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Abstract. Existence of a weak solution of the Navier-Stokes problem de-
scribing a multifluid flow is proved. The velocity fields associated to each
fluid solves the Navier-Stokes equations in a time-dependent domain. Clas-
sical immiscibility conditions on the varying fluids interfaces are taken into
account by a new formulation of the problem. This formulation was in-
troduced in [3] and used in numerical computations. This paper follows a
previous one where an existence theorem for Stokes multifluid problems was
derived ([5]).

Introduction. Fluid interface computation has recently become a subject
of interest because of its many industrial applications. In a previous paper
([5]), we studied the mathematical problem associated with coextrusion, i.e.
extrusion of several polymers. In this case, the flows of the polymers could
be modelled with Stokes equations. Here, no smallness assumption of the
Reynolds numbers is introduced, so that the flow of N fluids filling time-
dependent subdomains Ωk(t), k = 1, ..., N of a fixed domain Ω ⊂ IRD,D = 2
or 3, is described in each subdomain by Navier-Stokes equations. Non-
miscibility conditions at interfaces are shown to be equivalent to a transport
equation on the whole domain for the viscosities and the concentrations.
Transmission conditions at interfaces are the continuity of the velocity and
of the normal component of the stress tensor. These conditions are obtained
by variational considerations. The aim of this paper is to derive an existence
result of weak solutions for the non-linear system of equations obtained by
coupling this transport equation with the Navier-Stokes equations. A first
difficulty arises because of insufficient smoothness of the velocity field for
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using classical result concerning transport equations. Therefore, using the
concept of renormalized solutions introduced by R. J. DiPerna and P. L.
Lions ([2]) is necessary. Following the classical proof of existence of the
Navier-Stokes equations, the linearized multi-fluid Navier-Stokes system is
first solved, and the problem of then passing to the limit in non-linear terms
is overcome by properties induced by the renormalized solutions and a com-
pactness result of Aubin’s lemma type. Finally the existence proof of so-
lutions for the coupled system is obtained by means of the Schauder fixed
point theorem.

1 The multifluid Navier-Stokes problem

We consider N viscous fluids with viscosities

ηk, 1 ≤ k ≤ N, η1 < η2 < ... < ηN , (1.1)

flowing in an open domain Ω of IRD. The kth fluid occupies at time t the
open subdomain Ωk(t). Let η be the globally defined viscosity such that
η(t, x) = ηk if the point x ∈ Ω is occupied at time t by the kth fluid. We
have

Ωk(t) :=
˙

{x ∈ Ω; η(t, x) = ηk} (1.2)

The velocity u is globally defined on Ω by

u = uk(t, x), x ∈ Ωk(t), k = 1, ..., N, (1.3)

where uk(t, x) denotes the velocity of the kth fluid for x belonging to Ωk(t).
In the following, letters without subscript, such as γ, denote functions de-
fined on the whole domain Ω, and the same letters with subscripts, such as
γk, denote the restriction of these functions to the subdomains Ωk(t), k =
1, ..., N.
The strain tensor ε is defined by

ε(uk) =
1

2
(5uk + 5ut

k), x ∈ Ωk(t). (1.4)

Denote ρ the globally defined density. The incompressibility of the fluids is
expressed by

div(uk) = 0, ρ = ρk ∈ IR in Ωk(t). (1.5)
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where div denotes the divergence with respect to the space variables. The
newtonian behaviour gives the expression of the stress tensor σk with respect
to the viscosity, the strain tensor and the pressure pk

σk = 2ηkε(uk) − pkId. (1.6)

Denote f the applied exterior force. The conservation of the mass and the
fundamental law of mechanics are respectively

ρt + div(ρu) = 0, (1.7)

(ρu)t + div(σ) = f. (1.8)

Denote hm(t) an interface between fluids k and l and define

Π = [0, T ] × Ω,

Πk = {(t, x) s.t. 0 ≤ t ≤ T and x ∈ Ωk(t)},

Hm = {(t, x) s.t. 0 ≤ t ≤ T and x ∈ hm(t)}. (1.9)

Denote N the normal to Πk at the boundary, U = (1, u(t, x)) and V and H
the spaces

V = {u ∈ (H1(Ω))D, div(u) = 0, u/∂Ω = 0}. (1.10)

H = {u ∈ (L2(Ω))D, divu = 0}. (1.11)

We first recall a trace property ([5]).

