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Abstract

A kinetic chemotaxis model with attractive interaction by quasistationary chemical signalling
is considered. The special choice of the turning operator, with velocity jumps biased towards the
chemical concentration gradient, permits closed ODE systems for moments of the distribution
function of arbitrary order. The system for second order moments exhibits a critical mass
phenomeneon. The main result is existence of an aggregated steady state for supercritical mass.

1 Introduction

Chemotaxis, the movement of biological agents influenced by gradients of chemical concentrations,
is a ubiquitous process in biological systems. On the other hand, the production or degradation of
chemicals is at the basis of standard signalling mechanisms between individuals. This produces a
nonlinear feedback which, together with chemotactic motility, may drive self-organization processes
in groups of agents.

A typical example, observed in many bacterial and amoeboid species, is aggregation driven by
the production of a diffusible chemical, and chemotactic movement biased towards the direction of
the gradient of the chemical concentration (see the large literature on Dictyostelium discoideum or,
for bacteria, [9]). Since motility usually has a random component, it is a standard question in this
situation, if the attractive mechanism is strong enough to overcome the dispersion caused by the
random motility component.

The type of mathematical models mostly depends on the nature of the motility process. The
standard assumption of Brownian motion with drift, the latter determined by chemotaxis, leads
to a version of the classical Patlak-Keller-Segel (PKS) model [11, 8], where a convection-diffusion
equation for the agent density is coupled with a reaction-diffusion equation for the chemical concen-
tration. For certain bacterial species a description by a velocity jump process is more appropriate,
whence the convection-diffusion equation of the PKS model is replaced by a kinetic transport equa-
tion [10]. The PKS model can typically be recovered as a macroscopic limit [4, 7]. However, some
observed phenomena are only explainable by kinetic models [12].

Three types of long time behavior can be observed in mathematical models. If the random
motion of agents dominates, this leads to dispersion, i.e. the same qualitative behavior as for the
heat equation. For dominating attractive effects, the agent density either has a nontrivial aggregated
long-time limit, or it blows up in finite time, typically in a concentration event. The two-dimensional
parabolic-elliptic PKS model (i.e. with a quasistationary equation for the chemical concentration)
has been thoroughly analyzed with respect to these questions. It shows a critical mass phenomenon:
Among the initial data with finite variance those with the total mass below a critical value lead
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to dispersion and those with supercritical mass to finite time blow-up [1]. At the blow-up time
strong solutions cease to exist, but a continuation by measure solutions is possible as limiting case
of regularized models [6, 13]. The corresponding dichotomy has been shown to exist also in kinetic
transport models [2]. The situation for other versions of the PKS model and, in particular, for
kinetic models is less clear.

Motivated by experimental results for E. coli [9], a linear kinetic model with given aggregated
chemical concentration has been analyzed in [3]. The existence of a nontrivial steady state and its
dynamic stability have been proven (the latter by employing the methodology of [5]). The present
work can be seen as a continuation, where the nonlinear coupling with a quasistationary model
for the chemical is added. The main result is a critical mass phenomenon, but with a dichotomy
between dispersion and the existence of an aggregated steady state. Consider the system

∂tf + v∂xf =

∫
R

(
T [S](v′ → v, x, t)f ′ − T [S](v → v′, x, t)f

)
dv′ , (1)

−D∂2
xS = βρf − γS , (2)

a one-dimensional kinetic model for chemotaxis, where the cells with phase space density f(x, v, t)
and macroscopic density and flux,

ρf (x, t) =

∫
R
f(x, v, t)dv and, respectively, jf (x, t) =

∫
R
vf(x, v, t)dv ,

produce the chemoattractant with density S(x, t). The dynamics of the chemoattractant (diffusion,
production, and decay) is assumed to be fast (and therefore modelled as quasistationary) compared
to the dynamics of the cells.

We consider two choices for the turning kernel:

Model A: T [S](v → v′, x, t) = κS(x+ αv′, t) ,

Model B: T [S](v → v′, x, t) = κS(x+ α(v′ − v), t) .

For both models, we assume α, β, γ, κ,D > 0. In Model A, cells decide about reorientation by
scanning the chemoattractant density in the directions of possible post-turning velocities. In Model
B, they scan in the direction of possible velocity changes. Whereas in Model A the outcome of a
turning event is independent from the pre-turning velocity, Model B can be motivated by directional
persistence of the agents. This obviously makes it harder to reach a target, and it is one of the
results of this work that Model B does not lead to cell aggregation. Both models have not been
derived systematically from the microscopic behavior of a particular cell type. However, they are
reasonable from a qualitative point of view, and they have the remarkable mathematical property
that the evolution of moments can be computed by solving linear constant coefficient ODEs without
solving the full equations (see Section 3).

