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The Stationary Nonlinear Boltzmann Equation in a
Couette Setting with Multiple, Isolated Lq-solutions
and Hydrodynamic Limits
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This paper studies the stationary nonlinear Boltzmann equation for hard forces,
in a Couette setting between two coaxial, rotating cylinders with given indata
of Maxwellian type on the cylinders. A priori estimates are obtained mainly in
L2, leading to multiple, isolated solutions together with a hydrodynamic limit
control, based on asymptotic expansions together with a rest term.
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1. INTRODUCTION

The asymptotic kinetic approach in a sharp mathematical form has its
roots in works by Grad and Kogan in the 1960s (see refs. 15, 16, 21 and
references therein). A number of important results followed, concerning
the nonlinear stationary Boltzmann equation in R

n in the close to equi-
librium case (refs. 17–19, 29 and others), where techniques of a general
scope were used, such as contraction mappings (see also ref. 13). Station-
ary problems in small domains were solved in a similar way (e.g. refs. 20
and 24), and the unique solvability of internal, stationary problems for the
Boltzmann equation at large Knudsen numbers was likewise established
(cf. ref. 22). In ref. 7, a kinetic description of a gas between two plates at
different temperatures and no mass flux was studied in the case of a small
mean free path for the nonlinear stationary Boltzmann equation under dif-
fuse reflection boundary conditions. Stationary, fully nonlinear hydrody-
namic limits, were treated in the papers.(11,12)
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Solutions to half-space problems for the Boltzmann equation play an
important role as boundary layers for hydrodynamic limits of such solu-
tions to the Boltzmann equation, when the mean free path tends to zero.
This has been extensively studied in the linear context, using functional
analytic and energy methods (refs. 8, 14 and others). Also for the nonlin-
ear case, related results have been obtained recently.(30)

A wide range of questions of the above types have been addressed in
a perspective of asymptotic analysis and numerical studies for the BGK
and Boltzmann equations by Sone and his group (see the monograph(25)

and its extensive references).
With a loss of the uniqueness aspects, further away from equilibrium

weak compactness arguments may be employed instead of the earlier con-
traction mappings to prove existence, and in the stationary case usually
involving entropy dissipation control for the sharpest results. That is the
case in the spatially n-dimensional Povzner and one space-dimensional
Boltzmann papers(2–4), where stationary solutions are obtained via weak
L1-compactness under no other restrictions than Grad’s angular cut-off.
The basic compactness argument used in those cases, is not fully avail-
able for the Boltzmann equation itself in more than one space dimen-
sion. However, in the spatially n-dimensional case the entropy dissipation
estimate still allows different but weaker control mechanisms, which also
lead to existence results (see ref. 5). There, in contrast to the cases men-
tioned before, complete results are so far only obtained when the velocities
smaller in norm than some η>0, are suppressed.

The present study is set in the close to equilibrium frame and gives
a mathematically rigorous study of the stationary nonlinear Boltzmann
equation between two coaxial cylinders A and B, with Maxwellian ingo-
ing boundary values, and includes small mean free path asymptotics. This
two-roll problem is extensively treated from a numerical and asymptotic
perspective in ref. 26, to which we also refer for a more complete discus-
sion of the applied aspects. See ref. 6 for an existence study (but with no
control of uniqueness or local uniqueness) by weak compactness in the
case of more general two-roll problems also far from equilibrium and with
no suppression of small velocities.

The boundary values and the solutions are assumed to be axially and
circumferentially uniform in the space variables. Then, with (r, θ, z) and
(vr , vθ , vz) respectively denoting the spatial cylindrical coordinates and the
corresponding velocity coordinates, a distribution function may be written
as f =f (r, vr , vθ , vz), and the Boltzmann equation becomes

vr
∂f

∂r
+ 1
r
Nf = 1

εm
Q(f,f ), r ∈ (rA, rB), (vr , vθ , vz)∈R

3. (1.1)
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The Maxwellian ingoing boundary data under study are

γ+f (rA, v) = (2π)−
3
2 e

1
2 (−v2

r−(vθ−εuθA1)
2−v2

z ), vr >0,
(1.2)

γ+f (rB, v) = (2π)−
3
2

1+ωB
(1+ τB) 3

2

e
1
2 (− 1

1+τB (v
2
r+(vθ−εuθB1)

2+v2
z )), vr <0.

Here

Nf := v2
θ

∂f

∂vr
−vθvr ∂f

∂vθ
, (1.3)

Q(f,f )(v) :=
∫

R3×S2
B(v−v∗,ω)(f (v′)f (v′

∗)−f (v)f (v∗))dv∗dω.