Lemma 1.1 Assume that the bounded set Πk is Lipschitz. Then there is a
continuous trace mapping Γk from V1(Πk) onto V 1

2
(∂Πk), where V1(Πk) and

V 1
2
(∂Πk) are defined by

V1(Πk) = {u/Πk
;u ∈ L∞(0, T ; (H1(Ω))D)}, (1.12)

V 1
2
(∂Πk) = {v ◦ ψ; v ∈ L∞(0, T ; (H

1
2 (∂B1))D))}, (1.13)

with

B1 = {x ∈ IRD; | x |< 1}, (1.14)

ψ ∈ Lip([0, T ] ×B1; Πk), ψ isonetooneandonto. (1.15)
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For the time-dependent case, the non-miscibility condition is classically (see
[1])

U.N = 0, (t, x) ∈ Hm. (1.16)

We introduce a transport equation for the viscosity on the whole domain
which can be proved to be equivalent to (1.14). Indeed we have

Lemma 1.2 Assume that Πk, k = 1, ..., N, are Lipschitz domains and u

belongs to L∞(0, T ;V ). Then the following conditions are equivalent

(i) Γk(Uk).N = 0 = Γl(Ul).NonHm, (1.17)

(ii)
∂η

∂t
+ u.5 η = 0 inD′(⊗). (1.18)

For a proof of Lemma 1.2 we refer to [5]. Let us point out that equation
(1.18) is equivalent to

∂η

∂t
+ div(ηu) = 0, (1.19)

since u is divergence free.
For the Navier-Stokes multifluid problem to be well posed, it remains to
recall the classical transmission conditions. They are expressed by the con-
tinuity of the velocity u and of the normal component of the stress tensor
at any interface hm(t),

uk(t, x) = ul(t, x), x ∈ hm(t), (1.20)

Σk(t, x).N = Σl(t, x).N, x ∈ hm(t), (1.21)

if Σ denotes the tensor diag(1, σ). The vector N is the normal to hm(t)
at point x and time t. These conditions correspond to those obtained in
multimaterial elasticity. Let us remark that if (1.20) is interpreted for almost

every t as a trace equality in H
1
2 (hm(t)), it is satisfied as soon as u belongs to

L2(0, T ; (H1(Ω))D). Finally, (1.21) is obtained the following way: multiply
(1.7) by a compactly supported in [0, T ]×Ω test function and integrate over
[0, T ]×Ω. Then multiply (1.7) by compactly supported in [0, T ]×Ωk(t) test
functions, integrate over [0, T ]×Ωk(t) and substract in the first equality. It
comes

(ρk − ρl)U.(Γ(U).N) + [Σ.N ] = 0. (1.22)
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Then the kinematic condition (1.16) implies (1.21). By this way we have
proved that solving the multifluid Navier-Stokes problem (1.4)-(1.8), sup-
plemented with the transport equation (1.18), implies the usual kinematic
and transmission conditions. For this problem, we state

Theorem 1.1 Let (ρ0, η0) ∈ {(ρk, ηk), k = 1, ..., N} a.e., with ρk > 0, 0 <
η1 < η2 < ... < ηN and u0 ∈ L2(Ω) be such that div(u0) = 0. Then there is
at least a solution (ρ, η, u) in (L∞((0, T )×Ω))2 ×L2(0, T ;V ) of the problem

∂tρ+ div(ρu) = 0 in D′((′,T ) ×⊗), (1.23)

∂tη + div(ηu) = 0 in D′((′,T ) ×⊗), (1.24)

∂t(ρu) + div(ρu ⊗ u) − div(ηε(u)) = f in L1(0, T ;V ′), (1.25)

ρ(t = 0) = ρ0, η(t = 0) = η0, u(t = 0) = u0. (1.26)

Moreover

(ρ, η) ∈ {(ρk, ηk), k = 1, ..., N} a.e., u ∈ L∞(0, T ;L2(Ω)), (1.27)

and there is p ∈ L1(0, T ;L2(Ω)) such that

∂t(ρu) + div(ρu⊗ u) − div(ηε(u)) −5p = f in D′((′,T ) ×⊗).(1.28)

The remainder of the paper is devoted to the proof of this theorem.