We observe that the rescaling

t→ αt , v → v

α
√
γ/D

, x→ x√
γ/D

, f → f
αγ2

κβD
, S → S

√
γ/D

κ
,

eliminates all parameters, i.e., (1), (2) becomes

∂tf + v∂xf =

∫
R

(
T [S](v′ → v, x, t)f ′ − T [S](v → v′, x, t)f

)
dv′ , (3)

−∂2
xS = ρf − S , (4)
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with

Model A: T [S](v → v′, x, t) = S(x+ v′, t) ,

Model B: T [S](v → v′, x, t) = S(x+ v′ − v, t) .

We consider the Cauchy problem with initial conditions

f(x, v, 0) = fI(x, v) ≥ 0 for x, v ∈ R . (5)

The solution S of (2) is defined as the convolution product of the decaying fundamental solution of
−∂2

x + id with ρ:

S[ρ](x, t) =
1

2

∫
R
e−|x−y|ρ(y, t)dy . (6)

The initial datum is assumed to possess moments of up to second order:∫
R
ρI dx =

∫
R

∫
R
fI dv dx = M <∞ ,∫

R
|x|2ρI dx =

∫
R

∫
R
|x|2fI dv dx <∞ ,∫

R

∫
R
|v|2fI dv dx <∞ . (7)

We choose a reference frame such that the first order moments vanish initially:∫
R
jI dx =

∫
R

∫
R
vfI dv dx = 0 ,∫

R
xρI dx =

∫
R

∫
R
xfI dv dx = 0 . (8)

We shall show that for Model A the (x- and v-) moments of f up to any fixed order satisfy closed
systems of linear, constant coefficient ODEs. The system of second order moments exhibits a
critical mass phenomenon. If the total mass M is below a critical value, the second order moments
grow indefinitely with time, whereas for large enough mass they converge to finite values. The
corresponding system for Model B always produces growing second order moments. Therefore
we shall concentrate on model A after this observation. It turns out that also the higher order
moment systems exhibit a critical mass phenomenon, however with the critical mass increasing
with the moment order. Since stationary solutions may be the limits when time tends to infinity of
the solutions to the Cauchy problem associated to (1), (2), this suggests a mass dependent decay
behavior of the steady state. However, a precise characterization is still open.

The rest of this work is structured as follows: Existence and uniqueness of global solutions of
the Cauchy problem is proven in Section 2 for Models A and B. In Section 3 it is shown for Model A
that in principle all moments of the solution can be obtained by recursively solving systems of linear
ODEs, where all moments of fixed order are coupled. The second order system exhibits a critical
mass phenomenon. Whereas for small mass the second order moments tend to infinity, they converge
to a steady state, if the mass is above a critical value, indicating the existence of an aggregated
stationary solution in the latter case and dispersion in the former. For higher order systems, roughly
speaking the critical mass increases. It is shown that at each order the system is stable for mass
large enough. On the other hand, for each fixed mass, stability only holds up to a finite order. This
indicates algebraic decay of possible stationary solutions with mass dependent decay. However, the
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details of the dynamics are unclear. Higher order systems might exhibit increasing and decaying
modes as well as oscillations. For this reason, we cannot deduce convergence to a stationary solution
from the moment systems. For Model B the situation is simpler and less interesting. The second
order moments again solve a closed ODE system, whose solutions always tend to infinity. Therefore
we conjecture that in Model B dispersion always dominates and restrict the further analysis to
Model A. A formal asymptotics for large mass, equivalent to a macroscopic limit, of Model A is
performed in Section 4. In the large time limit of the resulting macroscopic convection equation,
concentration with repect to position and exponential decay with respect to velocity is obtained,
indicating anisotropic decay behavior in phase space also for finite mass. The existence of a smooth
steady state for Model A with supercritical mass (of the second order moment system) is proven in
Section 5. The natural question of a precise characterization of the decay behavior of the stationary
solution remains open. So far it resisted both our attempts of a direct asymptotic analysis and of a
reconstruction from results on the moments. Another question, which remains the subject of future
work, is a characterization of the long time behavior when dispersion dominates, i.e. for subcritical
mass in Model A and for all cases in Model B. Finally, it should be possible to extend some of the
results to corresponding multi-dimensional models.

2 The Cauchy problem

Theorem 1 Given fI ∈ L1
+(R2) and M =

∫
R2 fI(x, v)dx dv, there is a unique solution

f ∈ C([0,∞), L1
+(R2)) to the Cauchy problem associated to Model A, i.e.,

∂tf + v∂xf = QA(f) , f(t = 0) = fI , (9)

with

QA(f)(v, x) = S[ρf ](x+ v)ρf (x)−Mf(x, v) , S[ρ](x) =
1

2

∫
R
ρ(y)e−|x−y|dy , (10)

where ρf (x, t) =
∫
R f(x, v, t)dv.

Remark 1 By an application of Theorem 1 of [4] the additional assumption fI ∈ L∞(R2) implies
boundedness of the solution uniformly in time, i.e., f ∈ L∞(R2 × (0,∞)).

