable p′ = p/εsc , and using the Riemann-Lebesgue Lemma and the
dominated convergence Theorem with (28), we have

lim
ε
‖G2,ελ‖2L2(R4d) = 0 (32)
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since sc < s, and also
lim
ε
‖(G1,ε −G1)λ‖2L2(R2d) = 0, (33)

where

G1λ(x,k) = a(0)
(2π)d

∫
dp 1
|p|d+θ

(
λ(x,k + p) + λ(x,k− p)− 2λ(x,k)

)
= 2a(0)

(2π)d

∫
dp 1
|p|d+θ

(
λ(x,k + p)− λ(x,k)

)
= −σ(θ)(−∆)θ/2λ.

(34)

Let f ε(t) = f ε0(t) + f ε1(t) + f ε2(t). According to Theorem 5.1,
(
M ε
fε(t)

)
t≥0 is an (Fεt )-martingale.

That is, for every bounded continuous function Φ, every sequence 0 < s1 < · · · < sn ≤ s < t, and
every family (µj)j∈{1,...,n} ∈ L2(Rd)n, we have

E
[
Φ
(
Wε,µj (sj), 1 ≤ j ≤ n

)(
f ε(t)− f ε(s)−

∫ t

s

Aεf ε(u)du
)]

= 0.

Using (29), Lemma 5.1, Lemma 5.5, (32), and (33) we obtain that

Mf,λ(t) = f(Wλ(t))− f(Wλ(0))−
∫ t

0
∂vf(Wλ(u))

〈
W (u), G1λ

〉
L2(R2d)du

is a martingale. More particularly, let us consider f be a smooth function so that f(v) = v, ∀v such
that |v| ≤ r‖λ‖L2(R2d), then

Mλ(t) = Wλ(t)−Wλ(0)−
∫ t

0

〈
W (u), G1λ

〉
L2(R2d)du

is a martingale with a quadratic variation equal to 0. Consequently, Mλ = 0, that is W is a deter-
ministic weak solution of the diffusion equation (27). To show the weak uniqueness of this equation,
let us assume that W0 = 0. Moreover, it is clear that this diffusion equation with initial condition
λ0 ∈ L2(Rd) admits a unique strong solution that we denote by λθ of the form (23). As result, ∀T > 0

〈
W (T ), λ0

〉
L2(R2d) =

〈
W (T ), λ̃θ(T )

〉
L2(R2d) =

∫ T

0

〈
W (t), ∂tλ̃θ(t) + σ(θ)(−∆)θ/2λ̃θ(t)

〉
L2(R2d)dt = 0,

for λ̃θ(t) = λθ(T − t). As a result, all the accumulation points are also strong solutions of the diffusion
equation (27). That concludes the proof a Proposition 5.2. �

6 Proof of Theorem 3.2
The proof of this theorem is quite similar to the previous one. The proof of the tightness is exactly
the same. However, in this theorem we have assumed sc = s, but also either β < 1/2 or γ > 0. To
characterize the accumulation points we use exactly the same perturbed test functions as in the proof
of Theorem 3.1, to obtain

Aε(f ε0 + f ε1 + f ε2)(t) =ε1−sf ′(Wε,λ(t))
〈
Wε(t), G1,ελ

〉
L2(R2d)

+ ε1−sf ′′(Wε,λ(t))
〈
Wε(t)⊗Wε(t), G2,ελ

〉
L2(R4d)

+ o(1),

(35)

where G1,ελ is defined by (30), and G2,ελ by (31) with s = sc. However, we still have (33) for the
drift term f ′, but with the change of variable p′ = p/εs there are no fast phases anymore, and we get
that

Mf,λ(t) = f(Wλ(t))− f(Wλ(0))−
∫ t

0
f ′(Wλ(u))

〈
W (u), G1λ

〉
L2(R2d)

+ f ′′(Wλ(u))
〈
W (u)⊗W (u), G2(λ, λ)

〉
L2(R4d)du
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is a martingale where G1 is defined by (34), and

G2(λ1, λ2)(x1,k1,x2,k2) =− 1
(2π)d

∫
dp
|p|d+θ e

ip·(x1−x2)

×
(
λ1
(
x1,k1 −

p
2
)
− λ1

(
x1,k1 + p

2
))

×
(
λ2
(
x2,k2 −

p
2
)
− λ2

(
x2,k2 + p

2
))
.