Remark 1.1 Following the same strategy as in [5], we could replace the
homogeneous boundary condition for u by

u/∂Ω = u0, u0 = U0/∂Ω, U0 ∈ C1(Ω), div(U0) = 0, (1.29)

and obtain the same result as in Theorem 4.1.

2 The linearized Navier-Stokes problem.

In this section, we are concerned with the following problem

Find u ∈ L2(0, T ;V ) suchthat (2.1)

{

∂t(ρu) + div(ρv ⊗ u) − div(ηε(u)) + 5p = f,

u(t = 0) = u0(x).
(2.2)
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ρ, v and η are supposed to satisfy

v ∈ L2(0, T ;V ), (2.3)

(ρ, η) ∈ L∞(Ω), ρM ≥ ρ ≥ ρm > 0, ηM ≥ η ≥ ηm > 0, (2.4)

∂tρ+ div(ρv) = 0, (2.5)

∂tη + div(ηv) = 0. (2.6)

The data f and u0 are such that

f ∈ L2(0, T, V ′), u0 ∈ L2(H). (2.7)

Ω is a Lipschitz bounded set, which is a sufficient condition for

V = {φ ∈ D(⊗)∫ .t.d〉v(φ) = ′} (2.8)

to be dense in V . Then we have

Proposition 2.1 Assuming (2.3)-(2.7), the problem (2.1)-(2.2) has at least
one weak solution which belongs to L∞(0, T ;H) and satisfies the energy es-
timate

1

2
< ρu2(t, .) > +

∫ t

0
[< ηε(u) : ε(u)(s, .) > − � f, u� (s, .)]ds

≤
1

2

∫

Ω
ρ0(x)u2

0(x)dx. (2.9)

Moreover, if N = 2, (2.9) is an equality and the solution is unique.

Recall the definition of a weak solution of (2.1)-(2.2).

Definition 2.1 A weak solution of (2.1)-(2.2) is u ∈ L2(0, T ;V ), solution
of the variational problem

d

dt
< ρ(t, .)u(t, .)w > + < div(ρ(t, .)v(t, .) ⊗ u(t, .))w >

+ < η(t, .)ε(u(t, .)) : ε(w) >=� f,w �, foreverywinV. (2.10)

Here, <> denotes the integral over Ω with respect to x, and �� the duality
between V ′ and V . Let us remark that, thanks to (2.5), (2.10) is equivalent
to

< ρ(t, .)
d

dt
u(t, .)w > + < (ρ(t, .)v(t, .).Dxu(t, .)).w >

+ < η(t, .)ε(u(t, .))ε(w) >=� f(t, .), w � . (2.11)

6



The proof of Proposition 2.1 is based on the construction of an approximate
solution by the Galerkin method. Since V is separable, there is a free and
total family in V , {wn}n=1,...,∞. Denote Vn = Spann{wk; k = 1, ..., n}. Then
we have

Proposition 2.2 The problem
Find un ∈ H1(0, T ;Vn) such that

un(0) = u0
n ∈ Vn,

< ρ(t, .)
dun

dt
wk > + < (ρ(t, .)v(t, .).Dxun(t, .)).wk >

+ < η(t, .)ε(un(t, .))ε(wk) >=� f(t, .), wk �, k = 1, ..., n, (2.12)

has a unique solution, which satisfies

1

2
< ρ(t, .)u2

n(t, .) > +

∫ t

0
< ηε(un) : ε(un) > (s, .)ds

−

∫ t

0
� f, un � (s)ds =

1

2
< ρ(t = 0, .)u0

n(.)2 > . (2.13)

We first state

Lemma 2.1 The following estimate holds.
For any ρ ∈ L∞((0, T ) × Ω), v(t, .) ∈ L2((0, T );V ), w1 ∈ V,w2 ∈ V ,

< ρ(t, .)v(t, .).Dxw1.w2 >∈ L2(0, T ). (2.14)

Proof.