Proof. For every T > 0, let

XT :=

{
ρ ∈ C

(
[0, T ];L1

+(R)
)

:

∫
R
ρ(x, t)dx = M, ∀ t ∈ [0, T ]

}
,

equipped with the natural norm ‖ · ‖XT
, and let RA(ρ) =

∫
R f dv, where f is the solution of

∂tf(x, v, t) + v∂xf(x, v, t) = ρ(x, t)S[ρ](x+ v, t)−Mf(x, v, t) , (11)

f(x, v, 0) = fI(x, v) . (12)

It can be computed explicitly as

RA(ρ)(x, t) = e−Mt

∫
R
fI(x−vt, v)dv+

∫ t

0
e−Ms

∫
R
S[ρ](x+v(1−s), t−s)ρ(x−vs, t−s)dv ds. (13)

For ρ ∈ XT nonnegativity of RA(ρ) is obvious, and the mass conservation property follows by
integration of (13) with respect to x, implying R : XT → XT .
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The idea is to show that RA is a contraction with respect to ‖ · ‖XT
. First we observe that∫

R S[ρ](x, t)dx = M for ρ ∈ XT and that ρ 7→ S[ρ] as a map from L1(R) to L1(R) is Lipschitz with
Lipschitz constant 1. This implies for ρ1, ρ2 ∈ XT , after a change of variables,

‖RA(ρ1)−RA(ρ2)‖XT
≤

∫ T

0
e−Ms

∫
R2

(
ρ1(ξ, t− s)|S[ρ1]− S[ρ2]|(η, t− s)

+S[ρ2](η, t− s)|ρ1 − ρ2|(ξ, t− s)
)
dξ dη ds

≤ 2(1− e−MT )‖ρ1 − ρ2‖XT
.

Thus, for T < ln 2
M the map RA is a contraction on XT . This proves local solvability. As a

consequence of the uniform bound in L1(R2) the solution can be extended indefinitely in time steps
of length T .

Theorem 2 Given fI ∈ L1
+(R2) and M =

∫
R2 fI(x, v)dx dv, there is a unique solution

f ∈ C([0,∞), L1
+(R2)) to the Cauchy problem associated to Model B, i.e.,

∂tf + v∂xf = QB(f) , f(t = 0) = fI , (14)

with

QB(f)(v, x) =

∫
S[ρf ](x+ v − v′)f(x, v′)dv′ −Mf(x, v) , S[ρ](x) =

1

2

∫
R
ρ(y)e−|x−y|dy , (15)

where ρf (x, t) =
∫
R f(x, v, t)dv.

Proof. A solution f to the Cauchy problem associated to Model B is directly obtained as the limit
of the increasing sequence (fj) defined by f0 = 0 and fj+1 given from fj as the solution to

∂tfj+1(x, v, t) + v∂xfj+1(x, v, t) =

∫
S[ρfj ](x+ v − v′, t)fj(x, v′, t)dv′ −Mfj+1(x, v, t) , (16)

fj+1(x, v, 0) = fI(x, v) ,

where ρfj =
∫
fjdv. fj+1 is explicitly given from fj by

fj+1(x, v, t) = e−MtfI(x−vt, v)+

∫ t

0
eM(s−t)

∫
R
S[ρfj ](x+v(s−t+1)−v′, s)fj(x+v(s−t), v′, s)dv′ ds.

(17)
Consequently it can be proven by induction that (fj) is nonnegative, and non decreasing since
f0 = 0 ≤ f1 and fj−1 ≤ fj imply 0 ≤ S[ρfj−1

] ≤ S[ρfj ] and fj ≤ fj+1 by (17). Moreover, denoting
by mj(t) =

∫
fj(x, v, t)dxdv and integrating (16) with respect to (x, v) ∈ R2, it holds

m′j+1 = m2
j −Mmj+1 ,

so that it can be proven by induction that

mj(t) ≤M, j ∈ N. (18)

And so, by the monotone convergence theorem, (fj) converges in L1 to a nonnegative function f . It
implies that the limit in L1 of

( ∫
S[ρfj ](x+v−v′, t)fj(x, v′, t)dv′

)
is
∫
S[ρf ](x+v−v′, t)f(x, v′, t)dv′.

And so, f is a solution of (14). Conservation of mass from (14) implies that
∫
f(x, v, t)dxdv = M .

The limit of (17) implies that f ∈ C([0,∞), L1
+(R2)). f is the unique nonnegative solution of (14)

since its construction makes it minimal among the nonnegative solutions of (14). Indeed, if there
were another nonnegative solution f̃ , then f ≤ f̃ and

∫
f(x, v, t)dxdv =

∫
f̃(x, v, t)dxdv = M would

imply that f̃ = f .
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3 Evolution of moments

The closedness of the equations for the moments for Model A relies on the following result

Lemma 1 Let 0 ≤ n ≤ N , let ρ ∈ L1
+(R) have finite moments up to order N , i.e.,∫

R
|x|kρ(x)dx <∞ , k = 0, . . . , N ,

and let S be the bounded solution of ∂2
xS = S − ρ, i.e.,

S(x) =
1

2

∫
R
e−|x−y|ρ(y)dy .