(36)

In this theorem the second order term f ′′ has not been killed by the Riemann-Lebesgue Lemma,
so that the limiting point W is not deterministic anymore. As a result we need to study the finite
dimensional distributions

lim
ε

E
[ N∏
j=1

〈
Wε(tj), λj

〉nj
L2(R2d)

]
to characterize all the accumulation points of (Wε)ε. To do that we follow the technique used in [30]
and let us consider the tensorial process WM

ε (t) =
⊗M

j=1Wε(t) on L2(R2dM ). In the same way as
the case M = 1, we can show that WM

ε (t) is a tight process in L2(R2dM ) equipped with the weak
topology and for all its accumulation points WM

Mλ(t) = WM
λ (t)−WM

λ (0)−
∫ t

0

〈
WM (u), GM1 λ+ G̃M2 λ

〉
L2(R2dM )du

is a martingale ∀λ ∈ L2(R2dM ). Here, GM1 and G̃M2 are defined by

GM1 λ = −
M∑
j=1

σ(θ)(−∆kj)θ/2λ

and

G̃M2 λ(x1,k1, · · · ,xM ,kM )

= −
M∑

j1,j2=1
j1 6=j2

1
(2π)d

∫
dp
|p|d+θ e

ip·(xj1−xj2 )

×
(
λ
(
x1,k1, · · · ,xj1 ,kj1 −

p
2 , · · · ,xM ,kM

)
− λ
(
x1,k1, · · · ,xj1 ,kj1 + p

2 , · · · ,xM ,kM
))

×
(
λ
(
x1,k1, · · · ,xj2 ,kj2 −

p
2 , · · · ,xM ,kM

)
− λ
(
x1,k1, · · · ,xj2 ,kj2 + p

2 , · · · ,xM ,kM
))
.

As a result, E[WN ] is a weak solution of the differential equation

∂tλ
M = (GM1 +GM2 )λM . (37)

Let λ0 ∈ L2(R2dM ) such that its Fourier transform with respect to (k1, · · · ,kM ), λ̂k
0 , belongs to

C∞0 (R2dM ). Solving (37) in the Fourier domain, we show the existence and uniqueness of a smooth
function λM in the strong sense of (37) with initial condition λ0. As result, if E[WM (0)] = 0, ∀T > 0〈

E[WM (T )], λ0
〉
L2(R2dM ) =

〈
E[WM (T )], λ̃M (T )

〉
L2(R2dM )

=
∫ T

0

〈
E[WM (t)], ∂tλ̃M (t) + σ(θ)(−∆)θ/2λ̃M (t)

〉
L2(R2dM )dt = 0,

for λ̃M (t) = λM (T − t). Consequently, by a density argument, we obtain the weak uniqueness of (37),
and the moments

E
[
WM (t,x1,k1, · · · ,xM ,kM )

]
= E

[ M∏
j=1

W (t,xj ,kj)
]

are therefore uniquely determined for all accumulation point W . Let

W̃ (t,x,k) = 1
(2π)d

∫
dqŴk

0 (x,q) exp
(
ik · q + i

∫
Bt(dp)eip·x(e−iq·p/2 − eiq·p/2)

)
.

21



Using the îto’s formula and the weak uniqueness of (37), we obtain for all accumulation point WM

of (Wε)ε

E
[
WM (t,x1,k1, · · · ,xM ,kM )

]
= E

[ M∏
j=1

W̃ (t,xj ,kj)
]
.

Consequently, we have identified the one-dimensional finite distributions for all accumulation point
W

lim
ε

E
[ N∏
j=1

〈
Wε(t), λj

〉nj
L2(R2d)

]
= E

[ N∏
j=1

〈
W (tj), λj

〉nj
L2(R2d)

]
= E

[ N∏
j=1

〈
W̃ (t), λj

〉nj
L2(R2d)

]
.

To conclude the proof of Theorem 3.2, following a classical argument regarding the proof of
uniqueness of martingale problems [23, Proposition 4.27]: If the one-dimensional distributions of two
solutions are the same, then their finite dimensional distributions are also the same. Consequently,

lim
ε

E
[ N∏
j=1

〈
Wε(tj), λj

〉nj
L2(R2d)

]
= E

[ N∏
j=1

〈
W (tj), λj

〉nj
L2(R2d)

]
= E

[ N∏
j=1

〈
W̃ (tj), λj

〉nj
L2(R2d)

]
.
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