‖< ρ(t, .)v(t, .).Dxw1.w2 >‖L2

≤‖ ρ ‖L∞‖ v ‖L2(0,T ;L4(Ω))‖ Dxw1 ‖L2‖ w2 ‖L4

≤ c ‖ ρ ‖L∞‖ v ‖L2(0,T ;L4(Ω))‖ w1 ‖V ‖ w2 ‖V , (2.15)

from Sobolev’s imbedding.
Proof of Propositions 2.1 and 2.2.
We follow the strategy of proof of [6] for the existence of solutions of Navier-
Stokes equations with constant viscosities and concentrations. Let us con-
sider the problem (2.12)-(2.13). In view of (2.4), ρ is positive, so that the
matrix (< ρwl.wk >)l,k=1,...,n is a definite positive symmetric matrix, hence
invertible. Then, in view of Lemma 2.1, we can write (2.12) as a finite
system of ODE’s with L2(0, T )-coefficients. This linear differential system
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together with the initial conditions given by (2.12) defines uniquely un on
the whole interval [0, T ]. Moreover, un(t, .) belonging to Vn, (2.13) implies

1

2
{< ρ(t, .)

d

dt
| un(t, .) |2> + < ρ(t, .)v(t, .).Dx(| un(t, .) |2) >}

+ < η(t, .)ε(un(t, .)) : ε(un(t, .)) >=� f(t, .), un(t, .) � . (2.16)

Integrating by parts < ρ(t, .)v(t, .).Dx(| un(t, .) |2) > and using (2.5) in
(2.16), we obtain

1

2
< ρ(t, .) | un(t, .) |2> +

∫ t

0
< η(s, .)ε(un(s, .)) : ε(un(s, .)) > ds

=

∫ t

0
� f(t, .), un(t, .) � +

1

2
< ρ(0, .) | u0

n(.) |2>, t ∈ [0, T ].(2.17)

Then, using Korn and Cauchy-Schwartz inequalities in (2.17), as well as the
bounds from below of ρ and η given in (2.4), we obtain

‖ un ‖2
L2(Ω) (t)+ ‖ un ‖2

L2(0,T ;V )≤ c(‖ f ‖L2(0,T ;V ′) + ‖ u0 ‖L2(Ω)),(2.18)

where c is independent of n. Therefore, up to subsequences,

un ⇀ uinL2(0, T ;V )weak, andu ∈ L∞(0, T ;H), (2.19)

ε(un) ⇀ ε(u)inL2((0, T ) × Ω)weak. (2.20)

The inequality (2.9) of Proposition 2.1 follows from (2.16), (2.18), (2.19),
the convexity of u →< ηε(u) : ε(u) > and the convergence of (u0

n) to u0

in L2. Then, in order to prove that u is a weak solution of the problem
(2.1)-(2.2), we pass to the limit in (2.13) and obtain

< ρu̇wk > + < (ρv.Dxu).wk > + < ηε(u) : ε(wk) >

=� f,wk �, k ≥ 1. (2.21)

But ρv.Dxu is bounded in L1(0, T ;V ′). Indeed for every smooth function
φ = φ(x),

|

∫

Ω
(ρv.Dxu).φdx |

≤ ρM ‖ v ‖L2(0,T ;L4(Ω))‖ Dxu ‖L2((0,T )×Ω))‖ φ ‖L2(0,T ;L4(Ω)), (2.22)

and thanks to Sobolev’s imbeddings,

|

∫

Ω
(ρv.Dxu).φdx |≤ c ‖ v ‖L2(0,T ;V )‖ Dxu ‖L2(0,T ;V )‖ φ ‖L2(0,T ;V ) .(2.23)
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Then, since {wk}k≥1 is a total family,

< ρu̇.w > + < (ρv.Dxu).w > + < ηε(u) : ε(w) >=� f,w �,

w ∈ V, (2.24)

is a consequence of (2.20). This proves that u is a weak solution of (2.1)-
(2.2).
Let us now prove that (2.9) is an equality for N = 2, because of more
regularity of ρv.Dxu. The uniqueness of the weak solution will be a direct
consequence of this equality. Let u be a weak solution of (2.1)-(2.2). First,
prove that

∫ t
0 < (ρv.Dxu).u > ds is well defined. For any smooth function,

|

∫ t

0
< (ρv.Dxu).u > ds |

≤‖ ρ ‖L∞((0,T )×Ω))‖ v ‖L2(0,T ;L4(Ω))‖ u ‖L2(0,T ;L4(Ω))‖ u ‖L2(0,T ;V ) .(2.25)