Then also S has finite moments up to order N , and with

Rk :=

∫
R
xkρ(x)dx , Sk :=

∫
R
xkS(x)dx , k = 0, . . . , N ,

the following relations hold:

a) Sk = Rk + k(k − 1)Sk−2 , k = 0, . . . , N ,

b)

∫
R

∫
R
xN−nvnS(x+ v)ρ(x)dx dv =

n∑
k=0

(
n

k

)
(−1)n−kSkRN−k 0 ≤ n ≤ N.

Proof. The result can be shown by straightforward computations. We multiply the differential
equation for S by |x|k and xk, and use∫

R
|x|k∂2

xS dx = k(k − 1)

∫
R
|x|k−2S dx , and

∫
R
xk∂2

xS dx = k(k − 1)Sk−2 ,

to show the boundedness of the moments of S and a). Then b) is a consequence of the substitution
y = x+ v and of the binomial theorem.

If we concentrate on moments of order N , then the lemma implies

SN = RN + LOT ,

and ∫
R

∫
R
xN−nvnS(x+ v)ρ(x)dx dv = ((−1)n + δn,N )R0RN + LOT ,

where LOT (Lower Order Terms) stands for terms only depending on moments of order lower than
N . Now we introduce moments of solutions f of (3), (4) with respect to x and v:

Am,n(t) :=

∫
R

∫
R
xmvnf(x, v, t)dv dx .

With the help of Lemma 1 and with

−
∫
R

∫
R
xN−nvn(v∂xf)dv dx = (N − n)AN−n−1,n+1 ,
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we can derive differential equations for the moments. The first and obvious one is mass conservation:

Ȧ0,0 = 0 =⇒ A0,0 = M .

As a consequence, the turning operator of Model A after elimination of the unknown S by (6), can
now be written as

QA(f)(x, v) = S[ρf ](x+ v)ρ(x)−Mf(x, v) .

For the first order moments, we obtain

Ȧ1,0 = A0,1 , Ȧ0,1 = −MA0,1 =⇒ A1,0 = A0,1 = 0 ,

because of (8). For the moments of order two it gets more interesting:

Ȧ2,0 = 2A1,1 ,

Ȧ1,1 = A0,2 −MA1,1 −MA2,0 , (19)

Ȧ0,2 = 2MA2,0 −MA0,2 + 2M2 .

Application of the Routh-Hurwitz criterion to the characteristic polynomial of the coefficient matrix
shows that for M < 2 at least one positive eigenvalue exists, whereas for M > 2 all eigenvalues have
negative real parts. Thus, in the latter case all solutions converge to the steady state

(A2,0, A1,1, A0,2) =

(
2M

M − 2
, 0,

2M2

M − 2

)
.

For the higher order moments we only concentrate on the highest order terms on the right hand
sides:

ȦN−n,n = (N − n)AN−n−1,n+1 + ((−1)n + δn,N )MAN,0 −MAN−n,n + LOT ,

for 0 ≤ n ≤ N . This is a linear ODE system with constant coefficients and an inhomogeneity only
depending on lower order moments. This shows that all moments can be computed recursively.

If the coefficient matrices of all systems up to order N only have eigenvalues with negative real
parts, then all moments of order up to N have finite limits as t→∞. We have already shown above
that for N = 2 this property holds, iff M > 2.

The characteristic polynomial of the order N coefficient matrix can be written as

pN (λ) = −λ(−M − λ)N +MN !
N−1∑
n=0

(−M − λ)n

n!
+ (−1)NMN ! ,

and the determinant of the coefficient matrix is thus given by

pN (0) = (−1)NMN ! qN (M) , qN (M) = 1 +
N−1∑
n=0

(−1)N−n
Mn

n!
.

As we know already and can also be seen from q2(M) = 2−M , the 2nd-order coefficient matrix has
a zero eigenvalue for M = 2. The same is true for 3rd order (q3(M) = M −M2/2 = (2−M)M/2)
but, surprisingly, not for 4th order. The function q4(M) = 2−M +M2/2−M3/6 has a unique real
zero M4 ≈ 2.51.

Conjecture: The functions qN have unique positive zeroes MN , building an increasing sequence,
which tends to infinity. The N th-order linear system above is stable, iff M > MN .

If the conjecture is true then, for every fixed M > 0, only a finite number of moments tends
to a bounded value as t → ∞. This would indicate an M -dependent decay of the equilibrium
distribution with stronger decay for larger values of M .

The essential parts of the conjecture can be proved:
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Lemma 2 For fixed N , and M large enough, all roots of pN have negative real parts.

