
L
1 solutions to the stationary Boltzmann equation

in a slab.

Leif Arkeryd ∗ & Anne Nouri. † ‡

Résumé. On considère l’équation de Boltzmann stationnaire en

une dimension d’espace et trois dimensions de vitesse, pour des

conditions aux limites de réflexion maxwellienne diffuse. On mon-

tre l’existence d’une solution appartenant à L1, en utilisant le

terme de production d’entropie et un changement de variables

d’espace classique.

Abstract. The stationary Boltzmann equation for pseudo-maxwellian
and hard forces is considered in the slab. An L1 existence theorem is proven
in the case of diffuse reflection boundary conditions. The method of proof
is based on properties of the entropy dissipation term. The approach is
simplified by a classical transformation of the space variable resulting in a
homogeneous equation of degree one. The case of given indata is also briefly
discussed.

1 Introduction.

Consider the stationary Boltzmann equation in a slab of length L

ξ
∂

∂x
f(x, v) = Q(f, f)(x, v), x ∈ [0, L], v ∈ IR3. (1.1)
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The nonnegative function f(x, v) represents the density of a rarefied gas at
position x and velocity v, with ξ the velocity component in the slab direction.
The boundary conditions are of diffuse reflection type,

f(0, v) = M0(v)

∫

ξ′<0
| ξ′ | f(0, v′)dv′, ξ > 0,

f(L, v) = ML(v)

∫

ξ′>0
ξ′f(L, v′)dv′, ξ < 0, (1.2)

where M0 and ML are given normalized half-space maxwellians Mi(v) =

1
2πT 2

i

e
−

|v|2

2Ti , i ∈ {0, L}. The collision operator Q is the classical Boltzmann

operator with angular cut-off

Q(f, f)(x, v) =

∫

IR3

∫

S2
B(v − v∗, ω)[f ′f ′∗ − ff∗]dωdv∗

= Q+(f, f) − Q−(f, f),

where Q+ is the gain part and Q− the loss part of the collision term, and
where

f∗ = f(x, v∗), f ′ = f(x, v′), f ′∗ = f(x, v′∗),

v′ = v − (v − v∗, ω)ω, v′∗ = v∗ + (v − v∗, ω)ω.

Here, (v − v∗, ω) denotes the Euclidean inner product in IR3. Let ω be
represented by the polar angle θ (with polar axis along v − v∗) and the
azimuthal angle φ. The function B(v − v∗, ω) is the kernel of the collision
operator Q, and for convenience taken as | v − v∗ |β b(θ), with

0 ≤ β < 2, b ∈ L1
+(0, 2π), b(θ) ≥ c > 0, a.e.

Let us first recall that in the case of the time-dependent Boltzmann equation

ft(t, x, v) + v · 5xf(t, x, v) = Q(f, f)(t, x, v), t ∈ IR+, x ∈ Ω, v ∈ IR3,

where Ω is a subset of IR3, the Cauchy problem has been studied intensely,
most important being the time-dependent existence proof by R.DiPerna and
P.L.Lions [17], based on the use of the averaging technique and new solution
concepts. For a survey and references to the time-dependent problem, see
[13].
In this paper we focus on solutions to the stationary Boltzmann equation in
the slab under diffuse reflection boundary conditions. Stationary solutions
are of interest as candidates for the time asymptotics of evolutionary prob-
lems (cf [10], [5]). They also appear naturally in the resolution of boundary
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layer problems, when studying hydrodynamical limits of time-dependent so-
lutions. However, stationary solutions cannot be obtained directly by the
techniques so far used in the time-dependent case, since for the latter natural
bounds on mass, energy and entropy provide an initial mathematical frame-
work, whereas in the stationary case only bounds on flows of mass,energy,
and entropy through the boundary are easily available. Instead our tech-
nique is based on a systematic use of suitable parts of the entropy dissipation
term with its natural bounds. The range of applicability of this idea for ki-
netic equations goes well beyond the present problem.
A number of results are known concerning the cases of the non-linear sta-
tionary Boltzmann equation close to equilibrium, and solutions of the cor-
responding linearized equation. There, more general techniques - such as
contraction mapping based ones - can be utilized. So e.g. in an IRn setting,
the solvability of boundary value problems for the Boltzmann equation in
situations close to equilibrium is studied in [18], [19], [21], [33]. Stationary
problems in small domains for the non-linear Boltzmann equation are stud-
ied in [28], [22]. The unique solvability of internal stationary problems for
the Boltzmann equation at large Knudsen numbers is established in [26].
Existence and uniqueness of stationary solutions for the linearized Boltz-
mann equation in a bounded domain are proven in [25], and for the linear
Boltzmann equation uniqueness in [29], [31], and existence in [12] and oth-
ers. A classification of the well-posedness of some boundary value problems
for the linearized Boltzmann equation is made in [16]. For discrete velocity
models, in particular the Broadwell model, there are a number of stationary
results in two dimensions, among them [8], [9], [14],[15].
Moreover, existence results far from equilibrium have been obtained for the
stationary nonlinear Povzner equation in a bounded region in IRn (see [6]).
The Povzner collision operator ([30]) is a modified Boltzmann operator with
a ’smearing’ process for the pair collisions, whereas in the derivation of the
Boltzmann collision operator, each separate collision between two molecules
occurs at one point in space.
In the slab case mathematical results on boundary value problems with large
indata for the BGK equation are presented in [32], and for the Boltzmann
equation in a measure setting in [1], [11] and in an L1 setting in [4] for cases
of pseudo-maxwellian and soft forces. In the paper [4] a criterium is derived
for obtaining weak L1 compactness from the boundedness of the entropy
dissipation term. It allows an existence proof for a weak L1 solution to the
Boltzmann equation in the slab when the collision kernel is truncated for
small velocities. In the present paper we use the entropy dissipation term
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also to get rid of such truncations, and prove an existence result for the
genuine stationary Boltzmann equation with pseudo-maxwellian and hard
forces in the slab .
Let us conclude this introduction by detailing our results and methods of
proofs. First recall the exponential, mild and weak solution concepts in the
stationary context.

Definition 1.1 f is an exponential solution to the stationary Boltzmann
problem (1.1-2), if f ∈ L1([0, L] × IR3), ν ∈ L1

loc([0, L] × IR3), and if for
almost all (x, v) in [0, L] × IR3,

f(x, v) = M0(v)(

∫

ξ′<0
| ξ′ | f(0, v′)dv′)e

−
∫ 0

−x
ξ

ν(x+τξ,v)dτ

+

∫ 0

−x
ξ

e
−

∫ 0

s
ν(x+τξ,v)dτ

Q+(f, f)(x + sξ, v)ds, ξ > 0,

f(x, v) = ML(v)(

∫

ξ′>0
ξ′f(L, v′)dv′)e

−
∫ 0

L−x
ξ

ν(x+τξ,v)dτ

+

∫ 0

L−x
ξ

e
−

∫ 0

s
ν(x+τξ,v)dτ

Q+(f, f)(x + sξ, v)ds, ξ < 0.

Here ν is the collision frequency defined by

ν(x, v) =

∫

IR3

∫

S2
B(v − v∗, ω)f(x, v∗)dωdv∗.

Definition 1.2 f is a mild solution to the stationary Boltzmann problem
(1.1-2), if f ∈ L1([0, L] × IR3), and for almost all (x, v) in [0, L] × IR3,

f(x, v) = M0(v)

∫

ξ′<0
| ξ′ | f(0, v′)dv′ +

1

ξ

∫ x

0
Q(f, f)(z, v)dz, ξ > 0,

f(x, v) = ML(v)

∫

ξ′>0
ξ′f(L, v′)dv′ − 1

ξ

∫ L

x
Q(f, f)(z, v)dz, ξ < 0.

Here the integrals for Q+ and Q− are assumed to exist separately.

Definition 1.3 f is a weak solution to the stationary Boltzmann problem
(1.1-2), if f ∈ L1([0, L] × IR3), Q+(f, f) and Q−(f, f) ∈ L1

loc([0, L] × {v ∈
IR3; | ξ |> 0}), and for every test function ϕ ∈ C1

c ([0, L] × IR3), such that ϕ

vanishes in a neighbourhood of ξ = 0, and on {(0, v); ξ < 0}∪{(L, v); ξ > 0},
∫ L

0

∫

IR3
(ξf

∂ϕ

∂x
+ Q(f, f)ϕ)(x, v)dxdv = −

∫

ξ<0
| ξ | ML(v)ϕ(L, v)dv

∫

ξ>0
ξf(L, v)dv

−
∫

ξ>0
ξM0(v)ϕ(0, v)dv

∫

ξ<0
| ξ | f(0, v)dv.
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Remark. This weak form is stronger than the mild and exponential ones.
In the paper [6] the main equation, quadratic and of Povzner type in IRn, is
shown to be equivalent to a similar one but homogeneous of degree one via
a transform of the space variables and involving the mass. An analogous
transform involving the mass density instead of the mass was first used in
radiative transfer and boundary layer studies, and later in the mid 1950
ies introduced by M. Krook [23] into gas kinetics for the BGK equation.
It was recently applied by C. Cercignani [11] for measure solutions to the
Boltzmann equation for pseudo-maxwellian forces in a slab. Under this
transform the Boltzmann equation in the slab transforms as follows. Set

y(x) :=

∫ x

a

∫

IR3

∫

S2
f(z, v∗)dωdv∗dz.

Let Ω̃ = [r1, r2] be the image of [0, L] under this transformation. Then, with
F (y, v) = f(x, v), the equation (1.1) becomes

ξ
∂

∂y
F (y, v) =

∫

IR3×S2 BF (y, v′)F (y, v′∗)dωdv∗
∫

IR3×S2 F (y, v∗)dωdv∗

−F (y, v)

∫

IR3×S2 BF (y, v∗)dωdv∗
∫

IR3×S2 F (y, v∗)dωdv∗
, y ∈ Ω̃, v ∈ IR3, (1.3)

and (1.2) becomes

F (r1, v) = M0(v)

∫

ξ′<0
| ξ′ | F (r1, v

′)dv′, ξ > 0,

F (r2, v) = ML(v)

∫

ξ′>0
ξ′F (r2, v

′)dv′, ξ < 0. (1.4)

Any nonzero solution of (1.1-2) generates via the transform a solution to a
problem of type (1.3-4). In that sense the problem (1.3-4) is a generalization
of the problem (1.1-2). Reciprocally, let a slab of length L and a positive
constant M be given. Choose (r1, r2) such that r2 − r1 = M | S2 |. If the
problem (1.3-4) has a solution F satisfying

∫ r2

r1

dy
∫

F (y, v)dv
< ∞, (1.5)

then define the function y(x) by

∫ y(x)

r1

dz
∫

F (z, v)dv
= k | S2 | x, x ∈ [0, L], (1.6)
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where

k =
1

L | S2 |

∫ r2

r1

dz
∫

F (z, v)dv
,

and define the function f by

f(x, v) := kF (y(x), v), x ∈ [0, L], v ∈ IR3.