The kernel B = |v− v∗|βb(θ), b ∈L1+(S2),0 � β � 1, is of hard force type
(ref. 9) and assumed to belong to the Grad class, that is with its terms
suitably majorized by the corresponding ones for the hard sphere model
(cf. ref. 23). The case β=0 corresponds to Maxwellian molecules, and β=
1 to hard spheres. For a bifurcation case also included in this paper, but
not for the main results about isolated existence and strict positivity per se,
the kernel is assumed to imply (2.26) below. That condition is discussed
in the text directly following (2.26). In the present setup, it is enough to
consider functions which are even in the axial velocity variable vz. Take
the radii as rA = 1, rB > 1, and let εm denote the Knudsen number. The
given rotational velocities of the inner and outer cylinders are uθA=εuθA1
and uθB = εuθB1, respectively. The parameter ε measures the depth of the
(suction) boundary layer. The nondimensional density, perturbed tempera-
ture and saturated pressure are

ωB = ε2

1+ τB (PSB2 − τB2), τB = ε2τB2, PSB = ε2PSB2,

where lower indices A,B refer to the boundary points, and lower indices
1,2, . . . refer to the order in ε. In the bifurcation case, an extra coupling
is added between boundary pressure and velocity,

PSB2 − r2
B −1

r2
B

u2
θA1 =
ε,

or

ωB = ε2

1+ ε2τB2

(
r2
B −1

r2
B

u2
θA1 − τB2 +
ε

)
. (1.4)
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For 1�q�+∞, denote by ‖ .‖q the usual Lebesgue norm in Lq , and set

L̃q :=


f ; |f |q :=

(∫
M(v)

(∫
|f (x, v) |q dx

) 2
q

dv

) 1
2

<+∞


 ,

where M = (2π)−
3
2 exp (− v2

2 ). In order to fix the asymptotic expansions,
this paper focuses on the case m=4 in (1.1), i.e. takes the Knudsen num-
ber as ε4. The central result can then be stated as follows.

Theorem 1.1. Assume that uθA1, uθB1 and τB2 are small enough,

and that (r2
B −1)

(
uθA1
rB

)2
>PSB2>(r

2
B −1)u2

θB1, where 1+PSB2 is the non-
dimensional saturated pressure at rB . For the quantity ε positive and small
enough, there is a solution f+

ε of (1.1–2) isolated in L1 with positive lead-
ing order radial velocity ε2, and another f−

ε with negative leading order
radial velocity ε2. They satisfy M−1f+

ε , M−1f−
ε ∈ L̃∞,

∫
M−1supessr∈(rA,rB) |f jε (r, v) |2 dv<+∞, j =±.

There is also a similar third isolated solution with leading order radial
velocity of order ε4. The hydrodynamic moments of these three solutions
converge to solutions of the corresponding limiting fluid equations at lead-
ing order, when ε→0.

Under the additional bifurcation coupling (1.4), the corresponding
result becomes

Theorem 1.2. Assume that uθA1, uθB1 and τB2 are small enough
and that (uθB1rB − uθA1)(3uθA1 + uθB1rB)(A + 5D) > 0, where A,D are
defined in (2.9) below. There is a negative value 
bif of the parameter 
,
such that for the quantity 
bif −
 positive and small enough, there are
for the quantity ε positive and small enough, two isolated, non-negative
L1-solutions f jε , j =1,2 of (1.1–2) coexisting with M−1f

j
ε ∈ L̃∞,

∫
M−1supessr∈(rA,rB) |f jε (r, v) |2 dv<+∞.

The two solutions have different outward radial bulk velocities of order ε3.
For fixed ε, they converge to the same solution, when 
 increases to 
bif .
Their hydrodynamic moments converge to solutions of the corresponding
limiting fluid equations at leading order, when ε→0.
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Remark . The approach of the paper has wider applicability; for
instance, analogous results hold for m� 3 in Theorem 1.1 and m� 4 in
Theorem 1.2, and for all cases of the two-roll problem treated in ref. 26.
We expect the techniques developed here, also to be useful in the study of
related problems, such as the Taylor–Couette frame of ref. 27, the Bénard
asymptotics of ref. 28, and the two-component gases of ref. 1. In particu-
lar a paper on the Taylor–Couette case is under preparation where we also
present an approach to strict positivity for this type of solutions.

Write R = frest = P0frest + (I − P0)frest = R‖ + R⊥, where P0 is the
orthogonal projection operator onto the hydrodynamic part P0frest, and

f =M(1+ϕ+ εj0frest) with ϕ=
j1∑
1

εjϕj . (1.5)

Here
∑j1

1 ε
jϕj is an asymptotic expansion with the boundary value of the

ϕj -terms up to some suitable order �j1 equal to the terms of correspond-
ing order in the ε-expansions of (1.2), and based on a splitting into inte-
rior Hilbert expansion and boundary layers. A central part of the paper is
devoted to a rigorous study of the rest term R=frest in L̃q , using as ingo-
ing boundary values what remains of (1.2) after correction for the asymp-
totic expansion. The rest term problem is solved by a contraction mapping
iteration.

The problem area, the plan of the paper, and the main results are
introduced in the present Section 1.