But for N = 2, ([6]),

‖ u(t, .) ‖L4(Ω)≤ c ‖ u(t, .) ‖
1
2

L2(Ω)‖ u(t, .) ‖
1
2
V . (2.26)

Therefore

‖ u ‖2
L2(0,T ;L4(Ω))≤ c ‖ u ‖L∞(0,T ;L2(Ω))‖ u ‖L2(0,T ;V ), (2.27)

and similarly for v. By a density argument, we obtain from (2.23),

1

2
< ρu2 > (t) +

∫ t

0
< (ρv.Dxu).u > (s)ds +

∫ t

0
[< ηε(u) : ε(u) >

− � f, u�](s)ds =
1

2
< ρu2 > (0). .(2.28)

For smooth functions φ ([6]),

< (ρv.Dxφ)φ >= 0, (2.29)

so once again a density argument implies, u belonging to L2(0, T ;V ) ∩
L∞(0, T ;L2(Ω)), that

< (ρv.Dxu).u >= 0, (2.30)

which leads to the result.
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3 The fixed point procedure.

First we recall a result of DiPerna-Lions ([2]) concerning renormalized weak
solutions. v and ρ0 belonging to L2(0, T ;V ) and L∞(Ω) respectively, we
consider the problem :
Find ρ in L∞(0, T ; Ω) such that

∂tρ+ div(ρv) = 0, ρ(t = 0, x) = ρ0(x). (3.1)

We have

Proposition 3.3 If v ∈ L2(0, T ;V ), then there is a unique weak solution ρ

in L∞((0, T ) × Ω), in the following sense

∫ +∞

0

∫

Ω
ρ(∂tφ+v.5xφ)dxdt =

∫

Ω
ρ0(x)φ(0, x)dx, φ ∈ D(IRN+∞).(3.2)

Moreover this solution is a renormalized solution, i.e. β(ρ) is a weak solution
associated to the data β(ρ0) for any β ∈ C1(IR). Furthermore if the data
satisfies ρ0 ∈ {ρm, ..., ρM} a.e., then ρ ∈ {ρm, ..., ρM} a.e.

For a proof of Proposition 3.3, we refer to [2] and [5]. Let us only point
out that the problem (3.1) has not to be completed by boundary conditions
because v/∂Ω = 0.
Describe the fixed point procedure. For every vn in L2(0, T ;Vn), we solve

∂tρ+ div(ρvn) = 0, ρ(t = 0) = ρ0, (3.3)

∂tη + div(ηvn) = 0, η(t = 0) = η0, (3.4)

where ρ0 ∈ {ρm, ..., ρM} a.e. and η0 ∈ {ηm, ..., ηM} a.e. Then we solve
(2.12)-(2.13), with v = vn and obtain a solution, denoted un. Let us define
the map τ by τvn = un.

Proposition 3.4 The map τ has at least a fixed point.

Proof of Proposition 3.4.
Thanks to Korn and Poincaré’s inequalities,

< ηε(w) : ε(w) > ≥
1

4
ηmc(Ω) ‖ w ‖2

V , w ∈ V, (3.5)

where c(Ω) is a Poincaré’s constant. Then, with the help of (2.14),

‖ un ‖L2(0,T ;V )≤ c(‖ f ‖L2(0,T ;V ′) + ‖ u0
n ‖L2(Ω)), (3.6)
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where c is a constant depending on ρm, ρM , ηm and Ω. Therefore, if

R = c(‖ f ‖L2(0,T ;V ′) + ‖ u0
n ‖L2(Ω)), (3.7)

τ maps the ball

Bn
R = {u ∈ L2(0, T ;Vn)s.t. ‖ u ‖L2(0,T ;V )≤ R} (3.8)

in itself. To use Schauder fixed point theorem, it remains to prove that τ is
a continuous and compact map for the topology induced by L2(0, T ;V ).
Let us prove the continuity of τ . Let (vp

n(t, .))p∈IN be a sequence of L2(0, T ;Vn)
converging to some vn(t, .). Up to a subsequence, the associated solutions
of (3.3)-(3.4) (ρp)p∈IN and (ηp)p∈IN respectively converge in L∞((0, T ) × Ω)
weak star to ρ and η. Passing to the limit in the formulation (3.2) proves
that ρ and η are the unique solutions of (3.3)-(3.4) associated to vn. There-
fore the whole sequence (ρp, ηp) weakly converges to (ρ, η). On the other
hand, (ρp), (ηp), ρ and η are renormalized solutions of transport equations.
It follows that the choice of β(t) = t2 gives