Then y maps [0, L] into [r1, r2], f is a solution to (1.1-2), and the total mass
of f is

∫ L

0

∫

IR3
f(x, v)dxdv =

r2 − r1

| S2 | = M.

Remark. In contrast to the Povzner equation, it is not obvious in the Boltz-
mann equation case how to extend the transform in a useful way from one
to several space dimensions. On the other hand, the existence problem for
(1.1-2) - in this paper solved with the above transform - can alternatively be
solved via a direct approach without the transform, instead using a certain
coupling between mass and boundary flow (see [7]).
The main result of this paper is the following.

Theorem 1.1 Given a slab of length L, β ∈ [0, 2[ in the collision kernel,
and a positive constant M , there is a weak solution to the stationary problem
(1.1-2) with

∫

Kβ(v)f(x, v)dxdv = M for Kβ(v) = (1+ | v |)β .

Remark. S. Mischler observed in [27] that in the context of boundary
conditions for the Boltzmann equation in n dimensions, the biting lemma
of Brook and Chacon can be used to obtain (1.2) instead of earlier weaker
alternatives (cf [20], [2], [3]). In our one dimensional case the biting lemma
is not needed. Instead (1.2) follows directly via weak compactness from a
control of entropy outflow.
The theorem holds with an analogous proof for velocities in IRn, n ≥ 2.
It will be clear from the proofs that problems with given indata boundary
conditions can also be treated by the methods of this paper (no singular
boundary measure coming up there). The maxwellians in (1.2) can be re-
placed by other reentry profiles under suitable conditions on the functions
replacing the maxwellians. A number of generalizations of B which take
v ∈ IRn, n ≥ 2, and −n < β < 2, such as cases of b(θ) > 0 a.e., or B not of
the product form | v − v∗ |β b(θ), can also be analyzed straightforwardly by
the same approach.
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The second section of the paper is devoted to a crucial construction of ap-
proximated solutions to the transformed problem with a modified asym-
metric collision operator. The proofs are carried out with the transformed
slab for convenience equal to [−1, 1] throughout the paper. The asymmetry
introduced in the collision operator allows monotonicity arguments which
lead to uniqueness of the approximate solution. In the third section the
symmetry of the collision operator is reintroduced. The weak compactness
in L1([−1, 1] × IR3) utilized for this step, is obtained by using the trans-
formed representation to get pointwise bounds for the collision frequency,
and by controlling the approximate solutions inside [−1, 1] × IR3 by their
values at the outgoing boundary. In the last two sections some remaining
truncations in the collision operator are removed. A certain convergence in
measure plays an important role. Such information is mainly extracted from
the geometry of the collision process and uniform estimates for the entropy
dissipation term. Throughout the paper, various constants are denoted by
the letter c, sometimes with indices.

2 Approximate solutions to the transformed prob-

lem.

Let r > 0, µ > 0, and (j,m) ∈ IN2 with 1
m

� r be given. The aim of this
section is to construct via strong L1 compactness and fixed point arguments,
solutions f r,µ,j,m to the following approximation of the transformed problem

ξ
∂f

∂x
=

1
∫

f(x, v∗)dv∗dω

∫

χr(v, v∗, ω)Bj,m
µ (v, v∗, ω)

f

1 + f
j

(x, v′)
f

1 + f
j

(x, v′∗)dv∗dω − f

∫

χrBj,m
µ

f

1+ f
j

(x, v∗)dv∗dω

∫

fdv∗dω
,

(x, v) ∈ [−1, 1] × IR3,

f(−1, v) = M0(v)

∫

ξ′<0 | ξ′ | f(−1, v′)dv′
∫

ξ′<0 | ξ′ | f(−1, v′)dv′ +
∫

ξ′>0 ξ′f(1, v′)dv′
, ξ > 0,

f(1, v) = ML(v)

∫

ξ′>0 ξ′f(1, v′)dv′
∫

ξ′<0 | ξ′ | f(−1, v′)dv′ +
∫

ξ′>0 ξ′f(1, v′)dv′
, ξ < 0.(2.1)

This problem is normalized in order that the total inflow through the bound-
ary be one. Here, χr is a C∞

0 function with range [0,1] invariant under the
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collision transformation J , where

J(v, ω, v∗) = (v′,−ω, v′∗),

with χr also invariant under the exchange of v and v∗, and such that

χr(v, v∗, ω) = 1 if min(| ξ |, | ξ∗ |, | ξ′ |, | ξ′∗ |) ≥ r,

χr(v, v∗, ω) = 0 if max(| ξ |, | ξ∗ |, | ξ′ |, | ξ′∗ |) ≤ r − 1

m
.

The modified collision kernel Bj,m
µ is a positive C∞ function approximating

max( 1
µ
,min(B,µ)), when

v2 + v2
∗ <

√
j

2
, and | v − v∗

| v − v∗ |
· ω |> 1

m
,

and | v − v∗

| v − v∗ |
· ω |< 1 − 1

m
, and |v − v∗| >

1

m

Bj,m
µ (v, v∗, ω) = 0, if v2 + v2

∗ >
√

j,

or | v − v∗

| v − v∗ |
· ω |< 1

2m
, or | v − v∗

| v − v∗ |
· ω |> 1 − 1

2m
,

or |v − v∗| <
1

2m
. (2.2)

The truncation χr and the boundedness of the collision kernel by µ will be
removed only at the very end of the proof in Section 5, and the truncation
with m will be removed together with j in Section 3. So we shall in this
section skip the indices r in χr, µ and m in Bj,m

µ = Bj, and write f r,j,µ,m =
f j. Let mollifiers in the x-variable be defined by ϕk(x) := kϕ(kx), where

ϕ ∈ C∞
0 (IR), support ϕ ⊂ (−1, 1), ϕ ≥ 0,

∫ 1

−1
ϕ(x)dx = 1.

Let K × [0, 1] be the closed and convex subset of L1((−1, 1) × IR3) × [0, 1],
where

K := {f ∈ L1((−1, 1) × IR3); 0 ≤ f(x, v) ≤ ej ,
∫

f(x, v)dv ≥ c0, a.e. x ∈ (−1, 1)},

where c0 := 1
2e−2(µ+1)min(

∫

ξ>1 M0(v)dv,
∫

ξ<−1 ML(v)dv). For α > 0 and
k > 0 given and j sufficiently large, let T be the map defined on K × [0, 1]
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by T (f, θ) = (F, θ̃), where (F, θ̃) is the solution to

αF + ξ
∂F

∂x
=

1
∫

f ∗ ϕk(x, v∗)dv∗dω

∫

χBj F

1 + F
j

(x, v′)
f ∗ ϕk

1 + f∗ϕk

j

(x, v′∗)dv∗dω

− F
∫

f ∗ ϕk(x, v∗)dv∗dω

∫

χBj f ∗ ϕk

1 + f∗ϕk

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

F (−1, v) = θM0(v), ξ > 0, F (1, v) = (1 − θ)ML(v), ξ < 0,

θ̃ =

∫

ξ<0
| ξ | F (−1, v)dv(

∫

ξ<0
| ξ | F (−1, v)dv +

∫

ξ>0
ξF (1, v)dv)−1. (2.3)

Denote by

νj(x, v) :=

∫

χBj f∗ϕk

1+
f∗ϕk

j

(x, v∗)dv∗dω

∫

f ∗ ϕk(x, v∗)dv∗dω
.

Lemma 2.1 There is a positive lower bound c0 for
∫

F (x, v)dv, with c0

independent of x ∈ (−1, 1), 0 < α ≤ 1, and of (f, θ) ∈ K × [0, 1].

Proof of Lemma 2.1. It follows from the exponential form of (2.3) and the
boundedness from above of νj by µ, that

F (x, v) ≥ θM0(v)e
−

(1+x)(µ+1)
ξ , ξ > 0, F (x, v) ≥ (1 − θ)ML(v)e

(1−x)(µ+1)
ξ , ξ < 0.

Then, uniformly in x ∈ (−1, 1),
∫

IR3
F (x, v)dv ≥ e−2(µ+1)[θ

∫

ξ>1
M0(v)dv + (1 − θ)

∫

ξ<−1
ML(v)dv]

≥ c0. 2

For (f, θ) ∈ K × [0, 1], one solution F of (2.3) is obtained as the strong
L1 limit of the nonnegative monotone sequence (F l), bounded from above,
defined by F 0 = 0 and

αF l+1 + ξ
∂F l+1

∂x
=

1
∫

f ∗ ϕk(x, v∗)dv∗dω

∫

χBj F l

1 + F l

j

(x, v′)
f ∗ ϕk

1 + f∗ϕk

j

(x, v′∗)dv∗dω

− F l+1

∫

f ∗ ϕk(x, v∗)dv∗dω

∫

χBj f ∗ ϕk

1 + f∗ϕk

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

F l+1(−1, v) = θM0(v), ξ > 0, F l+1(1, v) = (1 − θ)ML(v), ξ < 0.

There is uniqueness of the solution to (2.3). Otherwise, if there were an-
other solution G, then multiplying the equation for the difference F −G by

9



sign(F − G) and integrating with respect to (x, v) one obtains after some
computations that

α

∫

(−1,1)×IR3
| F − G | (x, v)dxdv ≤ 0.