Section 2 is devoted to the asymptotic expansion, adapting the pre-
sentation in ref. 26 to the needs of this paper. For the convenience of the
reader, the description is fairly self-contained and includes details of par-
ticular relevance. Section 3 discusses some a priori estimates for the rest
term. An estimate for the nonhydrodynamic part in L̃2 is obtained from
Green’s formula. The study of the hydrodynamic part in L̃2 utilizes the
couplings between certain moments, and involves details about the terms
in the asymptotic expansion, for the hydrodynamic ones up to order εj0 .
A new type of preliminary rearrangements of the equation is introduced
to increase the ε-order of certain nonhydrodynamic terms and to remove
the influence of otherwise troublesome hydrodynamic terms. This is a step
with origin in the fact that here the boundary scalings (of order ε) are
larger than the Knudsen number (ε4).

Section 4 deals with the existence problem for the rest term via a contrac-
tion mapping construction, which uses the a priori estimates of Section 3.
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2. THE ASYMPTOTIC EXPANSION

The asymptotic expansion is here carried out in the frame of Theo-
rem 1.2 in order to include the aspects which are important for the paper.
Write the solution of (1.1–2) as f =M(1 +�). Then the new unknown
�(r, vr , vθ ) should be solution to

vr
∂�

∂r
+ 1
r
N�= 1

ε4
(L̃�+ J̃ (�,�)), (2.1)

�(1, v)= e 1
2 (v

2
θ−(vθ−εuθA1)

2)−1, vr >0, (2.2)

�(rB, v)= 1+ωB
(1+ τB) 3

2

e
1
2 (v

2− 1
1+τB (v

2
r+(vθ−εuθB1)

2+v2
z ))−1, vr <0.

(2.3)

Here J̃ is the rescaled quadratic Boltzmann collision operator,

J̃ (�,ψ)(v) := 1
2

∫
R3×S2

B(v−v∗,ω)M(v∗)(�(v′)ψ(v′
∗)+�(v′

∗)ψ(v
′)

−�(v∗)ψ(v)−�(v)ψ(v∗))dv∗dω,

and L̃ is this operator linearized around 1,

(L̃�)(v) :=
∫

R3×S2
B(v−v∗,ω)M(v∗)(�(v′)+�(v′

∗)−�(v∗)

−�(v))dv∗dω= K̃(�)− ν̃�.

Denote by (�Ai)1�i�j resp. (�Bi)1�i�j , the first to j -th order terms of
�(rA) resp. �(rB), with respect to ε. E.g. for j =4

4∑
i

εi�Ai(v) = εuθA1vθ + ε2 u
2
θA1

2
(−1+v2

θ )

+ε3 u
3
θA1

2

(
−vθ + 1

3
v3
θ

)
+ ε4 u

4
θA1

4

(
1
2

−v2
θ + 1

6
v4
θ

)
, vr >0
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4∑
1

εi�Bi(v) = εuθB1vθ + ε2

(
r2
B −1

2r2
B

u2
θA1 − 5

2
τB2 − 1

2
u2
θB1 + 1

2
u2
θB1v

2
θ + 1

2
τB2v

2

)

+ε3

(

+uθB1vθ

(
r2
B −1

r2
B

u2
θA1 − 7

2
τB2 −u2

θB1 + 1
3
u2
θB1v

2
θ + 1

2
τB2v

2

))

+ε4

(
7
4
u2
θB1τB2 + 1

8
u4
θB1 + 27

8
τ 2
B2 − r2

B −1

4r2
B

u2
θA1u

2
θB1 − 3

4

r2
B −1

r2
B

u2
θA1τB2 +
uθB1vθ

+ 1
4
u2
θB1

(
r2
B −1

r2
B

u2
θA1 −7τB2

)
v2
θ + 1

4
τB2

(
r2
B −1

r2
B

u2
θA1 −7τB2 −u2

θB1

)
v2

+ 1
8
τ 2
B2v

4 + 1
24
u4
θB1v

4
θ

)
, vr <0.

A solution � will be determined as an approximate solution ϕ of order j1
with boundary values of order i being �Ai resp. �Bi for 1� i� j0, plus a
rest term R=frest,

�(r, v)=ϕ(r, v)+ εj0R(r, v).