Proof. First we look for eigenvalues, which remain bounded as M →∞. For fixed λ,

pN (λ)

MN
= (−1)N−1(λ+N) +O(M−1) ,

which provides a first root

λ0 = −N +O(M−1) .

Next we look for roots λ = −M − µ with µ bounded as M →∞. It is straightforward to show

pN (−M − µ)

N !M
= rN (µ) +O(M−1) , with rN (µ) = (−1)N +

N∑
n=0

µn

n!
.

Denoting the roots of rN by µ1, . . . , µN ∈ C (multiple roots allowed), we found N more roots of pN :

λj = −M − µj +O(M−1) , j = 1, . . . , N .

Obviously, all the N + 1 roots we found have negative real parts for large enough M .

Lemma 3 For fixed M , and N large enough, there exists at least one positive root of pN .

Proof. For fixed λ and M ,

pN (λ)

N !M
≈ e−M−λ + (−1)N , as N →∞ .

Therefore, for N large enough there exists λ > 0 such that sign(pN (λ)) = (−1)N . On the other
hand,

lim
λ→∞

pN (λ)(−1)N−1 =∞ ,

completing the proof.

Combination of the existence theorem 1 with the previous results leads to the propagation of
moments:

Corollary 1
Let the assumptions of Theorem 1 hold and let (1 + |x|N + |v|N )fI ∈ L1(R2) for an N ≥ 1.
Then the solution f of (9), (10) satisfies (1 + |x|N + |v|N )f ∈ L∞loc(R+; L1(R2)).
If N ≥ 2 and M > 2, then (1 + |x|2 + |v|2)f ∈ L∞(R+; L1(R2)).

For Model B, the computations are similar but a little more involved. As for Model A, A0,0 = M
and A1,0 = A0,1 = 0 hold. The 2nd order moments satisfy the closed ODE system

Ȧ2,0 = 2A1,1 ,

Ȧ1,1 = A0,2 −MA2,0 ,

Ȧ0,2 = 2M (M +A2,0 −A1,1) . (20)
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By their definition and by the Cauchy-Schwarz inequality, for nonvanishing initial data fI their
initial values satisfy A2,0(0)A0,2(0) > A1,1(0)2 and A2,0(0), A0,2 > 0. A straightforward computation
gives

d

dt
(A2,0A0,2 −A2

1,1) = 2MA2,0(M +A2,0) .

This guarantees that A2,0 and A0,2 remain positive for all times. As a consequence, d
dt(MA2,0 +

A0,2) = 2M(M + A2,0) ≥ 2M2, so MA2,0 + A0,2 tends to infinity. Now assume A2,0 remains
bounded. Then A0,2 → ∞, implying by the second differential equation A1,1 → ∞ and, thus,
by the first equation the contradiction A2,0 → ∞. Assume on the other hand that A0,2 remains
bounded. Then A2,0 → ∞, implying by the second differential equation A1,1 → −∞ and, thus,
by the third equation the contradiction A0,2 → ∞. So both A2,0 and A0,2 become unbounded as
t→∞, meaning that the chemotactic effect is not strong enough to prevent dispersion. This is not
too surprising, since Model B only supports velocity changes in the direction of the target, whereas
Model A supports post-turning velocities in this direction. For this reason we concentrate on Model
A for the rest of this work.

4 Formal asymptotics for large mass

With the rescaling f →Mf , S →MS, Model A takes the form

∂tf + v∂xf = M (S[ρf ](x+ v)ρ− f) , (21)

with M now taking the role of an inverse Knudsen number.
The rescaled version of the steady states for the moments are

A2,0,∞ =
2

M − 2
, A1,1,∞ = 0 , A0,2,∞ =

2M

M − 2
, (22)

which suggests an equilibrium state concentrating with respect to x as M →∞.
As M →∞, formally f(x, v, t)→ f0(x, v, t) = ρ0(x, t)S[ρ0](x+ v, t). Mass conservation gives

∂tρ0 − ∂x(xρ0) = 0 .

Obviously, we have ρ0(x, t)→ δ(x) as t→∞ and, thus,

lim
t→∞

f0(x, v, t) =
1

2
e−|v|δ(x) .

This is in agreement with the limit as M →∞ in (22).

5 Stationary solutions

In this section we first prove in Theorem 3 the existence of even nonnegative L1-solutions to the
stationary problem, then their C∞-regularity in Theorem 4.

Theorem 3 For any M > 2 there exists an even nonnegative distributional solution f ∈ L1(R2) of

v∂xf(x, v) = ρf (x)S[ρf ](x+ v)−Mf(x, v) ,

∫
R2

f(x, v)dx dv = M , (23)

which is also a mild solution satisfying

f(x, v) =

∫ ∞
0

ρf (x− sv)S[ρf ](x+ v(1− s))e−Msds , (x, v) ∈ R2. (24)
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Proof. The strategy of the proof is to first solve a truncated problem and then to pass to the
limit. Large (resp. small) values of the position (resp. velocity) variable will be truncated. At
the resulting boundaries of the position domain, reflecting boundary conditions will be used. This
perturbation also produces a perturbation of the total mass, which needs to be corrected.