Consequently, F = G. Moreover, by Lemma 2.1, T maps K × [0, 1] into
itself.
Let us prove that T is continuous for the strong topology of L1 × [0, 1]. Let
(fl, θl) converge to (f, θ) and write (Fl, θ̃l) := T (fl, θl) and (F, θ̃) := T (f, θ).
By the uniqueness of the solution of (2.3), it is enough to prove that there
is a subsequence of (Fl, θ̃l) converging to (F, θ̃). By the strong L1 con-
vergence of (fl) to f and the condition

∫

fl(x, v)dv ≥ c0, the bounded
sequence ( 1

∫

fl∗ϕk(x,w)dwdω
) converges in L1 to 1

∫

f∗ϕk(x,w)dwdω
. For a suit-

able subsequence let Gl := supm≥l fm, gl := infm≥l fm, βl := supm≥l θm,
γl := infm≥l θl, with (Gl) decreasingly converging to f , (gl) increasingly
converging to f , (βl) decreasingly converging to θ and (γl) increasingly con-
verging to θ. Let (Sl) and(sl) be the sequences of solutions to

αSl + ξ
∂Sl

∂x
=

1
∫

gl ∗ ϕk(x, v∗)dv∗dω

∫

χBj Sl

1 + Sl

j

(x, v′)
Gl ∗ ϕk

1 + Gl∗ϕk

j

(x, v′∗)dv∗dω

− Sl
∫

Gl ∗ ϕk(x, v∗)dv∗dω

∫

χBj gl ∗ ϕk

1 + gl∗ϕk

j

(x, v∗)dv∗dω,

αsl + ξ
∂sl

∂x
=

1
∫

Gl ∗ ϕk(x, v∗)dv∗dω

∫

χBj sl

1 + sl
j

(x, v′)
gl ∗ ϕk

1 + gl∗ϕk

j

(x, v′∗)dv∗dω

− sl
∫

gl ∗ ϕk(x, v∗)dv∗dω

∫

χBj Gl ∗ ϕk

1 + Gl∗ϕk

j

(x, v∗)dv∗dω,

(x, v) ∈ (−1, 1) × IR3,

Sl(−1, v) = βlM0(v), ξ > 0, Sl(1, v) = (1 − γl)ML(v), ξ < 0,

sl(−1, v) = γlM0(v), ξ > 0, sl(1, v) = (1 − βl)ML(v), ξ < 0.

(Sl) is a non-increasing sequence, and (sl) is a non-decreasing sequence.
Moreover,

sl ≤ Fl ≤ Sl. (2.4)
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But (Sl) decreasingly converges in L1 to some S and(sl) increasingly con-
verges in L1 to some s which are solutions to

αS + ξ
∂S

∂x
=

1
∫

f(x, v∗)dv∗dω

∫

χBj S

1 + S
j

(x, v′)
f ∗ ϕk

1 + f∗ϕk

j

(x, v′∗)dv∗dω

− S
∫

f(x, v∗)dv∗dω

∫

χBj f ∗ ϕk

1 + f∗ϕk

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

S(−1, v) = θM0(v), ξ > 0, S(1, v) = (1 − θ)ML(v), ξ < 0,

and

αs + ξ
∂s

∂x
=

1
∫

f(x, v∗)dv∗dω

∫

χBj s

1 + s
j

(x, v′)
f ∗ ϕk

1 + f∗ϕk

j

(x, v′∗)dv∗dω

− s
∫

f(x, v∗)dv∗dω

∫

χBj f ∗ ϕk

1 + f∗ϕk

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

s(−1, v) = θM0(v), ξ > 0, s(1, v) = (1 − θ)ML(v), ξ < 0.

By the uniqueness of the solution to such systems, S = s = F . It follows
from (2.4) that (Fl) converges to F .
Let us prove that T is compact for the strong topology of L1. Let (fl, θl) be
a bounded sequence in L1 × [0, 1] and (Fl, θ̃l) = T (fl, θl). Fl can be written
in exponential form Fl = Gl + Hl, where for ξ > 0,

Gl(x, v) = θlM0(v)

e
−

∫ 0

− 1+x
ξ

1
∫

fl∗ϕk(x+τξ,v∗)dv∗dω

∫

χBj fl∗ϕk

1+
fl∗ϕk

j

(x+τξ,v∗)dv∗dωdτ−α 1+x
ξ

,

and

Hl(x, v) =

∫ 0

− 1+x
ξ

1
∫

fl ∗ ϕk(x + sξ, v∗)dv∗dω

e
αs−

∫ 0

s

1
∫

fl∗ϕk(x+τξ,v∗)dv∗dω

∫

χBj fl∗ϕk

1+
fl∗ϕk

j

(x+τξ,v∗)dv∗dωdτ

∫

χBj Fl

1 + Fl

j

(x + sξ, v′)
fl ∗ ϕk

1 + fl∗ϕk

j

(x + sξ, v′∗)dv∗dωds,

and similarly for ξ < 0. The sequence (Gl) is strongly compact because of
the convolution of fl with ϕk. Namely, we can pick a subsequence so that
∫

fl ∗ ϕkdv∗ as well as
∫

χBj
fl∗ϕk

1+
fl∗ϕk

j

dv∗dω are strongly convergent. For the

11



same reason, for proving the strong compactness of (Hl), it is enough to
prove it for

Kl(x, v) :=

∫

χBj Fl

1 + Fl
j

(x, v′)
fl ∗ ϕk

1 + fl∗ϕk

j

(x, v′∗)dv∗dω.

The argument is similar to the corresponding one in the limit when k tends
to infinity on next page, where details are given.
So, T is a continuous and compact map from the closed and convex subset
K × [0, 1] of L1× [0, 1] into itself. It follows from the Schauder theorem that
T has a fixed point F k,j,α solution to

αF k,j,α + ξ
∂F k,j,α

∂x
=

1
∫

F k,j,α ∗ ϕkdv∗dω

∫

χBj F k,j,α

1 + F k,j,α

j

(x, v′)
F k,j,α ∗ ϕk

1 + F k,j,α∗ϕk

j

(x, v′∗)dv∗dω

− F k,j,α

∫

F k,j,α ∗ ϕkdv∗dω

∫

χBj F k,j,α ∗ ϕk

1 + F k,j,α∗ϕk

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

F k,j,α(−1, v) = M0(v)

∫

ξ′<0 | ξ′ | F k,j,α(−1, v′)dv′
∫

ξ′<0 | ξ′ | F k,j,α(−1, v′)dv′ +
∫

ξ′>0 ξ′F k,j,α(1, v′)dv′
, ξ > 0,

F k,j,α(1, v) = ML(v)

∫

ξ′>0 ξ′F k,j,α(1, v′)dv′
∫

ξ′<0 | ξ′ | F k,j,α(−1, v′)dv′ +
∫

ξ′>0 ξ′F k,j,α(1, v′)dv′
, ξ < 0.

(2.5)

Keeping α and j fixed, let us write F k,j,α = F k and study the passage to
the limit when k tends to infinity. The sequence of mappings

(x, v∗) →
F k ∗ ϕk

1 + F k∗ϕk

j

(x, v∗), k ∈ IN,

is uniformly bounded by j, hence is weakly compact in L1. Moreover,

ξ
∂

∂x
(

F k ∗ ϕk

1 + F k∗ϕk

j

) =
1

(1 + F k∗ϕk

j
)2

(−αF k ∗ ϕk +

∫

1
∫

F k ∗ ϕk(x − y, v∗)dv∗dω

∫

χBj F k

1 + F k

j

(x − y, v′)

F k ∗ ϕk

1 + F k∗ϕk

j

(x − y, v′∗)dv∗dωϕk(y)dy

−
∫

F k(x − y, v)
∫

F k ∗ ϕk(x − y, v∗)dv∗dω

∫

χBj F k ∗ ϕk

1 + F k∗ϕk

j

(x − y, v∗)dv∗dωϕk(y)dy).

12



Here the right-hand side is uniformly bounded with respect to x, v, k, hence
weakly compact in L1. Using the first equation in (2.5), and that Bj ∈ C1

c ,
it follows that

∫

χBj(v, v∗, ω)
F k ∗ ϕk

1 + F k∗ϕk

j

(x, v∗)dv∗dω (2.6)

is strongly compact in L1((−1, 1)×IR3
v). Analogously, (

∫

F k∗ϕk(x,w)dwdω)
is strongly compact in L1((−1, 1)). Finally let us recall the argument from
[24] that

Q+
k (x, v) :=

∫

χBj(v, v∗, ω)
F k

1 + F k

j

(x, v′)
F k ∗ ϕk

1 + F k∗ϕk

j

(x, v′∗)dv∗dω

is strongly compact in L1. For δ > 0, let ρδ be a mollifier in the v-variable.
There is a function R ∈ L1 such that for any δ > 0, a subsequence of
(Q+

k ∗ ρδ) strongly converges in L1 to R ∗ ρδ. Indeed,

Q+
k ∗ ρδ(x, v) =

∫

Q+
k (x,w)ρδ(v − w)dw

=

∫

χBj(w,w∗, ω)
F k

1 + F k

j

(x,w′)
F k ∗ ϕk

1 + F k∗ϕk

j

(x,w′
∗)ρδ(v − w)dwdw∗dω,

so that, by the change of variables (w,w∗) → (w′, w′
∗),

Q+
k ∗ ρδ(x, v) =

∫

(

∫

χBj(w,w∗, ω)
F k ∗ ϕk

1 + F k∗ϕk

j

(x,w∗)ρδ(v − w′)dw∗dω)

F k

1 + F k

j

(x,w)dw.

As above for (2.6), up to subsequences,
∫

χBj(w,w∗, ω)
F k ∗ ϕk

1 + F k∗ϕk

j

(x,w∗)ρδ(v − w′)dw∗dω

strongly converges in L1 to some
∫

χBj(w,w∗, ω)F̃ (x,w∗)ρδ(v − w′)dw∗dω,

and
∫

(

∫

χBj(w,w∗, ω)F̃ (x,w∗)ρδ(v − w′)dw∗dω)
F k

1 + F k

j

(x,w)dw

13



strongly converges in L1 to some function
∫

(

∫

χBj(w,w∗, ω)F̃ (x,w∗)ρδ(v − w′)dw∗dω)G(x,w)dw.

Hence (Q+
k ∗ ρδ) converges in L1 to R ∗ ρδ, for any δ > 0, where

R(x, v) :=

∫

χBj(w,w∗, ω)F̃ (x,w′
∗)G(x,w′)dw∗dω.

Let us prove that Q+
k ∗ ρδ − Q+

k tends to zero in L1 when δ tends to zero,
uniformly with respect to k. If ĝ denotes the Fourier transform of a function
g(x, v) with respect to the variable v, then for any x ∈ (−1, 1),

‖ Q+
k ∗ ρδ − Q+

k ‖2
L2(IR3

v)=

∫

| Q̂+
k (x, ξ) |2 (1 − ρ̂δ(ξ))

2dξ

=

∫

| Q̂+
k (x, ξ) |2| 1 − ρ̂(δξ) |2 dξ

≤
∫

|ξ|≤λ
| Q̂+

k (x, ξ) |2| 1 − ρ̂(δξ) |2 dξ

+
1

λ2

∫

|ξ|≥λ
| Q̂+

k (x, ξ) |2 ξ2dξ

≤
∫

|ξ|≤λ
| Q̂+

k (x, ξ) |2| 1 − ρ̂(δξ) |2 dξ

+
1

λ2
‖ DvQ

+
k ‖2

L2(IR3
v) .