We shall here give a fairly detailed discussion of the asymptotic expansion
for j0 = 4, j1 = 4. Similar expansions hold for other values of j1 � j0 (cf
ref. 25), and such variants will be used in later sections. For j1 =4,

ϕ(r, v) = ε

(
�H1(r, v)+�W1

(
r− rB
ε

, v

))
+ ε2

(
�H2(r, v)+�W2

(
r− rB
ε

, v

))

+ε3
(
�H3(r, v)+�W3

(
r− rB
ε

, v

)
+�K3A

(
r−1
ε4

, v

)
+�K3B

(
r− rB
ε4

, v

))

+ε4
(
�H4(r, v)+�W4

(
r− rB
ε

, v

)
+�K4A

(
r−1
ε4

, v

)
+�K4B

(
r− rB
ε4

, v

))
,

(2.4)

with∫
�H1(., v)(1, vr , v2)M(v)dv =

∫
�W1(., v)(1, vr , v2)M(v)dv

=
∫
�H2(., v)vrM(v)dv=0, (2.5)

lim
r−rB
ε →−∞

�Wi

(
r− rB
ε

, v

)
= 0, 1� i�4, (2.6)

lim
r−1
ε4 →+∞

�KiA

(
r−1
ε4

, v

)
= 0, lim

r−rB
ε4 →−∞

�KiB

(
r− rB
ε4

, v

)
=0, 3� i�4.

(2.7)
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Here (ε�H1 + ε2�H2 + ε3�H3 + ε4�H4)(r, v) denotes the truncation up to
fourth order of a formal expansion

∑
k�1 ε

k�Hk(r, v). The sum (ε�W1 +
ε2�W2)(

r−rB
ε
, v) consists of correction terms allowing the boundary condi-

tions to be satisfied to first and second order. They correspond to a suc-
tion boundary layer at rB . Supplementary boundary layers of Knudsen
type, described by

ε3
(
�K3A

(
r−1
ε4

, v

)
+�K3B

(
r− rB
ε4

, v

))
+ ε4

(
�K4A

(
r−1
ε4

, v

)

+ �K4B

(
r− rB
ε4

, v

))
,

are required in order to have the boundary conditions satisfied at third
and fourth orders.

Uniqueness statements are given modulo possible shifts of terms
between the asymptotic expansion from fourth order on, and the rest
term. Recall (see ref. 10) that L̃(vθvr B̄) = vθvr , L̃(vr Ā) = vr(v

2 − 5) for
some functions B̄(|v|) and Ā(|v|), with vθvr B̄(|v|) and vrĀ(|v|) bounded
in the (, )M -norm. Set w1 := ∫

v2
r v

2
θ B̄Mdv, and let g(η, v) be the solution

to the half-space problem

vr
∂g

∂η
= L̃g, η>0, v∈R

3,

g(0, v) = 0, vr >0,∫
g(η, v)vrM(v)dv = 1, a.a.η>0. (2.8)

From the approaches in refs. 8 and 14 including their point-wise estimates,
it follows that there are constants A, D, and E, such that with respect to
L̃q

lim
η→+∞g(η, v)=A+Dv2 +Evθ +vr . (2.9)

Proposition 2.1. Assume that

(uθB1rB −uθA1)(uθB1rB +3uθA1)(A+5D)>0,

and set


bif :=−
(

2w1
rB +1

r3
B

(A+5D)(rBuθB1 −uθA1) (rBuθB1 +3uθA1)

) 1
2

.
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For 
>
bif , there is no solution ψ in the family defined in (2.4–7).
For 
=
bif , there is a unique solution ψ in the family defined in

(2.4–7).
For 
 < 
bif , there are two solutions ψ in the family defined in

(2.4–7).

Proof of Proposition 2.1. Define Y := r−rB
ε

, and let the expansions∑
k�1 ε

k�Hk(r, v) and
∑
k�1 ε

k(�Hk(rB, v)+�Wk(
r−rB
ε
, v)) formally sat-

isfy (2.1). Then,

L̃�H1 = L̃�H2 + J̃ (�H1,�H1)= L̃�H3 +2J̃ (�H1,�H2)

= L̃�H4+2J̃ (�H1,�H3)+J̃ (�H2,�H2)=0,

(2.10)

vr
∂�Hk−4

∂r
+ 1
r
N�Hk−4 = L̃�Hk +

k−1∑
j=1

J̃ (�Hj ,�Hk−j ), k�5, (2.11)

and

L̃�W1 = L̃�W2 + J̃ (�W1,2�H1(rB, .)+�W1)

= L̃�W3 +2J̃ (�H1(rB, .)+�W1,�W2)+2J̃ (�W1,�H2(rB, .)+Y�′
H1(rB, .))

= L̃�W4 +2J̃ (�W3,�H1(rB, .)+�W1)+ J̃ (�W2,�W2 +2�H2(rB, .)

+2Y�′
H1(rB, .))+2J̃ (�W1,�H3(rB, .)+Y�′

H2(rB, .)