‖ ρp ‖L2((0,T )×Ω)= T ‖ ρ0 ‖L2(Ω)=‖ ρ ‖L2((0,T )×Ω), (3.9)

‖ ηp ‖L2((0,T )×Ω)= T ‖ η0 ‖L2(Ω)=‖ η ‖L2((0,T )×Ω) . (3.10)

It means that the weak convergence of (ρp) and ηp in L2((0, T ) × Ω) to ρ

and η respectively is indeed a strong convergence. Since (up
n)p∈IN belongs to

Bn
R, there is a subsequence, still denoted (up

n)p∈IN , such that

up
n ⇀ un in L2(0, T ;V ) weak. (3.11)

More, ρpvp
n converges to ρv in L2((0, T ) × Ω). Indeed

‖ ρpvp
n − ρv ‖L2((0,T )×Ω)

≤‖ ρp(vp
n − v) ‖L2((0,T )×Ω) + ‖ (ρp − ρ)v ‖L2((0,T )×Ω)

≤ ρM ‖ vp
n − v ‖L2((0,T )×Ω)

+ ‖ ρp − ρ ‖L2(0,T ;L4(Ω))‖ v ‖L2(0,T ;L4(Ω)), (3.12)

and v ∈ L2(0, T ;L4(Ω)) since H1(Ω) ⊂ L4(Ω), (N ≤ 3) and ρp converges to
ρ in L2(0, T ;L4(Ω)), because it is bounded in L∞((0, T )×Ω) and converges
in L2((0, T ) × Ω). Then, expressing

up
n =

n
∑

k=1

α
n,p
k (t)wk(x) (3.13)
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we have, up to a subsequence,

α
n,p
k ⇀ αkin L2(0, T )weak (3.14)

and

< (ρpvp
n.Dxu

p
n).wk >=

n
∑

l=1

α
n,p
l (t) < (ρpvp

n.Dxwl).wk > (3.15)

tends to

n
∑

l=1

αl(t) < (ρvn.Dxwl).wk > inD′(′,T ), (3.16)

because of the strong convergence of < (ρpvp
n.Dxwl).wk > in L2(0, T ). Anal-

ogous arguments prove that

< ηpε(up
n) : ε(wk) >→< ηε(un) : ε(wk) > inD′(′,T ). (3.17)

Let us prove that ((αn,p
k ))p∈IN is uniformly bounded in (H1(0, T ))n. Denote

Mp
n the matrix

(Mp
n)−1 = (< ρp(t, .)wkwl >)(k,l)∈[1,n]2. (3.18)

((Mp
n))p∈IN is uniformly bounded in M\( L∞(′,T )). Indeed

ρp(t, .) ≥ ρm > 0, (3.19)

and

‖ (Mp
n)−1 ‖M\(L∞(′,T ))≤

1

ρm
. (3.20)

On the other hand, the matrix

Ap
n = (< (ρpvp

nDxwl)wk + ηpε(wl) : ε(wk) >)(k,l)∈[1,n]2, (3.21)

and the vector

Bp
n = (� f,wk �)k∈[1,n] (3.22)

are uniformly bounded in L2(0, T ). If αp = (αp
k)k∈[1,n], then (2.12) reduces

to

α̇p = −(Mp
n)−1Ap

nα
p + (Mp

n)−1Bp
n. (3.23)
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Knowing that (αp)p∈IN is uniformly bounded in (L2(0, T ))n, (3.23) and the
uniform boundedness of ((Mp

n)−1), (Ap
n) and (Bp

n) prove that (αp)p∈IN is
uniformly bounded in (W 1,1(0, T ))n. Sobolev imbedding of W 1,1(0, T ) in
C0(0, T ) implies that (αp)p∈IN is uniformly bounded in (C0(0, T ))n. Com-
ing back to (3.23), we finally obtain that (αp)p∈IN is uniformly bounded in
(H1(0, T ))n. Then

< ρp(t, .)u̇p
nwk >→< ρ(t, .)u̇nwk > inD′(′,T ). (3.24)

It follows from (3.16), (3.17) and (3.24) that un is the unique solution
of (2.12), so that the whole sequence (up

n)p∈IN weakly converges to un in
H1(0, T ;Vn) and strongly converges to un in L2(0, T ;Vn), since Vn is finite
dimensional. This ends the proof of the continuity of τ . Finally τ is a
compact map, as a consequence of the uniform bound of un in H1(0, T ;Vn).