Let j ≥ 2 and Ωj := {(x, v) : |x| < j, |v| > 1/j}. Our first goal is to prove the existence and
uniqueness of even functions fj ∈ L1

+(R2), ρj ∈ L1
+(R), such that

fj = 0 , in R2 \ Ωj , (25)

v∂xfj(x, v) = ρj(x)S[ρj ](x+ v)−Mfj(x, v) , in Ωj , (26)

fj(−j, v) = fj(−j,−v), fj(j, v) = fj(j,−v), (27)

ρj(x) = M

(∫
R
ρfj (x

′)dx′
)−1

ρfj (x) . (28)

Note that, with j →∞, problem (23) is recovered at least formally, if the mass correction factor in
(28) converges to 1, which will be shown below.

Problem (25)–(28) will be solved by a fixed point iteration. Let K be the convex set

K :=

{
ρ ∈ L1

+(R) : ρ even, ρ(x) = 0 for |x| > j ,

∫
R
ρ(x)dx = M

}
,

and let the map T be defined on K by

T (ρ)(x) = M

(∫
R
ρF (x′)dx′

)−1

ρF (x) , (29)

where F is the solution of

F (x, v) = 0 , in R2 \ Ωj , (30)

v∂xF (x, v) = ρ(x)S[ρ](x+ v)−MF (x, v) , in Ωj , (31)

F (−j, v) = F (−j,−v), F (j, v) = F (j,−v) . (32)

Since the evenness of ρ ≥ 0 implies evenness of S[ρ] ≥ 0, this problem is invariant under (x, v) ↔
(−x,−v). Therefore it suffices to compute F for x > 0, subject to the symmetry condition

F (0, v) = F (0,−v) , (33)

and then to extend it by parity. With the explicit representations

F (x, v) = e−Mx/vF (0, v) +
1

v

∫ x

0
eM(y−x)/vρ(y)S[ρ](y + v)dy , v > 0 , (34)

F (x, v) = eM(j−x)/vF (j, v)− 1

v

∫ j

x
eM(y−x)/vρ(y)S[ρ](y + v)dy , v < 0 , (35)

and the boundary conditions (32), (33), the inflow data at x = 0 and at x = j can be computed
explicitly:

F (0, v) =
1

v(1− e−2Mj/v)

∫ j

0
ρ(y)

(
S[ρ](y + v)eM(y−2j)/v + S[ρ](y − v)e−My/v

)
dy , v > 0 ,

F (j, v) =
eMj/v

|v|(1− e2Mj/v)

∫ j

0
ρ(y)

(
S[ρ](y + v)eMy/v + S[ρ](y − v)e−My/v

)
dy , v < 0 . (36)
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This determines F ≥ 0 completely with the consequence that T (ρ) ≥ 0 is well defined and even,
implying that T maps K into itself.

Integration of (31), using (30) and (32), implies that∫
R
ρF dx = M − 1

M

∫
R
ρ(x)

(∫
|y−x|≤1/j

S[ρ](y)dy

)
dx . (37)

In the integral with respect to y, we use S[ρ](y) = 1
2

∫
R e
−|y−z|ρ(z)dz ≤M/2. We obtain

M
(
1− 1

j

)
≤
∫
R
ρF dx ≤M , (38)

which shows that the correction factor in (29) converges to 1 as j → ∞. Before we use that,
however, the problem for finite j still has to be solved.

Since ρ 7→ S[ρ] is obviously continuous as a map from L1(R) to L∞(R), it is straightforward to
show continuity of T with respect to the L1(R)-topology. We claim it is also compact. Since we
have

|∂xF (x, v)| < j
(
ρ(x)S[ρ](x+ v) +MF (x, v)

)
, in Ωj ,

|∂xρF | ≤ jM(ρ+ ρF ) follows, and the estimate (38) implies∫ j

−j
|∂xT (ρ)|dx ≤ 2M2j . (39)

Therefore the map T : K → K is compact with respect to the L1-topology and has a fixed point
by the Schauder theorem, i.e. there exists an even solution (fj , ρj) of (25)–(28).

For the limit j →∞, we note that the estimate (38) also holds for F = fj with the consequence

ρj = γjρfj , with γj = M

(∫
R
ρfjdx

)−1

→ 1 as j →∞ .