+Y
2

2
�′′
H1(rB, .))−vr

∂�W1

∂Y
=0, (2.12)

vr
∂�Wk−3

∂Y
+ 1
rB

k−5∑
i=0

(−1)i
(
Y

rB

)i
N(�Hk−4−i (rB, .)+�Wk−4−i )

= L̃�Wk +
k−1∑
j=1

J̃ (2�Hj (rB, .)+�Wj ,�Wk−j ), k�5. (2.13)

By (2.5) and (2.10), �H1(r, v)=b1(r)vθ for some function b1, and �Hi, i�
2 split into a hydrodynamical part ai(r)+di(r)v2 +bi(r)vθ + ci(r)vr and a
non-hydrodynamic part involving Hilbert terms of lower order than i. In
particular for 1� j �4 we get

�H1(r, v) = b1(r)vθ ,

�H2 = a2 +d2v
2 +b2vθ + 1

2
b2

1v
2
θ ,

�H3 = a3 +d3v
2 +b3vθ + c3vr +b1d2vθv

2 +b1b2v
2
θ + 1

6
b3

1v
3
θ ,
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�H4 = a4 +d4v
2 +b4vθ + c4vr + (b1d3 +b2d2)vθv

2

+
(
b1b3 + 1

2
b2

2 − 1
2
b2

1a2

)
v2
θ +b1c3vrvθ + 1

2
b2

1b2v
3
θ + 1

2
d2

2v
4

+ 1
24
b4

1v
4
θ + 1

2
b2

1d2v
2
θ v

2.

Equations (2.11) have solutions if and only if the following compati-
bility conditions hold,

∫ (
vr
∂�Hi

∂r
+ 1
r
N�Hi

)
(1, v2 −5, vθ , vr )M(v)dv=0, i�1.

They provide first-order differential equations for the functions ai(r),
bi(r), ci(r) and di(r), i�1. In particular,

(rb1)
′ = 0, (10d2 +b2

1)
′ =0, (2.14)

(r2c3b2)
′ = w1r

2
(
b′

1 − 1
r
b1

)′
+ (2w1 −w2)r

(
b′

1 − 1
r
b1

)
,

(
a2 +5d2 + 1

2
b2

1

)′
= 1
r
b2

1, (2.15)

(a3 +5d3 +b1b2)
′ = 2

r
b1b2, (2.16)

(rc3)
′ = 0, (2.17)(

a4 +5d4 +b1b3 + 1
2
b2

2 − 1
2
b2

1a2 + 35
2
d2

2 + 7
2
b2

1d2

)′

= 2
r

(
b1b3 + 1

2
b2

2 − 1
2
b2

1a2

)
+ 1

2r
b4

1 + 7
r
b2

1d2, (2.18)

(rc4)
′ =0.

Together with the boundary condition (2.2) at first and second orders, this
fixes

�H1(r, v)= uθA1

r
vθ , �H2 =−u

2
θA1

2r2
+ u2

θA1

10

(
1− 1

r2

)
v2 + u2

θA1

2r2
v2
θ

and c3(r)= u3
r

, for some constant u3 �= 0. Moreover, (2.5) and (2.12) give
that �W1(Y, v)= z1(Y )vθ , for some function z1, and �Wi, i � 2 split into
a hydrodynamical part xi(Y ) + yi(Y )v

2 + zi(Y )vθ + ti (Y )vr and a non-
hydrodynamic part involving Hilbert terms of lower order than i. Notice
that �W4 is the sum of z′1vθvr B̄ and a polynomial in the v-variable with
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bounded coefficients in the r-variable. More precisely,

�W2 = x2 +y2v
2 + z2vθ +

(
b1(rB)z1 + 1

2
z2

1

)
v2
θ ,

�W3 = x3 +y3v
2 + z3vθ + t3vr + (b1(rB)y2 + z1y2 + z1d2(rB))vθv

2

+(b1(rB)z2 + z1z2 + z1b2(rB)+Yb′
1(rB)z1)v

2
θ

+
(

1
2
b2

1(rB)z1 + 1
2
b1(rB)z

2
1 + 1

6
z3

1

)
v3
θ ,

�W4 = x4 +y4v
2 + z4vθ + t4vr + z′1vrvθ B̄(v)+· · · .

Equations (2.13) have solutions if and only if the following compati-
bility conditions hold,

∫ (
vr
∂�Wk−3

∂Y
+ 1
rB

k−5∑
i=0

(−1)i
(
Y

rB

)i
N(�Hk−4−i (rB, .)

+�Wk−4−i
)
(v2 −5, vθ )M(v)dv=0, k�5, (2.19)

and

∫ (
vr
∂�Wk−3

∂Y
+ 1
rB

k−5∑
i=0

(−1)i
(
Y

rB

)i
N(�Hk−4−i (rB, .)