4 Proof of the main theorem.

It consists in passing to the limit when n → +∞. Thanks to Proposition
3.4, there is a solution (un, ρ

n, ηn) in H1(0, T ;Vn) × (L∞((0, T ) × Ω)))2, of
the following problem :

∂tρ
n + div(ρnun) = 0, (4.1)

∂tη
n + div(ηnun) = 0, (4.2)

< ρn(t, .)u̇n(t, .).wk > + < (ρn(t, .)un(t, .).Dxun(t, .)).wk >

+ < ηnε(un) : ε(wk) >=� f,wk �, k = 1, ..., n, (4.3)

ρn(t = 0) = ρ0, ηn(t = 0) = η0, un(t = 0) = u0
n. (4.4)

This solution satisfies the uniform estimates

‖ un ‖L2(0,T ;V )≤ c(‖ f ‖L2(0,T ;V ′) + ‖ u0
n ‖L2(Ω)) ≤ c, (4.5)

ρn ∈ {ρm, ..., ρM} a.e, (4.6)

ηn ∈ {ηm, ..., ηM} a.e.. (4.7)

Then, up to subsequences,

ρn ⇀ ρin L∞((0, T ) × Ω) weakstar, (4.8)
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ηn ⇀ ηin L∞((0, T ) × Ω) weakstar, (4.9)

un ⇀ uin L2(0, T ;V ) weak. (4.10)

We first pass to the limit in (4.1)-(4.2) with the help of the following lemma.

Lemma 4.1 Let (ρn)n∈IN and (un)n∈IN be such that

ρn ⇀ ρin L∞((0, T ) × Ω) weakstar, (4.11)

un ⇀ u in L2(0, T ;H1
0 (Ω)) weak, (4.12)

(∂tρ
n)n∈IN isboundedin L2(0, T ;H−1(Ω)). (4.13)

Then ρnun tends to ρu in D′((′,T ) ×⊗).

For a proof of Lemma 4.1, see [5].
Therefore

∂tρ+ div(ρu) = 0, ρ(t = 0) = ρ0, (4.14)

∂tη + div(ηu) = 0, η(t = 0) = η0. (4.15)

Hence the L2((0, T )×Ω) norms of (ρp)p∈IN and ρ are equal, as well as those
of (ηp)p∈IN and η. This leads to the strong convergence of (ρp)p∈IN and
(ηp)p∈IN to ρ and η respectively in L2((0, T ) × Ω). Then (4.3) is also

< {∂t(ρ
nun) + div(ρnun ⊗ un)}wk > + < ηnε(un) : ε(wk) >

=� f,wk � . (4.16)

Multiply (4.16) by α(t) ∈ D′(IR) and integrate it over IR+. After integrating
by parts, we obtain

∫ +∞

0
{< ρnun∂t(αwk) > + < (ρnun ⊗ un).Dx(αwk) >

− < ηnε(un) : αε(wk) > + � f, αwk �}ds

= α(0) < ρ0u
0
nwk > . (4.17)

But thanks to the weak convergence of (un)n∈IN and (ε(un))n∈IN to u and
ε(u) in L2((0, T )×Ω), and the strong convergence of (ρn)n∈IN and (ηn)n∈IN

in L2((0, T ) × Ω),

ρnun → ρuin D′((′,T ) ×⊗), (4.18)
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and

ηnε(un) → ηε(u)in D′((′,T ) ×⊗). (4.19)

Let us now study the limit of ρnun ⊗ un. First, for N ≤ 4,

‖ ρnun ⊗ un ‖L2(Ω)≤‖ ρn ‖L∞(Ω)‖ un ‖2
L4(Ω)

≤‖ ρn ‖L∞(Ω)‖ un ‖2
V . (4.20)