But DvQ
+
k satisfies

‖ DvQ
+
k ‖L2(IR3)≤ c ‖ Fk

1 + Fk
j

‖L1‖ Fk ∗ ϕk

1 + Fk∗ϕk

j

‖L2≤ c. (2.7)

(cf [24], [34]), so that 1
λ2 ‖ DvQ

+
k ‖2

L2(IR3
v) tends to zero when λ tends to

infinity. Finally, for any λ,

lim
δ→0

∫

|ξ|≤λ
| Q̂+

k (x, ξ) |2| 1 − ρ̂(δξ) |2 dξ = 0,

since ρ̂(0) = 1, ρ̂ is uniformly continuous on | ξ |≤ 1, and
∫

| Q̂+
k (x, ξ) |2 dξ < c. This ends the proof of the strong L1-compactness of

(Q+
k ).
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Writing (2.5) in exponential form implies that, for ξ > 0,

F k(x, v) = θkM0(v)e

−α 1+x
ξ

−
∫ 0

−
1+x

ξ

1
∫

F k∗ϕk(x+τξ,v∗)dv∗dω

∫

χBj F k∗ϕk

1+
F k∗ϕk

j

(x+τξ,v∗)dv∗dωdτ

+

∫ 0

− 1+x
ξ

e

αs−
∫ 0

s

1
∫

F k∗ϕk(x+τξ,v∗)dv∗dω

∫

χBj F k∗ϕk

1+
F k∗ϕk

j

(x+τξ,v∗)dv∗dωdτ

Q+
k (x + sξ, v)ds.

Here (θk) := (

∫

ξ<0
|ξ|F k(−1,v)dv

∫

ξ<0
|ξ|F k(−1,v)dv+

∫

ξ>0
ξF k(1,v)dv

) is a bounded sequence of [0, 1],

so converges up to a subsequence. Then, from the strong compactness of

(

∫

F k ∗ ϕk(x, v∗)dv∗dω), (

∫

Bj(v, v∗, ω)
F k ∗ ϕk

1 + F k∗ϕk

j

(x, v∗)dv∗dω),

and (Q+
k ), as well as the boundedness from above of 1

∫

F k∗ϕk(x,v∗)dv∗
, it

follows that (F k) strongly converges in L1 to some F . Passing to the limit
when k tends to infinity in (2.5) implies that F := Fα,j is a solution to

αFα,j + ξ
∂Fα,j

∂x
=

1
∫

Fα,j(x, v∗)dv∗dω

∫

χBj Fα,j

1 + F α,j

j

(x, v′)
Fα,j

1 + F α,j

j

(x, v′∗)dv∗dω

− Fα,j

∫

Fα,j(x, v∗)dv∗dω

∫

χBj Fα,j

1 + F α,j

j

(x, v∗)dv∗dω, (x, v) ∈ (−1, 1) × IR3,

Fα,j(−1, v) = M0(v)

∫

ξ′<0 | ξ′ | Fα,j(−1, v′)dv′
∫

ξ′<0 | ξ′ | Fα,j(−1, v′)dv′ +
∫

ξ′>0 ξ′Fα,j(1, v′)dv′
, ξ > 0,

Fα,j(1, v) = ML(v)

∫

ξ′>0 ξ′Fα,j(1, v′)dv′
∫

ξ′<0 | ξ′ | Fα,j(−1, v′)dv′ +
∫

ξ′>0 ξ′Fα,j(1, v′)dv′
, ξ < 0.

(2.8)

The passage to the limit in (2.8) when α tends to zero is similar, and implies
that the limit F of Fα,j is a solution to (2.1), which was the aim of the
present section.
Remark. The construction so far also holds for Ω ⊂ IRn.
The solution F of (2.1) depends on the parameters j, r, µ, F = F j,r,µ. The
following lemma gives an estimate of its boundary fluxes independent of j

and r.
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Lemma 2.2 Let F = F j,r,µ denote a solution to the approximate problem
(2.1). Set

ρ(1) :=

∫

ξ>0
ξF (1, v)dv, ρ(−1) :=

∫

ξ<0
| ξ | F (−1, v)dv,

σ(1) :=
ρ(1)

ρ(1) + ρ(−1)
, σ(−1) :=

ρ(−1)

ρ(1) + ρ(−1)
.

Then

Min(σ(1), σ(−1)) ≥ c1 > 0,

with c1 only depending on Mi, i ∈ {0, L} but not on j, r.

Proof of Lemma 2.2. σ(1) + σ(−1) = 1, so one of them is bigger than or
equal to 1

2 , say σ(−1) ≥ 1
2 . From the exponential form

ρ(1) =

∫

ξ>0
ξF (1, v)dv ≥ σ(−1)

∫

ξ>0
ξe

− 2µ
ξ M0(v)dv

≥ 1

2
e−2µ

∫

ξ>1
ξM0(v)dv = c′1 > 0.

Moreover, integrating (2.1) on (−1, 1) × IR3 implies, by Green’s formula

ρ(1) + ρ(−1) ≤ 1.

Hence σ(1) ≥ c′1. Then

ρ(−1) =

∫

ξ<0
| ξ | F (−1, v)dv ≥ σ(1)

∫

ξ<0
| ξ | e

2µ
ξ ML(v)dv

≥ c′1e
−2µ

∫

ξ<−1
| ξ | ML(v)dv = c1.

2

3 Reintroduction of the gain-loss symmetry.

In this section the asymmetry between the gain and the loss terms will be
removed by taking the limit j → ∞. The smoothness of χrBj,m

µ was needed
in Section 2 for the Radon transform argument in the proof of (2.7). That
smoothness will now be removed from Bj,m

µ and χr by keeping r and µ fixed,

but letting χrBj,m
µ converge to max( 1

µ
,min(B,µ)) times the characteristic

function for the set where χr equals one, when m = j → ∞. We start with
a j(= m)-independent estimate of the ξ-flux of F j .
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Lemma 3.1 If F j is a solution to (2.1), then
∫

|ξ|≥r
ξ2F j(x, v)dv ≤ cr, a.a. x ∈ (−1, 1), j ∈ IN. (3.1)

Proof of Lemma 3.1. Multiplying (2.1) by 1 and | v |2 respectively, and
integrating it over (−1, 1) × IR3 implies that

∫

ξ>0
ξF j(1, v)dv +

∫

ξ<0
| ξ | F j(−1, v)dv ≤ 1, (3.2)

and
∫

ξ>0
ξ | v |2 F j(1, v)dv +

∫

ξ<0
| ξ || v |2 F j(−1, v)dv

≤
∫

ξ<0
| ξ || v |2 F j(1, v)dv +

∫

ξ>0
ξ | v |2 F j(−1, v)dv

= σj(1)

∫

ξ<0
| ξ || v |2 ML(v)dv + σj(−1)

∫

ξ>0
ξ | v |2 M0(v)dv < c.(3.3)

By the exponential representation of F j , for | ξ |≥ r

F j(x, v) ≤ crF
j(1, v), ξ > 0, F j(x, v) ≤ crF

j(−1, v), ξ < 0,

with cr independent of j. But

F j(±1, v)ξ2 ≤ F j(±1, v) | ξ | (1+ | v |2),

so (3.2-3) imply (3.1).2

Lemma 3.2 The sequence of solutions (F j) to (2.1) is weakly precompact
in L1((−1, 1) × IR3).

Proof of Lemma 3.2. Let us prove that
∫ 1
−1

∫

F j logF j(x, v)dxdv is uniformly
in j bounded from above. By the truncation χr,

∫ 1

−1

∫

|ξ|≤r− 1
j

F j logF j(x, v)dxdv =

∫ 1

−1

∫

0<ξ≤r− 1
j

M0(v)σj(−1)log(M0(v)σj(−1))dxdv

+

∫ 1

−1

∫

−r+ 1
j
<ξ≤0

ML(v)σj(1)log(ML(v)σj(1))dxdv ≤ c,

17



since 0 ≤ σj(−1) ≤ 1 and 0 ≤ σj(1) ≤ 1. Take j ≥ 2
r
. By Lemma 3.1,

(
∫

|ξ|≥r− 1
j
F j(x, v)dxdv) is uniformly bounded from above. Denote by

νj(x, v) :=

∫

χBj F j

1+ F j

j

(x, v∗)dv∗dω

∫

F j(x, v∗)dv∗dω
.

It follows from the exponential form of (2.1) that

F j(x, v) ≤ F j(1, v)e
∫

1−x
ξ

0 νj(x+τξ,v)dτ , (x, v) ∈ (−1, 1) × IR3, ξ > 0,

F j(x, v) ≤ F j(−1, v)e
∫

−1−x
ξ

0 νj(x+τξ,v)dτ , (x, v) ∈ (−1, 1) × IR3, ξ < 0.

Hence, for j large enough
∫ 1

−1

∫

|ξ|≥r− 1
j

F jlogF j(x, v)dxdv =

∫

ξ>r− 1
j

ξ(

∫ 0

− 2
ξ

F jlogF j(1 + sξ, v)ds)dv +

∫

ξ<−r+ 1
j

| ξ | (

∫ 0

2
ξ

F j logF j(−1 + sξ, v)ds)dv

≤ 8µ

r2
e

4µ
r [

∫

ξ>r− 1
j

ξF j(1, v)dv +

∫

ξ<−r+ 1
j

| ξ | F j(−1, v)dv]

+
4

r
e

4µ
r [

∫

ξ>r− 1
j

ξF j logF j(1, v)dv +

∫

ξ<−r+ 1
j

| ξ | F jlogF j(−1, v)dv]. (3.4)

By (3.1), the first two terms to the right are uniformly in j bounded. As
for the last two terms, the following estimates are chosen also with a view
to next lemma.

Denote by

e(F j , F j) =
1

4

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBj(

F j

1 + F j

j

(x, v′)
F j

1 + F j

j

(x, v′∗)

− F j

1 + F j

j

(x, v)
F j

1 + F j

j

(x, v∗))log

F j

1+ F j

j

(x, v′) F j

1+ F j

j

(x, v′∗)

F j

1+ F j

j

(x, v) F j

1+ F j

j

(x, v∗)
dxdvdv∗dω.