+�Wk−4−i
)
(1, vr )M(v)dv=0, k�5. (2.20)

Equations (2.19) (resp. (2.20)) provide second-order (resp. first-order)
differential equations for yi and zi (resp. xi +5yi and ti). In particular,

w1z
′′
1 − u3

rB
z′1 =0,(

x2 +5y2 +b1(rB)z1 + 1
2z

2
1

)′ =0,

w2y
′′
2 + 10

rB
y′

2 +A1 =0, w1z
′′
2 − u3

rB
z′2 +A1 =0, (2.21)

t ′3 =0,

(x3 +5y3 +b1(rB)z2 + z1z2 + z1b2(rB)+Yb′
1(rB)z1)

′ = 1
rB
(2b1(rB)z1 + z2

1),

w2y
′′
3 + 10

rB
y′

3 +A2 =0,

w1z
′′
3 − u3

rB
z′3 + ((b1(rB)+ z1)(c5(rB)+ t5))′ +A2 =0,

t ′4 + 1
rB
(t3 + c3(rB))+ c′3(rB)=0, (2.22)

(x4 +5y4)
′ +A3 =0.
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Here Ai,1 � i� 3, denote terms involving Hilbert and suction coefficients
up to order i. Together with the boundary conditions (2.3) at first and sec-
ond orders, and the conditions (2.6) and (1.4), this fixes

�W1(Y, v)=
(
uθB1 − uθA1

rB

)
e
u3Y
w1rB ·vθ ,

as well as �W2 in terms of u3, and implies that t3 = t4 =0. Then, giving the
value 0 to any coefficient of order bigger than 5 in the second-order differ-
ential equations satisfied by yi and zi , 3 � i ≤ 4 and taking into account
(2.3–6) fixes the functions yi and zi , 3 � i� 4 in terms of ui . Finally the
Knudsen analysis at third and fourth orders in Lemma 2.1–2 below, makes
the first-order differential equations satisfied by x3 +5y3 and x4 +5y4 com-
patible with (2.3) and (2.6) at third and fourth orders.

Lemma 2.1. Set η = r−1
ε4 , µ = r−rB

ε4 . There are unique Knud-
sen boundary layers �K3A(η, v) and �K3B(µ, v), and boundary values
�H3(1, v) and �W3(0, v), such that

vr
∂�K3A

∂η
= L̃�K3A, η>0, v∈R

3,

�K3A(0, v) = �A3(v)−�H3(1, v), vr >0,

lim
η→+∞�K3A(η, v) = 0, (2.23)

and

vr
∂�K3B

∂µ
= L̃�K3B, µ<0, v∈R

3,

�K3B(0, v) = �B3(v)−�H3(rB, v)−�W3(0, v), vr <0,

lim
µ→−∞�K3B(µ, v) = 0, (2.24)

with the limits in L̃q -sense. The boundary layers fix the possible values of
a3(1), d3(1), u3, b3(1) and x3(0), y3(0), z3(0), hence complete the defini-
tions of �H3 and �W3.

Proof of Lemma 2.1. The function

ψK3A(η, v) :=�K3A(η, v)−u3(g−A−Dv2 −Evθ −vr),
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with g, A, D and E defined in (2.8–9) and u3 still unknown, should satisfy

vr
∂ψK3A

∂η
= L̃ψK3A, η>0, v∈R

3,

ψK3A(0, v) = u3A−a3(1)+ (u3D−d3(1))v
2

+
(
u3E− 1

2
u3
θA1 −b3(1)

)
vθ , vr >0,

lim
η→+∞ψK3A(η, v) = 0.

Hence,

a3(1)=u3A, d3(1)=u3D, b3(1)=u3E− 1
2
u3
θA1, ψK3A=0,

so that

�K3A=u3(g−A−Dv2 −Evθ −vr).

Analogously, the function

ψK3B(µ, v) :=�K3B(µ, v)− u3

rB
(g(−µ,−v)−A−Dv2 +Evθ +vr),

should satisfy

vr
∂ψK3B

∂µ
= L̃ψK3B, µ<0, v∈R

3,

ψK3B(0, v) = 
− u3

rB
A−a3(rB)−x3(0)−

(
u3

rB
D+d3(rB)+y3(0)

)
v2

+
(
uθB1

(
r2
B −1

r2
B

u2
θA1 − 7

2
τB2 −u2

θB1

)

+u3

rB
E−b3(rB)− z3(0)

)
vθ , vr <0,

lim
µ→−∞ψK3B(µ, v) = 0.

Hence,

x3(0)=
− u3

rB
A−a3(rB), y3(0)=−u3

rB
D−d3(rB),

z3(0)=−uθB1

(
r2
B −1

r2
B

u2
θA1 − 7

2
τB2 −u2

θB1

)
+ u3

rB
E−b3(rB), ψK3B =0,
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and

�K3B(µ, v)= u3

rB
(g(−µ,−v)−A−Dv2 +Evθ +vr).

Moreover, by integration of (2.21) and (2.16) on (−∞,0) and (1, rB)
respectively,

x3(0)+5y3(0)= w1

2r2
Bu3

(uθB1rB +3uθA1rB)(uθB1rB −uθA1),

x3(0)+5y3(0)=
−u3(A+5D)
(

1
rB

+1
)
.

And so, u3 must solve the equation

u2
3(A+5D)

rB +1
rB

−
u3 + w1

2r2
B

(3uθA1 +uθB1rB)(uθA1 −uθB1rB)=0.