Therefore (ρnun⊗un)n∈IN is uniformly bounded in L1(0, T ;L2(Ω)). In order
to obtain a bound on ∂t(ρnun), we specifically choose the free and total
family {wk} as an orthonormal basis of L2(Ω) as well as an orthogonal basis
of H1(Ω). Recall that (wk)k∈IN moreover satisfies

div(wk) = 0. (4.21)

For instance (wk)k∈IN is the orthogonal sequence in H1(Ω) of eigenvectors
of the following Stokes problems

−ν∆wk + 5pk = λkwk, div(wk) = 0, wk ∈ H1
0 (Ω), pk ∈ L2

loc(Ω), (4.22)

where (λk)k≥1 are the eigenvalues of the self-adjoint Stokes operator, which
has a compact resolvent.
On the other hand, (4.16) implies that

∂t(ρ
nun) = Πn(div(ρnun ⊗ un) − div(ηnε(un)) − f), (4.23)

where Πn is the L2-projection on Vn defined by

v = Πn(z) iff v =
n

∑

k=1

< z.wk >

< wk.wk >
wk. (4.24)

Let us remark that Πn is also the H1-projection on Vn since wk is also
orthogonal in H1(Ω). We extend the operator Πn on H−1(Ω) by

< Πnz, φ >=< z,Πnφ >, z ∈ H−1(Ω), φ ∈ H1
0 (Ω)). (4.25)

Then we have the following

Lemma 4.2 (Πn)n∈IN is uniformly bounded in L(H−∞(⊗)).
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Proof of Lemma 4.2.
By definition of Πn,

‖ Πn ‖L(H−∞(⊗))= sup
‖z‖

H−1(Ω)=1

‖ Πnz ‖L2(H−1)

= sup
Φ∈H1

0 (Ω)

sup
‖z‖

H−1(Ω)=1

|< Πnz, φ >|

= sup
Φ∈H1

0 (Ω)

sup
‖z‖

H−1(Ω)=1

|< z,Πnφ >|

≤ sup
Φ∈H1

0 (Ω)

‖ Πnφ ‖H1(Ω)≤ c.

Thanks to Lemma 4.2 and the uniform boundedness of div(ρnun ⊗ un) −
div(ηnε(un)) − f in L1(0, T ;H−1(Ω)), we obtain that

(∂t(ρ
nun)) isuniformlyboundedinL1(0, T ;H−1(Ω)). (4.26)

(4.27) and the boundedness of (ρnun)n∈IN in L2((0, T )×Ω) imply that ([4])

(ρnun) belongstoacompactsetofL2(0, T ;H−1(Ω)). (4.27)

Then, up to a subsequence,

ρnun → ρu in L2(0, T ;H−1(Ω)), (4.28)

which states, with the help of the weak convergence of un to u in L2(0, T ;H1
0 (Ω))

that

ρnun ⊗ un → ρu⊗ u in D′((′,T ) ×⊗). (4.29)

Given (4.30), (4.18) and (4.19), we can pass to the limit in (4.16). Since the
family {wk} is total in V , we finally obtain that (4.16) holds for every w in
V , which ends the proof of the existence result stated in Theorem 1.1. In
order to complete the proof of Theorem 1.1, it remains to prove that (ρ, η) ∈
{(ρk, ηk), k = 1, ..., N} a.e.. We already know that ρ ∈ {ρk, k = 1, ..., N}
a.e. and η ∈ {ηk, k = 1, ..., N} a.e, but it remains to establish that ρ and η

have the same kth value together. Denote

∆ρ = max | ρk − ρl |,∆η = max | ηk − ηl |, (4.30)

and choose λ > 0 such that

λ∆ρ < ∆η. (4.31)
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Then λρ+ η is also a solution of the transport equation (4.31). Hence

λρ+ η ∈ {λρk + ηk} a.e.. (4.32)

It follows that

(ρ, η) ∈ {(ρk, ηl) s.t. λρk + ηl = λρp + ηp}. (4.33)

Then

| ηp − ηl |= λ | ρp − ρk |≤ λ∆ρ < ∆η, (4.34)

which implies ηp = ηl, and then ρp = ρk, i.e (ρk, ηl) = (ρp, ηp).
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