Multiplying (2.1) by log F j

1+ F j

j

and integrating over (−1, 1) × IR3 implies

∫

ξ<0
| ξ | (F j logF j − j(1 +

F j

j
)log(1 +

F j

j
))(−1, v)dv
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+

∫

ξ>0
ξ(F j logF j − j(1 +

F j

j
)log(1 +

F j

j
))(1, v)dv + e(F j , F j)

=

∫

ξ>0
ξ(F j logF j − j(1 +

F j

j
)log(1 +

F j

j
))(−1, v)dv

+

∫

ξ<0
| ξ | (F j logF j − j(1 +

F j

j
)log(1 +

F j

j
))(1, v)dv

−1

j

∫

χBj

∫

F j(x, v∗)dv∗dω

(F j)2

(1 + F j

j
)
(x, v)

F j

1 + F j

j

(x, v∗)log
F j

1 + F j

j

(x, v)dxdvdv∗dω.(3.5)

Then the two first terms of the right-hand side are bounded because
0 ≤ σj(−1) ≤ 1 and 0 ≤ σj(1) ≤ 1. Moreover, with log−x := logx, if x ≤ 1,
log−x := 0 otherwise, then for the third term

−1

j

∫

χBj

∫

F j(x, v∗)dv∗dω

(F j)2

(1 + F j

j
)
(x, v)

F j

1 + F j

j

(x, v∗)log
F j

1 + F j

j

(x, v)dxdvdv∗dω

≤ 1

j

∫

F j(x,v)≤ j
j−1

χBj

∫

F j(x, v∗)dv∗dω

F j

1 + F j

j

(x, v∗)
(F j)2

1 + F j

j

| log−
F j

1 + F j

j

| (x, v)dxdvdv∗dω

≤ 1

je

∫

F j(x,v)≤ j
j−1

χBj

∫

F j(x, v∗)dv∗dω
F j(x, v)

F j

1 + F j

j

(x, v∗)dxdvdv∗dω ≤ cj−
1
4 ,

It follows from this, that (3.5) becomes
∫

∂Ω−
| ξ | (F jlogF j − j(1 +

F j

j
)log(1 +

F j

j
)) + e(F j , F j) < c. (3.6)

Here

∂Ω− := {(−1, v), ξ < 0} ∪ {(1, v), ξ > 0}.
But

3

4
tlnt − j(1 +

t

j
)ln(1 +

t

j
) ≥ 0, J > 16, j > J, t ∈ (J, j3). (3.7)

Since F j is bounded by j3 for j large enough, it follows from (3.6) that
∫

∂Ω−
| ξ | F j logF j + e(F j , F j) ≤ logJ

∫

∂Ω−,F j≤J
| ξ | F j

+4

∫

∂Ω−,F j∈[J,j3]
| ξ | [F j logF j − j(1 +

F j

j
)log(1 +

F j

j
)](x, v)dxdv

+4e(F j , F j)

≤ c − 4

∫

∂Ω−,F j≤J
| ξ | [F j logF j − j(1 +

F j

j
)log(1 +

F j

j
)](x, v)dxdv.
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Also,

−
∫

∂Ω−,F j≤J
| ξ | F j logF j ≤ −

∫

∂Ω−,F j≤1
| ξ | F j logF j

=

∫

∂Ω−,F j≤e−v2
| ξ | F j | logF j | +

∫

∂Ω−,e−v2≤F j≤1
| ξ | F j | logF j |

≤ 2

e

∫

∂Ω−
| ξ | e−

1
2
v2

+

∫

∂Ω−
| ξ | v2F j ≤ c,

by (3.3). Moreover,

∫

∂Ω−,F j≤J
| ξ | j(1 +

F j

j
)log(1 +

F j

j
)

=

∫

∂Ω−,F j≤J
| ξ | F j(1 +

F j

j
)log[(1 +

F j

j
)

j

F j ]

≤
∫

∂Ω−,F j≤J
| ξ | F j(1 +

F j

j
) ≤ 2

∫

∂Ω−,F j≤J
| ξ | F j ≤ c, j > J.

Consequently,
∫

∂Ω−
| ξ | F jlogF j + e(F j , F j) < c. (3.8)

Hence, the remaining term of the right-hand side of (3.4) is uniformly
bounded from above, thus also the entropy of (F j). From here the desired
precompactness holds, since the mass is uniformly bounded from above (cf.
(3.1)), and the contribution to the integral from large velocities can be made
arbitrarily small by using a comparison with outgoing boundary values. This
ends the proof of Lemma 3.2.2

Lemma 3.3 The sequence ( 1
∫

F j(x,v∗)dv∗dω

∫

S2×IR3 χBj F j

1+ F j

j

(x, v′) F j

1+ F j

j

(x, v′∗)dωdv∗)

is weakly precompact in L1((−1, 1) × IR3).

Proof of Lemma 3.3. The weak L1 precompactness of

(Q−
j (F j)(x, v)) := (F j(x, v)

∫

χBj F j

1+ F j

j

(x, v∗dv∗dω)

∫

F j(x, v∗)dv∗dω
)

follows from the weak precompactness of (F j). Then the weak L1 precom-
pactness of (Q+

j (F j)), the corresponding gain terms, is a consequence of the

weak L1 precompactness of (Q−
j (F j)) and the boundedness from above of
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(e(F j , F j)), which is a consequence of (3.8). 2

We are now in a position to remove the asymmetry between the gain and
the loss term by taking the limit j → ∞. It is enough to consider the weak
formulation of (2.1); for F j and test functions ζ ∈ C1

c ([−1, 1] × IR3),
∫

(−1,1)×IR3
ξ
∂ζ

∂x
F j(x, v)dxdv

+

∫

(−1,1)×IR6×S2

1
∫

F jdv∗dω
χBj(

F j

1 + F j

j

(x, v′)
F j

1 + F j

j

(x, v′∗)

−F j(x, v)
F j

1 + F j

j

(x, v∗))ζ(x, v)dxdvdv∗dω

=

∫

ξ>0
ξF jζ(1, v)dv −

∫

ξ<0
ξF jζ(−1, v)dv

+σj(1)

∫

ξ<0
ξML(v)ζ(1, v)dv − σj(−1)

∫

ξ>0
ξM0(v)ζ(−1, v)dv. (3.9)

First,

lim
j→+∞

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBj F j

1 + F j

j

(x, v′)
F j

1 + F j

j

(x, v′∗)ζ(x, v)dxdvdv∗dω =

lim
j→+∞

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBjF j(x, v′)F j(x, v′∗)ζ(x, v)dxdvdv∗dω,

by the weak L1-compactness of (F j). Then, by the change of variables
(v, v∗) → (v′, v′∗),

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBjF j(x, v′)F j(x, v′∗)ζ(x, v)dxdvdv∗dω =

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBjF j(x, v)F j(x, v∗)ζ(x, v′)dxdvdv∗dω.

(F j), as well as (ξ ∂F j

∂x
) are weakly compact in L1((−1, 1)× IR3) by Lemmas

3.2-3. Consequently, (
∫

IR3 F j(x, v∗)ζ(x, v′)dv∗dω) is compact in L1((−1, 1)×
IR3) and converges (for a subsequence) to

∫

IR3 F (x, v∗)ζ(x, v′)dv∗dω, where
F is a weak L1 limit of (F j). Hence

lim
j→+∞

∫

(−1,1)×IR6×S2

1
∫

F j(x, v∗)dv∗dω
χBjF j(x, v)F j(x, v∗)ζ(x, v′)dxdvdv∗dω =

∫

(−1,1)×IR6×S2

1
∫

F (x, v∗)dv∗dω
χBF (x, v)F (x, v∗)ζ(x, v′)dxdvdv∗dω.
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Moreover, (γ±F j) converges weakly (for a subsequence) to (γ±F ), since (F j)

and (ξ ∂F j

∂x
) are weakly compact in L1((−1, 1)× IR3). Here γ±F j denote the

traces of F j on

∂Ω+ = {(−1, v), ξ > 0} ∪ {(1, v), ξ < 0},

and on ∂Ω− defined above. Hence we can pass to the limit when j → +∞
in (3.9) and obtain

∫

(−1,1)×IR3
ξ
∂ζ

∂x
F (x, v)dxdv +

∫

(−1,1)×IR6×S2

1
∫

F (x, v∗)dv∗dω
χB(F (x, v′)F (x, v′∗)

−F (x, v)F (x, v∗))ζ(x, v)dxdvdv∗dω =

∫

ξ>0
ξFζ(1, v)dv −

∫

ξ<0
ξFζ(−1, v)dv

+σ(1)

∫

ξ<0
ξML(v)ζ(1, v)dv − σ(−1)

∫

ξ>0
ξM0(v)ζ(−1, v)dv,

which means that F := F r,µ is a weak solution to the stationary transformed
problem

ξ
∂F r,µ

∂x
=

∫

1
∫

F r,µ(x, v∗)dv∗dω
χrmax(

1

µ
,min(B(v − v∗, ω), µ))(F r,µ(x, v′)F r,µ(x, v′∗)

−F r,µ(x, v)F r,µ(x, v∗))dv∗dω, (x, v) ∈ (−1, 1) × IR3,(3.10)

F r,µ(−1, v) = M0(v)σ(−1), ξ > 0, F r,µ(1, v) = ML(v)σ(1), ξ < 0.

Integrating (3.10) on (−1, 1) × IR3 implies that
∫

ξ>0
ξF r,µ(−1, v)dv +

∫

ξ<0
| ξ | F r,µ(1, v)dv = 1, (3.11)

so that the boundary conditions satisfied by F r,µ are indeed

F r,µ(−1, v) = M0(v)

∫

ξ′<0
| ξ′ | F r,µ(−1, v′)dv′, ξ > 0,

F r,µ(1, v) = ML(v)

∫

ξ′>0
ξ′F r,µ(1, v′)dv′, ξ < 0. (3.12)

And so the aim of this section has been achieved, to obtain a solution for an
approximate equation with gain and loss terms of the same type, with the
truncation χr a characteristic function, and with total inflow one through
the boundary.
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4 Removal of the small velocity truncation; some

preparatory lemmas.

In the previous section solutions F r,µ to (3.10-12) were obtained correspond-
ing to the approximations involving χr and Bµ. Writing F r := F r,µ, we shall
in this section make some necessary preparations to remove the small veloc-
ity truncation χr, while keeping 1 < µ fixed. As in the previous section we
start with some estimates independent of the relevant parameter, here r.

Lemma 4.1 There are c > 0, c̄ > 0, and for δ > 0, constants cδ > 0 and
c̄δ > 0, such that uniformly with respect to r

∫

ξ2F r(x, v)dv ≤ c, x ∈ (−1, 1), (4.1)

F r(x, v) ≥ c̄δ, x ∈ (−1, 1), | ξ |≥ δ, | v |≤ 1

δ
,

∫

F r(x, v)dv ≥ c̄, x ∈ (−1, 1),

∫

|ξ|≥δ
| v |2 F r(x, v)dxdv ≤ cδ.