(2.25)

The pointwise estimates in refs. 8 and 14 imply the L̃q -version of (2.23–
24).

End of Proof of Proposition 2.1. A study of the positive roots u3
to (2.25) leads to the three cases described in Proposition 2.1 for 


with respect to 
bif . That proof requires a nondegeneracy in the Milne
asymptotics (2.9),

A+5D<0. (2.26)

The condition is expected to hold on physical grounds and has been veri-
fied numerically for hard spheres and Maxwellian molecules. In this paper
it is required to hold for the kernels B, precisely when the bifurcation sit-
uation is being considered. A mathematical proof of (2.26) related to the
numerical approach, seems feasible but has not been undertaken here. Our
aim is merely to illustrate that the present setup also covers bifurcation sit-
uations. Instead a separate paper under preparation will be devoted to a
fundamental bifurcation problem using our approach, namely the Taylor–
Couette bifurcation for the two-roll setup of ref. 27 with axial dependence.
We want to stress that the condition (2.26) is not used to obtain the exis-
tence of isolated or multiple solutions, but only to enter the bifurcation
situation discussed in Theorem 1.2.
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Lemma 2.2. Set η = r−1
ε4 , µ = r−rB

ε4 . There are unique Knud-
sen boundary layers �K4A(η, v) and �K4B(µ, v), and boundary values
�H4(1, v) and �W4(0, v) such that

vr
∂�K4A

∂η
= L̃�K4A+2J̃ (�H1(1),�K3A)), η>0, v∈R

3,

�K4A(0, v) = �A4(v)−�H4(1, v), vr >0,

lim
η→+∞�K4A = 0,

and

vr
∂�K4B

∂µ
= L̃�K4B +2J̃ (�H1(rB)+�W1(0),�K3B), µ<0, v∈R

3,

�K4B(0, v) = �B4(v)−�H4(rB, v)−�W4(0, v), vr <0,

lim
µ→−∞�K4B = 0,

with the limits in L̃q -sense. The fourth order Knudsen boundary layers fix
the possible values of a4(1), d4(1), u4 = rBc4(rB) and x4(0), y4(0), z4(0),
hence complete the definitions of �H4 and �W4.

Proof of Lemma 2.2. Analogously to ref. 8, there are unique solu-
tions α and β to

vr
∂α

∂η
= L̃α+2J̃ (�H1(1),�K3A), η>0, v∈ IR3,

α(0, v) = −uθA1

(
u3Dvθv

2 +
(
u3E+ 1

4
u3
θA1

)
v2
θ +u3vrvθ

)
, vr >0,

∫
vrα(η, v)M(v)dv=0,

and

vr
∂β

∂η
=L̃β+2J̃ (�H1(rB,−v)+�W1(0,−v),�K3B(−η,−v)), η>0, v∈R

3,

β(0, v) = �B4(−v)−
(
�H4(rB,−v)−a4(rB)−d4(rB)v

2 −b4(rB)vθ − u4

rB
vr

)

−(�W4(0,−v)−x4(0)−y4(0)v
2 − z4(0)vθ ), vr >0,∫

vrβ(η, v)M(v)dv=0.



864 Arkeryd and Nouri

Moreover,

α∈KerL̃, β ∈KerL̃⊥,
limη→+∞ α(η, v)=a∞+d∞v2+b∞vθ , limη→+∞ β(η, v)= r∞+s∞v2+t∞vθ ,

for some constants a∞, d∞, b∞, r∞, s∞ and t∞. The function

ψK4A(η, v) := �K4A(η, v)−u4(g−A−Dv2 −Evθ −vr)
−(α−a∞ −d∞v2 −b∞vθ )

should satisfy

vr
∂ψK4A

∂η
= L̃ψK4A, η>0, v∈R

3,

ψK4A(0, v) = 1
8
u2
θA1 +a∞ +u4A−a4(1)+ (d∞ +u4D−d4(1))v

2

+(b∞ +u4E−b4(1))vθ , vr <0,

lim
µ→−∞ψK4A = 0.

Hence,

a4(1)= 1
8
u2
θA1 +a∞ +u4A, d4(1)=d∞ +u4D, b4(1)=b∞ +u4E,

ψK4A=0,

so that

�K4A=α−a∞ −d∞v2 −b∞vθ +u4(g−A−Dv2 −Evθ −vr).

Analogously, the function

ψK4B(µ, v) := �K4B(µ, v)− u4

rB
(g(−µ,−v)−A−Dv2 +Evθ −vr)

−(β(−µ,−v)− r∞ − s∞v2 + t∞vθ )
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should satisfy

vr
∂ψK4B

∂µ
= L̃ψK4B, µ<0, v∈R

3,

ψK4B(0, v) = r∞ + u4

rB
A−a4(rB)−x4(0)

+
(
s∞ + u4

rB
D−d4(rB)−y4(0)

)
v2

−
(
t∞+u4

rB
E+b4(rB)+z4(0)

)
vθ , vr <0,

lim
µ→−∞ψK4B(µ, v) = 0.