Since the bound (39) for the derivative is not uniform in j, we shall use as a replacement bounds for
the second order moments. From (26) we derive the moment system corresponding to the stationary
version of (19):

−2Aj,1,1 =

∫
Ωj

x2ρj(x)S[ρj ](x+ v)d(x, v)−MAj,2,0 , (40)

0 =

∫
Ωj

v2ρj(x)S[ρj ](x+ v)d(x, v)−MAj,0,2 , (41)

j

(∫
R
v2(fj(j, v) + fj(−j, v))dv

)
−Aj,0,2 =

∫
Ωj

xvρj(x)S[ρj ](x+ v)d(x, v)−MAj,1,1 , (42)

where the notation

Aj,m,n =

∫
R2

xmvnfj(x, v)d(x, v)

is used. In the first terms on the right hand sides the perturbations introduced by the cut-off have
to be considered, similarly to (37). In particular,∫

Ωj

x2ρj(x)S[ρj ](x+ v)d(x, v) ≤
∫
R2

x2ρj(x)S[ρj ](x+ v)d(x, v) = γjMAj,2,0 , (43)∫
Ωj

v2ρj(x)S[ρj ](x+ v)d(x, v) ≤
∫
R2

v2ρj(x)S[ρj ](x+ v)d(x, v) = 2M2 + 2MγjAj,2,0 , (44)
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where the equalities follow from Lemma 1. For the mixed moment, the sign of the error being
unclear, it has to be estimated. It holds that∣∣∣∣∣

∫
R2\Ωj

xvρj(x)S[ρj ](x+ v)d(x, v)

∣∣∣∣∣ ≤ M

j2

∫
R
|x|ρj(x)dx

≤ δj
√
Aj,2,0 ,

with δj = M
3
2

j2
→ 0 as j →∞. The last estimate is an application of the Cauchy-Schwarz inequality.

This implies, using Lemma 1 and (42),

−Aj,0,2 ≤ −MγjAj,2,0 + δj
√
Aj,2,0 −MAj,1,1 .

Now we use (43) in (40):

−Aj,1,1 ≤
M

2
(γj − 1)Aj,2,0 .

Hence,

−Aj,0,2 +

(
Mγj −

M2

2
(γj − 1)

)
Aj,2,0 ≤ δj

√
Aj,2,0 . (45)

Moreover, it follows from (41) and (44) that

Aj,0,2 − 2γjAj,2,0 ≤ 2M . (46)

By M > 2, γj → 1, δj → 0, the sum(
(M − 2)γj −

M2

2
(γj − 1)

)
Aj,2,0 ≤ 2M + δj

√
Aj,2,0

of the two inequalities (45) and (46) implies uniform boundedness of Aj,2,0 as j → ∞ and, conse-
quentially, the same is true for Aj,0,2 by (46). Concluding, we have proved uniform boundedness as
j →∞ of ∫

R2

(1 + x2 + v2)fj dx dv and of

∫
R

(1 + x2)ρj dx .

It follows that subsequences of fj and ρj converge tightly to nonnegative bounded measures f and,
respectively, ρ, both with total mass M , satisfying ρ = ρf . Since the map ρ → S[ρ] is continuous
from the set of bounded measures with the weak topology into the set of continuous functions, we
can pass to the limit in the distributional formulation of (26), proving that f solves (23) in the
sense of distributions.

It remains to show the mild formulation and that f ∈ L1(R2). Starting with the latter, we
integrate (27) between −∞ and x (resp. x and +∞) for v > 0 (resp. v < 0), which implies that

|v|fj(x, v) ≤M
∫
R
ρj dx = M2 , (x, v) ∈ R2, j ∈ N .

Consequently the only possible singular part of f is a Dirac measure at v = 0:

f(x, v) = g(x, v) + γ(x)δ(v) ,
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with g ∈ L1
+(R2) and γ ∈ L1

+(R). In the distributional formulation of (23),

−
∫
R2

vg∂xϕd(x, v) =

∫
R2

(ρg + γ)S[ρg + γ](x+ v)ϕd(x, v)−M
∫
R2

gϕ d(x, v)−M
∫
R
γϕ(x, 0)dx ,

we choose a sequence of test functions ϕn ∈ C∞0 (R2), such that ϕn and ∂xϕn are uniformly bounded,
ϕn(x, 0)→ 1 for all x ∈ R, and |supp(ϕn)| → 0 as n→∞. Passing to the limit in the distributional
formulation, only the last term remains, showing that γ = 0 and f = g ∈ L1(R2).

We observe that (34)–(36) holds for ρ = ρj and F = fj . The observations of above also
justify passing to the limit j → ∞ in these formulas. A short computation then leads to the mild
formulation (24), completing the proof.

Theorem 4 Let M > 2 hold. Then solutions f of (23) as in Theorem 3 satisfy f ∈ C∞(R2).

Proof. With the Fourier transform

f̂(ξ, k) =

∫
R

∫
R
f(x, v)e−i(ξx+kv)dv dx ,

a straightforward computation leads to

Ŝ[ρ](ξ) =
ρ̂(ξ)

1 + ξ2
, ξ ∈ R.