Proof of Lemma 4.1 (4.1) follows from Green’s formula. By the expo-
nential form of (3.10), and by Lemma 2.2,

F r(x, v) ≥ F r(−1, v)e
−

(1+x)µ
ξ ≥ e−

2µ
δ M0(v)σr(−1) ≥ c̄δ, ξ > δ, | v |≤ 1

δ

F r(x, v) ≥ F r(1, v)e
(1−x)µ

ξ ≥ e−
2µ
δ ML(v)σr(1) ≥ c̄δ, ξ < −δ, | v |≤ 1

δ
.

Hence
∫

F r(x, v)dv ≥ c̄,

for some c̄ independent of r. Then

∫

|ξ|≥δ
| v |2 F r(x, v)dxdv =

∫

ξ>δ
ξ | v |2

∫ 0

− 2
ξ

F r(1 + sξ, v)dsdv

+

∫

ξ<−δ
| ξ || v |2

∫ 0

2
ξ

F r(−1 + sξ, v)dsdv

≤ 2

δ
e

2µ
δ (

∫

ξ>δ
ξ | v |2 F r(1, v)dv +

∫

ξ<−δ
| ξ || v |2 F r(−1, v)dv) ≤ ce

3µ
δ ,
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the last step by using (3.3). 2

¿From (4.1), it follows that for any δ,

sup
x∈(−1,1),r>0

∫

|ξ|>δ
F r(x, v)dv ≤ c

δ2
. (4.2)

¿From Lemma 4.1 it also follows that the contribution to this integral from
large v′s, uniformly in r can be made arbitrarily small. Also for | ξ |≥ δ, by
the exponential form

F r(x, v) ≤ cδF
r(1, v), ξ > δ, F r(x, v) ≤ cδF

r(−1, v), ξ < −δ.

By a change of variables,

∫ 1

−1

∫

|ξ|≥δ
F rlogF r(x, v)dxdv =

∫

ξ>δ
ξ

∫ 0

− 2
ξ

F rlogF r(1 + sξ, v)dsdv +

∫

ξ<−δ
| ξ |

∫ 0

2
ξ

F rlogF r(−1 + sξ, v)dsdv

≤ c̃δ[

∫

ξ>δ
ξF r(1, v)dv +

∫

ξ<−δ
| ξ | F r(−1, v)dv]

+c̄δ[

∫

ξ>δ
ξF rlogF r(1, v)dv +

∫

ξ<−δ
| ξ | F rlogF r(−1, v)dv] ≤ cδ

with cδ independent of r. In the last step we used Green’s formula applied to
(3.10) successively multiplied by 1 and logF r and integrated on (−1, 1)×IR3.
Using Lemma 4.1, it follows that

∫ 1

−1

∫

|ξ|≥δ
F r | logF r | (x, v)dxdv ≤ cδ.

Hence

Lemma 4.2 For δ > 0, the family (F r)0<r≤r0 is weakly precompact in
L1((−1, 1) × {v ∈ IR3; | ξ |≥ δ}).

Take (rj) with limj→∞ rj = 0, so that F rj converges weakly in L1((−1, 1)×
{v ∈ IR3; | ξ |≥ δ}) to F for each δ > 0. Write F j := F rj , χj := χrj . We
shall next prove the

Lemma 4.3

∫

Q±(F )(x, v)dv < ∞, sup
j

∫

Q±
j (F j)(x, v)dv < ∞ for a.e. x ∈ (−1, 1).
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Proof of Lemma 4.3. Assume that, given η > 0, there is j0 ∈ IN such that
for all j ∈ IN, j ≥ j0,

meas{x ∈ (−1, 1);

∫

|ξ|≤ 1
j0

F j(x, v)dv > j3
0} ≤ η

8
. (4.3)

(The property (4.3) of (F j) is proved on next page.) Since the Q±(F )
integrals are equal, we discuss the Q−(F ) case. The Q±

j (F j) case follows
from the same proof. Suppose that for some η > 0,

∫

Q−(F )(x, v)dv = ∞
on S ⊂ [−1, 1] with | S |≥ η > 0. Then there is a subset S1 ⊂ S with
| S1 |= η

2 such that limδ→0
∫

δ≤|ξ|≤ 1
j0

F (x, v)dv = ∞, uniformly with respect

to x ∈ S1. Hence there is a sequence (δk) with limk→∞ δk = 0 such that
∫

δk≤|ξ|≤ 1
j0

F (x, v)dv > k3, x ∈ S1. (4.4)

Multiplying (3.10) by logF j and integrating it on (−1, 1) × IR3 implies

∫ 1

−1

1
∫

F j(x, v∗)dv∗dω

∫

χjB(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))

log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dxdvdv∗dω ≤

∫

ξF jlogF j(−1, v)dv −
∫

ξF jlogF j(1, v)dv.

But for all j
∫

ξF j logF j(−1, v)dv

≤
∫

ξ<0
ξF jlog−F j(−1, v)dv + (

∫

ξ>0
ξM0logM0(v)dv)

∫

ξ′<0
| ξ′ | F j(−1, v′)dv′

+(

∫

ξ>0
ξM0(v)dv)(

∫

ξ′<0
| ξ′ | F j(−1, v′)dv′)log

∫

ξ′<0
| ξ′ | F j(−1, v′)dv′ ≤ c,(4.5)

since
∫

ξ′<0 | ξ′ | F j(−1, v′)dv′ ∈ [0, 1]. Similarly, − ∫

ξF j logF j(1, v)dv is
uniformly in j bounded. Hence uniformly with respect to j,

∫ 1

−1

1
∫

F j(x, v∗)dv∗dω

∫

χjB(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))

log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dxdvdv∗dω < c < ∞.(4.6)
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The collision frequency is bounded by µ, so Lemma 4.2 implies the same
compactness for the loss term (Q−(F j)) as for (F j). That together with the
bound (4.6) implies this compactness property for (Q+(F j)). From Egoroff’s
theorem and a Cantor diagonalization argument, there is a subset S2 ⊂ S1,
with | S2 |= η

4 such that for all k ∈ IN and uniformly with respect to x ∈ S2,

lim
j→∞

∫

δk<|ξ|≤ 1
j0

F j(x, v)dv =

∫

δk<|ξ|≤ 1
j0

F (x, v)dv.

By (4.4) this contradicts (4.3) for k > j0.

Let us prove (4.3) by contradiction. If (4.3) does not hold, there is η > 0
and a subsequence of (F j), still denoted by (F j), such that | Sj |≥ η

8 , where

Sj := {x ∈ (−1, 1);

∫

|ξ|≤ 1
j

F j(x, v)dv ≥ j3}.

By (4.6), there is a subset S′
j of Sj, with | S′

j |≥ η
16 , such that

∫

χjB(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω

≤ c

∫

F j(x, v∗)dv∗dω ≤ 2c

∫

|ξ|≤ 1
j

F j(x, v∗)dv∗.(4.7)

The last inequality holds for j large enough, since by Lemma 4.1 and the
definition of Sj,

∫

|ξ|≥ 1
j

F j(x, v)dv ≤ cj2 ≤ j3 ≤
∫

|ξ|≤ 1
j

F j(x, v)dv, x ∈ Sj .

Let us estimate from above the right-hand side of

1 =
Xj

∫

|ξ|≤ 1
j
F j(x, v)dv

+
Yj

∫

|ξ|≤ 1
j
F j(x, v)dv

, x ∈ S′
j,

where

Xj =

∫

|ξ|≤ 1
j
,|ρ|≤j

1
3

F j(x, v)dv, Yj =

∫

|ξ|≤ 1
j
,|ρ|≥j

1
3

F j(x, v)dv.

Here

ρ :=
√

η2 + ζ2, v = (ξ, η, ζ).
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Either Xj ≤ j2, and then

Xj
∫

|ξ|≤ 1
j
F j(x, v)dv

≤ 1

j
.

Or Xj ≥ j2, and then

∫

|ξ|≤ 1
j
,|ρ|≤j

1
3 ,F j(x,v)≥ 1

16
j

7
3

F j(x, v)dv ≥ 1

2
j2.

Given v, let

V∗ := {v∗ ∈ IR3;
1

10
≤| ξ∗ |≤ 1, | ρ∗ |≤ 100, | ρ − ρ∗ |> 10}.

By Lemma 4.1,

F j(x, v∗) ≥ c, v∗ ∈ V∗.

Then, from the geometry of the velocities involved, and from
∫

|ξ|≥1 F j(x, v)dv ≤
c, given v with F j(x, v) ≥ 1

16j
7
3 , it holds for v∗ in a half volume of V∗ and

given (v, v∗) for ω in a subset Uj(v, v∗) of S2 with measure a small fixed
fraction of the measure of S2, that

| ξ′ |≥ 1, | ξ′∗ |≥ 1, F j(x, v′) ≤ c̃, F j(x, v′∗) ≤ c̃.

It follows for some c > 0, for v, v∗ ∈ V∗, ω ∈ Uj(v, v∗), for j large, and with
c independent of v, v∗, ω, j, that

cF j(x, v) ≤ F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗),

F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
≥ cj

7
3 .

By (4.7), in this case,

∫

|ξ|≤ 1
j
,|ρ|≤j

1
3 ,F j(x,v)≥ 1

16
j

7
3

F j(x, v)dv

∫

|ξ|≤ 1
j
F j(x, v)dv

≤ c

logj
, x ∈ S′

j .

Moreover,
∫

|ξ|≤ 1
j
,|ρ|≤j

1
3 ,F j(x,v)≤ 1

16
j

7
3

F j(x, v)dv ≤ cj2.
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Hence for x ∈ S′
j

Xj
∫

|ξ|≤ 1
j
F j(x, v)dv

≤ c

logj
.

Let us bound Yj from above. By Lemma 4.1,

F j(x, v∗) ≥ c, | v∗ |≤ 10, | ξ∗ |≥
1

10
.

For (v, v∗) such that | ξ |≤ 1
j
, | ρ |≥ j

1
3 , v∗ ∈ V∗, we have | v − v∗ |≥ cj

1
3 for

j large. Hence, for a set Ω of ω with a small fixed fraction of the total area
of S2, it holds that | ξ′ |≥ cj

1
3 , | ξ′∗ |≥ cj

1
3 . From

∫

|ξ|≥cj
1
3

F j(x, v)dv ≤ c

j
2
3

,

it follows that
∫

|ξ′|≥cj
1
3 ,|ξ′∗|≥cj

1
3

F j(x, v′)F j(x, v′∗)dvdv∗dω ≤ c

j
4
3

.

Hence

c1

∫

rj≤|ξ|≤ 1
j
,|ρ|≥j

1
3

F j(x, v)dv ≤
∫

rj≤|ξ|≤ 1
j
,|ρ|≥j

1
3 ,v∗∈V∗,ω∈Ω

BjF
j(x, v)F j(x, v∗)dvdv∗dω

≤ Kc2

∫

|ξ′|≥cj
1
3 ,|ξ′∗|≥cj

1
3

BjF
j(x, v′)F j(x, v′∗)dv′dv′∗

+
2

logK

∫

Bj(F
j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log

F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω

≤ c3K

j
4
3

+
c3

logK

∫

|ξ|≤ 1
j

F j(x, v)dv.

Then, for some c > 0 independent of j,

1 =
Xj

∫

|ξ|≤ 1
j
F j(x, v)dv

+
Yj

∫

|ξ|≤ 1
j
F j(x, v)dv

≤ c(
rj

j3
+

1

j
+

1

logj
+

K

j
4
3

+
1

logK
).

Choosing K large enough, this gives a contradiction for j large. 2

Remark. We have proven that for any η > 0, there is j0 ∈ IN such that for
all j ∈ IN , j ≥ j0, (4.3) holds.

Lemma 4.4 Given η > 0, there is j0 such that for j > j0 and outside a
j-dependent set in x of measure less than η,

∫

|ρ|>λ F j(x, v)dv converges to
zero when λ → +∞, uniformly with respect to x and j.
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Proof of Lemma 4.4. It follows from the geometry of the velocities involved
and the inequality

∫

|ξ|≥c̄λ
| ξ |β F j(x, v)dv ≤ c

λ2−β
,

that for each (v, v∗) with ρ ≥ λ � 10, and v∗ in

V∗ := {v∗ ∈ IR3; | ξ∗ |≥
1

10
, | v∗ |≤ 10},

there is a subset of ω ∈ S2 with measure (say) 1
100 | S2 | such that

c̄ρ ≤| v′ |≤ c | ξ′ |, c̄ρ ≤| v′∗ |≤ c | ξ′∗ | .

Moreover,

F j(x, v∗) ≥ c, | ξ∗ |≥
1

10
, | v∗ |≤ 10.

Hence for rj ≤| ξ |≤ c̄λ,

cF j(x, v) ≤ F j(x, v)F j(x, v∗) ≤ KBj(v − v∗, ω)F j(x, v′)F j(x, v′∗)

+
2

logK
Bj(v − v∗, ω)(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log

F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
.

Let us integrate this inequality on the above set of (v, v∗, ω), so that

∫

|ρ|>λ
F j(x, v)dv ≤ crj

λ
+

cK

λ4−β
+

c

logK

∫

χjBj(F
j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))

log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω.

Given η > 0, by (4.3) there is j0 such that for j > j0, outside of a set in x

of measure η
8 , it holds that

∫

F j(x, v)dv ≤ cj2
0 + j3

0 .

By (4.6),
∫

χjB(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))

log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω ≤ cη

∫

F j(x, v)dv
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outside of a set of measure (say) 7η
8 , so that

∫

|ρ|>λ
F j(x, v)dv ≤ crj

λ
+

cK

λ2−β
+

cη(cj
2
0 + j3

0)

logK
,

for x outside of a set of measure η. Choosing K so that 1
K

is small enough
and then taking λ so that cK

λ4−β is small enough, implies that
∫

|ρ|>λ F j(x, v)dv

tends to zero uniformly outside of j−dependent sets of measure bounded by
η. 2

Lemma 4.5 Given λ > 0 and η > 0, there is j0 such that for j > j0 and
outside of a j-dependent set in x of measure less than η,

∫

|ρ|≤λ,|ξ|≤ 1
i
F j(x, v)dv

converges to zero when i → +∞, uniformly with respect to x and j.

Proof of Lemma 4.5. Given η > 0, 0 < ε < 1
µ

and x, j, either

∫

|ρ|≤λ,|ξ|≤ 1
i

F j(x, v)dv ≤ ε2 < ε,

or
∫

|ρ|≤λ,|ξ|≤ 1
i

F j(x, v)dv > ε2.

In the latter case
∫

|ρ|≤λ,|ξ|≤ 1
i
,F j(x,v)≤ ε2

4µλ2π
i
F j(x, v)dv ≤ ε2

2µ
< ε,

and
∫

|ρ|≤λ,|ξ|≤ 1
i
,F j(x,v)≥ ε2

4µλ2π
i
F j(x, v)dv ≥ ε2

2
.

For each (x, v) such that F j(x, v) ≥ ε2

4µλ2π
i, take v∗ in

V∗ := {v∗ ∈ IR3;
1

10
≤| ξ∗ |≤ 1, | ρ∗ |≤ 100, | ρ − ρ∗ |> 10}.

Then F j(x, v∗) ≥ c > 0 for v∗ ∈ V∗. Given v we may take v∗ in a half
volume of V∗ and ω in a subset of S2 of measure (say) 1

100 | S2 |, so that
v′ = v − (v − v∗, ω)ω and v′∗ = v∗ + (v − v∗, ω)ω satisfy

| ξ′ |≥ 1, | ξ′∗ |≥ 1, F j(x, v′) ≤ c̃, F j(x, v′∗) ≤ c̃,
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with c̃ independent of j. Hence, for such x, v, v∗ and ω,

F j(x, v) ≤ cF j(x, v)F j(x, v∗)

≤ c

logi
Bj(v − v∗, ω)(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log

F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
,

if | ξ |≥ rj. Since the integral

1
∫

F j(x, v)dv

∫

Bj(v − v∗, ω)(F j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))

log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω

is bounded outside of a set of measure η
2 in x, it follows using (4.3) that

outside of a set of measure 5
8η in x,

∫

|ρ|≤λ,|ξ|≤ 1
i

F j(x, v)dv ≤ c1(j
3
o + cj2

o )

logi
+ ε +

c1

i
< 2ε,

for i large enough. 2

5 Proof of the main theorem.

In this section the small velocity truncation will first be removed while keep-
ing 0 < µ fixed. The bounds from below of the approximations by their
boundary values imply that the condition (1.5) holds in the limit, and that
the function y(x) from (1.6) is well defined. This will prove Theorem 1.1 in
the pseudo-maxwellian case, i.e. when β = 0. In a final step the general-
ization to hard forces will be treated, using generalizations of the previous
approach.

Lemma 5.1 There is a subsequence of (F j) that converges to a weak solu-
tion of

ξ
∂F

∂x
=

1
∫

Fdv∗dω

∫

max(
1

µ
,min(B(v − v∗, ω), µ))(F ′F ′∗ − FF ∗)dv∗dω,

F (−1, v) = c0M0(v)

∫

ξ′<0
| ξ′ | F (−1, v′)dv′, ξ > 0,

F (1, v) = cLML(v)

∫

ξ′>0
ξ′F (1, v′)dv′, ξ < 0,
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with c0 ≥ 1, cL ≥ 1, and
∫

ξ>0
ξF (−1, v)dv +

∫

ξ<0
| ξ | F (1, v)dv = 1.

Remark. This proves Theorem 1.1 in the pseudo-maxwellian case.

Proof of Lemma 5.1. Let ϕ be a test function vanishing for | ξ |≤ δ and
for | v |≥ 1

δ
. By Lemma 4.2, there is a measurable function F , such that

(F j) weakly converges to F in L1([−1, 1] × {v ∈ IR3; | ξ |≥ δ}). Hence
∫

(−1,1)×IR3 ξF j ∂ϕ
∂x

(x, v)dxdv converges to
∫

(−1,1)×IR3 ξF ∂ϕ
∂x

(x, v)dxdv when j

tends to infinity. Let us prove that
∫

Q−
j (F j)ϕ(x, v)dxdv converges to

∫

Q−(F )ϕ(x, v)dxdv when j tends to infinity. (Q±
j (F j)) are weakly compact

in L1([−1, 1] × {v ∈ IR3; | ξ |≥ δ}), since 0 ≤ Q−(F j) ≤ cF j ,

Q+
j (F j) ≤ KQ−

j (F j) +
2

logK
∫

F jdv∗dω

∫

χjBµ(F jF j
∗ − F j′F j′

∗ )log
F jF

j
∗

F j′F
j′
∗

dv∗dω,

and the integral of the entropy dissipation term is bounded uniformly with
respect to j. Consequently for any α > 0 and λ > 0

∫

|ξ∗|≥α,|ρ∗|≤λ
χjBµ(v − v∗, ω)F j(x, v∗)dv∗dω

and
∫

|ξ∗|≥α,|ρ∗|≤λ
F j(x, v∗)dv∗dω

converge strongly in L1([−1, 1]×{v ∈ IR3; | v |≤ c}), hence uniformly outside
of certain arbitrarily small sets, to

∫

|ξ∗|≥α,|ρ∗|≤λ
Bµ(v − v∗, ω)F (x, v∗)dv∗dω

and
∫

|ξ∗|≥α,|ρ∗|≤λ
F (x, v∗)dv∗dω

respectively, when j tends to infinity. By Lemmas 4.4 and 4.5, uniformly
with respect to j ≥ j0 and | v |≤ c,

∫

|ξ∗|≤α
χjBµ(v − v∗, ω)F j(x, v∗)dv∗dω
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and
∫

|ξ∗|≤α
F j(x, v∗)dv∗dω

tend to zero in measure when α tends to zero, and
∫

|ρ∗|≥λ
χjBµ(v − v∗, ω)F j(x, v∗)dv∗dω

and
∫

|ρ∗|≥λ
F j(x, v∗)dv∗dω

tend to zero in measure when λ tends to infinity, uniformly with respect to
j and | v |≤ c. Together with the weak L1((−1, 1) × {v ∈ IR3; | ξ |≥ δ})
compactness of (F j), this implies that

∫

Q−
j (F j)ϕ(x, v)dxdv

converges to
∫

Q−(F )ϕ(x, v)dxdv when j → ∞. Performing the change of
variables (v, v∗) → (v′, v′∗) in

∫

Q+
j (F j)ϕ(x, v)dxdv, and using similar argu-

ments, we obtain that (
∫

Q+
j (F j)ϕ(x, v)dxdv) converges to

∫

Q+(F )ϕ(x, v)dxdv

when j tends to infinity. Finally, using the arguments leading up to F r,µ

satisfying (3.11-12) together with Lemma 4.4, we may conclude that F sat-
isfies (3.11). For (3.12) we also notice that (4.5) and convexity imply that
the present weak limits F j satisfy

∫

ξ<0
|ξ|F j log+ F j(−1, v)dv +

∫

ξ>0
ξF j log+ F j(1, v)dv ≤ c,

uniformly in j. It follows that (γ±F j) converges weakly (for a subsequence)
to γ±F , so that (3.12) holds. 2

Proof of Theorem 1.1 for hard forces.
The solution procedure in the pseudo-maxwellian case can be applied in the
same way to prove the existence of a solution to

ξ
∂Fµ

∂x
=

1
∫

Kµ(v∗)Fµ(x, v∗)dv∗
[

∫

Bµ(v − v∗, ω)Fµ(x, v′)Fµ(x, v′∗)

−Fµ(x, v)

∫

Bµ(v − v∗, ω)Fµ(x, v∗)dv∗dω],(5.1)

with boundary conditions (1.7) and
∫

ξ>0
ξFµ(−1, v)dv +

∫

ξ<0
| ξ | Fµ(1, v)dv = 1.
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Here, Kµ(v) := min(µ, (1+ | v |)β). We shall prove Theorem 1.1 in the hard
force case by passing to the limit in this equation when µ tends to infinity.
Similarly to the corresponding proof in Lemma 4.1, uniformly in µ

∫

Kµ(v∗)F
µ(x, v∗)dv∗ ≥ c > 0.