Consequently, (24) is equivalent to

f̂(ξ, k) =

∫ ∞
0

e−Ms ρ̂f (ξ(1− s)− k)ρ̂f (k + ξs)

1 + (k + ξs)2
ds . (47)

Moreover, ρ̂f (ξ) = f̂(ξ, 0), so that

ρ̂f (ξ) =

∫ ∞
0

e−Ms ρ̂f (ξ(1− s))ρ̂f (ξs)

1 + ξ2s2
ds ≤

∫ ∞
0

e−Ms

1 + ξ2s2
ds sup

s≥0
[ρ̂f (ξ(1− s))ρ̂f (ξs)]

≤ c

1 + |ξ|
sup
s≥0

[ρ̂f (ξ(1− s))ρ̂f (ξs)]

Using the boundedness of ρ̂f by M as a start and

sup
s≥0

1

(1 + |ξ(1− s)|)(1 + |ξs|)
=

1

1 + |ξ|
,

iteration on the above inequality gives

ρ̂f (ξ) ≤ (cM)2n

c(1 + |ξ|)n
,

for arbitrary n and, therefore, ρf ∈ C∞(R). Actually, we shall use the equivalent

|ρ̂f (ξ)| ≤ cn
(1 + ξ2)n

, ∀n ≥ 0 ,

in (47), leading to the estimate

|f̂(ξ, k)| ≤ c2
n

∫ ∞
0

e−Ms

(1 + (ξ(1− s)− k)2)n(1 + (ξs+ k)2)n
ds .
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Note that

(1 + (ξ(1− s)− k)2)(1 + (ξs+ k)2) ≥ 1 + max{(ξ(1− s)− k)2, (ξs+ k)2} .

Both as functions of ξ and of k, the squares under the max have parabolas as graphs. The minimal
value of the maximum is taken at their intersection. This gives

min
k∈R

max{(ξ(1− s)− k)2, (ξs+ k)2} = min
a∈R

max{(a− ξ)2, a2} =
ξ2

4
,

min
ξ∈R

max{(ξ(1− s)− k)2, (ξs+ k)2} =
k2

(1 + 2(s− 1)+)2
,

where for the second result, the cases s > 1 and s < 1 have to be treated separately. We obtain

(1 + (ξ(1− s)− k)2)(1 + (ξs+ k)2) ≥ 1 + max

{
ξ2

4
,

k2

(1 + 2(s− 1)+)2

}
≥ 1 +

ξ2

5
+

k2

5(1 + 2(s− 1)+)2
≥ 1 + ξ2 + k2

5(1 + 2(s− 1)+)2
,

where the second inequality follows from max{a/4, b} ≥ (a + b)/5, a, b ∈ R. Consequentially, for
every n ≥ 0 there exists Cn > 0, such that

|f̂(ξ, k)| ≤ 5nc2
n

(1 + ξ2 + k2)n

∫ ∞
0

e−Ms(1 + 2(s− 1)+)2nds =
Cn

(1 + ξ2 + k2)n
,

implying f ∈ C∞(R2).

References

[1] A. Blanchet, J. Dolbeault and B. Perthame, Two- dimensional Keller-Segel model: optimal
critical mass and qualitative properties of the solutions, J. Diff. Equ. 44 (2006).

[2] N. Bournaveas, V. Calvez, Critical mass phenomenon for a chemotaxis kinetic model with
spherically symmetric initial data, Ann. de l’Institut Henri Poincare (C) Non Linear Analysis
26 (2009), pp. 1871–1895.

[3] V. Calvez, G. Raoul, C. Schmeiser, Confinement by biased velocity jumps: aggregation of
Escheria coli, Kinetic and Related Models 8 (2015), pp. 651–666.

[4] F. Chalub, P.A. Markowich, B. Perthame, and C. Schmeiser, Kinetic models for chemotaxis
and their drift-diffusion limits, Monatsh. Math. 142 (2004), pp. 123–141.

[5] J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear kinetic equations conserving
mass, Trans. AMS 367 (2015), pp. 3807–3828.

[6] J. Dolbeault, C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, DCDS-A
25 (2009), pp. 109–121.

[7] H.J. Hwang, K. Kang, A. Stevens, Global existence of classical solutions for a hyperbolic
chemotaxis model and its parabolic limit, Indiana Univ. Math. J. 55 (2006), pp. 289–316.

14



[8] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor.
Biol. 26 (1970), pp. 399–415.

[9] N. Mittal, E.O. Budrene, M.P. Brenner, and A. van Oudenaarden, Motility of Escheria coli
cells in clusters formed by chemotactic aggregation, PNAS 100 (2003), pp. 13259–13263.

[10] H.G. Othmer, S.R. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math.
Biol. 26 (1988), pp. 263–298.

[11] C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953),
pp. 311–338.

[12] J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan, and B. Perthame, Mathemat-
ical description of bacterial traveling pulses, PLoS Comput. Biol. 6 (2010), e1000890.

[13] J.J.L. Velazquez, Point dynamics in a singular limit of the Keller-Segel model 1: motion of the
concentration regions, SIAM J. Appl. Math. 64 (2004), pp. 1198–1223.

15