For any δ > 0, the family (Fµ)µ≥µ0 is weakly precompact in L1((−1, 1)×{v ∈
IR3; | ξ |≥ δ, | v |≤ 1

δ
}). Indeed,

∫

Bµ(v − v∗, ω)Fµ(x, v∗)dv∗dω
∫

Kµ(v∗)Fµ(x, v∗)dv∗
≤ cδ, | v |≤ 1

δ
, (5.2)

so that

Fµ(x, v) ≤ cδF
µ(1, v), ξ > δ, | v |≤ 1

δ
,

Fµ(x, v) ≤ cδF
µ(−1, v), ξ < −δ, | v |≤ 1

δ
,

and

FµlogFµ(x, v) ≤ cδF
µlogFµ(1, v) + cδlogcδF

µ(1, v), ξ > δ, | v |≤ 1

δ
,

Fµ(x, v) ≤ cδF
µlogFµ(−1, v) + cδlogcδF

µ(−1, v), ξ < −δ, | v |≤ 1

δ
.

The weak precompactness of (Fµ) implies by (5.2) the weak precompact-
ness of (Q−

µ (Fµ)) in L1((−1, 1) × {v ∈ IR3; | ξ |≥ δ, | v |≤ 1
δ
}). But the

entropy dissipation estimate (4.6) holds in this case uniformly in µ with
∫

Kµ(v∗)F
µ(x, v∗)dv∗ as denominator,

∫

(
1

∫

Kµ(v∗)Fµ(x, v∗)dv∗

∫

Bµ(Fµ′
Fµ′

∗ − FµFµ
∗ )log

Fµ′
F

µ′

∗

FµF
µ
∗

dvdv∗dω)dx ≤ c.

Also, for k ≥ 2,

Q+
µ (Fµ) ≤ kQ−

µ (Fµ) +
1

logk
∫

Kµ(v∗)Fµ(x, v∗)dv∗

∫

Bµ(Fµ′
Fµ′

∗ − FµFµ
∗ )log

Fµ′
F

µ′

∗

FµF
µ
∗

dv∗dω.

Hence (Q+
µ (Fµ)) is weakly precompact in L1((−1, 1) × {v ∈ IR3; | ξ |≥ δ,

| v |≤ 1
δ
}). And so (

∫

Fµϕ(x, v)dv)µ≥µ0 is compact in L1(−1, 1) for any test
function ϕ vanishing on | ξ |≤ δ and | v |≥ 1

δ
.

To end the proof, the following three lemmas will be needed.
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Lemma 5.2 Given η > 0, there are µ0, j0 and constants c0 and c̄, such
that for µ ≥ µ0,

meas{x ∈ (−1, 1);

∫

|ξ|≤ 1
j0

Kµ(v)Fµ(x, v)dv ≥ c0j0e
j0c̄} ≤ η.

Proof of Lemma 5.2. By the exponential form of (5.1), there is a constant c̃

such that

Fµ(x, v) ≤ Fµ(1, v)ejc̃, ξ ≥ 1

j
, | v |≤ 101,

Fµ(x, v) ≤ Fµ(−1, v)ejc̃, ξ ≤ −1

j
, | v |≤ 101. (5.3)

We shall prove Lemma 5.2 for c̄ = 2c̃ by contradiction. If the lemma does
not hold, then for some η > 0 there are sequences (Bj)j∈IN , and (F j)j∈IN ,
(µj)j∈IN such that limj→∞ µj = ∞, F j = Fµj , Bj = Bµj

, and (Sj)j∈IN with
| Sj |≥ η, where

Sj := {x ∈ (−1, 1);

∫

|ξ|≤ 1
j

Kj(v)F j(x, v)dv ≥ jejc̄}.

Recall that
∫

ξ2F j(x, v)dv ≤ c, j ∈ IN, x ∈ (−1, 1). (5.4)

This implies that
∫

|ξ|≥ 1
j
,ρ≤100

Kj(v)F j(x, v)dv ≤ cjejc̃. (5.5)

Also, by the exponential form of (5.1),

F j(x, v∗) ≥ c1F
j(−1, v∗), ξ∗ ≥

1

10
, | v∗ |≤ 10,

F j(x, v∗) ≥ c1F
j(1, v∗), ξ∗ ≤ − 1

10
, | v∗ |≤ 10.

For (say) ρ ≥ 100, and v∗ such that | ξ∗ |≥ 1
10 , | v∗ |≤ 10, there is a set of

ω ∈ S2 of measure (say) 1
100 | S2 | such that

| ξ′ |∼| ξ′∗ |∼| v | .
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Then

Kj(v)F j(x, v) ≤ c2Kj(v)F j(x, v)F j(x, v∗)

≤ c3k(| ξ′ |β + | ξ′∗ |β)F j(x, v′)F j(x, v′∗)

+
c4

logk
Bj(F

j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log
F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
.

For x in half of Sj,

∫

Bj(F
j(x, v)F j(x, v∗) − F j(x, v′)F j(x, v′∗))log

F j(x, v)F j(x, v∗)

F j(x, v′)F j(x, v′∗)
dvdv∗dω

≤ c

∫

Kj(v)F j(x, v)dvdω.

Hence
∫

ρ≥100
Kj(v)F j(x, v)dv

≤ kc5(

∫

|ξ|≥1
F j(x, v)dv)(

∫

|ξ|≥1
| ξ |β F j(x, v)dv) +

c6

logk

∫

Kj(v)F j(x, v)dv.

(5.6)

Choose k so that c6
logk

≤ 1
2 . For the above x-es, it follows from (5.5) and

(5.6) that
∫

Kj(v)F j(x, v)dv ≤
∫

|ξ|≤ 1
j

Kj(v)F j(x, v)dv + kc7 +
1

2

∫

Kj(v)F j(x, v)dv + c8je
jc̃,

so that
∫

Kj(v)F j(x, v)dv ≤ 2

∫

|ξ|≤ 1
j

Kj(v)F j(x, v)dv + c9je
jc̃ ≤ 3

∫

|ξ|≤ 1
j

Kj(v)F j(x, v)dv,

by the definition of Sj. From here the proof follows the lines of the proof of
(4.3) in Lemma 4.3, and using a variant of (5.6) for Yj. Again the assumption
| Sj |≥ η for j ∈ IN leads to a contradiction. This completes the proof of
the lemma. 2

Lemma 5.3 Given c > 0 and η > 0, there is µ0 such that for µ > µ0 and
outside a µ-dependent set in x of measure less than η,

∫

|ρ∗|>λ
BµFµ(x, v∗)dv∗dω

tends to zero when λ → ∞, uniformly with respect to | v |≤ c, x and µ > µ0.
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Proof of Lemma 5.3. For | v |≤ c, Bµ(v − v∗) is of the same magnitude
as Kµ(v∗). Then the proof of Lemma 5.3 follows the lines of the proof of
Lemma 4.4. 2

Lemma 5.4 Given c > 0, λ > 0, and η > 0, there is µ0 such that for µ > µ0

and outside a µ-dependent set in x of measure less than η,
∫

|ρ∗|≤λ,|ξ∗|≤
1
j

BµFµ(x, v∗)dv∗dω

tends to zero when j → ∞, uniformly with respect to | v |≤ c, x and µ > µ0.

Proof of Lemma 5.4. The proof follows the lines of the proof of Lemma 4.5,
after noticing that

Bµ(v − v∗, ω) ≤ cb(θ), | v |≤ c, | ρ∗ |≤ λ, | ξ∗ |≤
1

j
, µ ≥ µ0. 2

End of proof for hard forces. Using the weak L1 compactness of (Fµn),
(Q±(Fµn)), (5.4), and Lemma 5.3, it follows for some sequence µn tend-
ing to +∞ with n, that

∫

|ρ∗|≤λ,|ξ∗|≥
1
j

BµnFµn(x, v∗)dv∗ →
∫

|ρ∗|≤λ,|ξ∗|≥
1
j

BF (x, v∗)dv∗

in L1((−1, 1) × {v ∈ IR3; | v |≤ c}) for c > 0. This convergence, together
with the results from Lemma 5.2-4, imply that for | v |≤ c,

∫

BµnFµn(x, v∗)dv∗dω
∫

Kµn(v∗)Fµn(x, v∗)dv∗
→

∫

BF (x, v∗)dv∗dω
∫

K(v∗)F (x, v∗)dv∗
(≤ c0),

in measure on [−1, 1] when n → ∞. Together with the weak compactness in
L1([−1, 1]×{v ∈ IR3; | ξ |≥ δ, | v |≤ 1

δ
}), the convergence in measure implies

that if ϕ is a test function in C1([−1, 1], L∞(IR3)) vanishing for | ξ |≤ δ and
for | v |≥ 1

δ
, then

∫

Q−
n (Fµn)ϕ(x, v)dxdv →

∫

Q−(F )ϕ(x, v)dxdv, n → ∞.

The above argument holds for a subsequence of (µn) if, instead of Bµn , we
use ϕ(x, v′)Bµn throughout. And so for a subsequence of (µn),

∫

Q+
n (Fµn)ϕ(x, v)dxdv →

∫

Q+(F )ϕ(x, v)dxdv, n → ∞.

37



As in the pseudo-maxwellian case, we may conclude that F satisfies (3.11-
12). This implies that F is a weak solution to the stationary Boltzmann
equation with maxwellian diffuse reflection boundary conditions in the hard
force case (for test functions having compact support and vanish for ξ small).
That in turn implies that F is a mild solution. On the other hand, the in-
tegrability properties of Q±(F,F ) in the above weak solutions, are stronger
than what is required for a mild solution. Hence the present solutions are
somewhat stronger than mild solutions.2
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