Hence,

x4(0)= r∞ −a4(rB)+u4
A

rB
, y4(0)= s∞ −d4(rB)+u4

D

rB
,

z4(0)= t∞ −b4(rB)+u4
E

rB
, ψK4B =0,

so that

�K4B(µ, v) = β(−µ,−v)− r∞ − s∞v2 + t∞vθ
+u4

rB
(g(−µ,−v)−A−Dv2 +Evθ).

Moreover, by integration of (2.22) and (2.18) on (−∞,0) and (1, rB)
respectively,

(x4 +5y4)(0)= Ā3, (a4 +5d4)(rB)=u4(A+5D)+ Ã3,

where Ā3 and Ã3 are given in terms of up to third order coefficients. This
fixes the value of u4, hence uniquely defines �K4A and �K4B .

Lemma 2.3. Denote by l := 1
ε4

(
L̃ϕ+ J̃ (ϕ, ϕ)− ε4Dϕ

)
. Then,

| l |q :=
(∫

M(v)

(∫
| l(x, v) |q dx

) 2
q

dv

) 1
2

is of order one in L̃q with respect to ε.
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Proof of Lemma 2.3. By definition of ϕ,

ε2

2
l = J̃ (�H1 −�H1(rB),�W1)

+ε
(
J̃ (�H1 −�H1(rB),�W2)+ J̃ (�W1,�H2 −�H2(rB)−Y�′

H1(rB)
)

+ε2
(
J̃ (�W3,�H1 −�H1(rB))+ J̃ (�W2,�H2 −�H2(rB)−Y�′

H1(rB))

+J̃ (�W1,�H3 −�H3(rB)−Y�′
H2(rB)−

Y 2

2
�′′
H1(rB))

+J̃ (�K3A,�H1 −�H1(1)+�W1)+ J̃ (�K3B,�H1 −�H1(rB)

+�W1 −�W1(0))
)

+O(ε3).

Hence

l = εJ̃
(
γ1(r)Y

3�W1 +γ2(r)Y
2�W2 +γ3(r)Y�W3 +γ4(r)Y�K3A

+γ5(r)Y�K3B, vθ

)
+ J̃ (�K3A,�W1)+O(ε),

where (γi)1�i�5 are bounded functions in r and η= r−1
ε4 . We notice that

�W1 is exponentially small near rA. From here the ε-bound for l follows
from the decay properties of �Wj , j =1, . . . ,4 in the suction layer, and of
�Ki,j , i=3,4, j =A,B, in the Knudsen layer.

3. ON THE CONTROL OF f⊥ AND f‖

We take ψ0 =1,ψθ =vθ ,ψr =vr ,ψz=vz,ψ4 = 1√
6
(v2 −3) as an ortho-

normal basis for the kernel of L̃ in L2
M(R

3). Recall that in this paper all
functions are even in vz. For functions f ∈L2

M([rA, rB ] ×R
3) we shall use

the earlier splitting into f =f‖ +f⊥ =P0f + (I −P0)f , such that

f‖(r, v)=f0(r)−
√

6
2
f4(r)+fθ (r)vθ +fr(r)vr +

√
6

6
f4(r)v

2,∫
M(v)(1, v, v2)f⊥(r, v)dv=0,

∫
Mψ0f (r, v)dv=f0(r),

∫
Mψ4f (r, v)dv=f4(r),∫

Mψθf (r, v)dv=fθ (r),
∫
Mψrf (r, v)dv=fr(r).
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The ψz-moment of f‖ vanishes, since f is even in vz. Set ν̃ := νε4, and
Df := vr

∂f
∂r

+ 1
r
Nf with N given by (1.3). Due to the symmetries in the

present setup, the position space may be changed from IR2 with measure
dx, to IR+ with measure rdr. The relevant boundary space becomes

L+ :=
{
f ; |f |∼=

(∫
vr>0

vrM(v) |f (rA, v) |2 dv
) 1

2

+
(∫

vr<0
|vr |M(v) |f (rB, v) |2 dv

) 1
2

<+∞
}
.

We shall also use

Wq−([rA, rB ]×R
3)=Wq− :={f ; ν 1

2 f ∈ L̃q, ν− 1
2Df ∈ L̃q, γ+f ∈L+}.

Define

fθirj (r) :=
∫
Mviθv

j
r f⊥(r, v)dv, i+ j �2,

and fθirj 2(r) correspondingly, when there is an extra factor | v |2 in the
integrand.

The main a priori estimates will below be given in L̃2. We shall
require that |uθA1|, |uθB1| and |τB2| are bounded by some value δ′, which
implies that the coefficients in the individual terms for ϕj as given in Sec-
tion 2, j = 1, ...,4, are bounded by some multiple of δ′. When the Knud-
sen number is εm and m>2, in order that the L̃2-approach becomes sharp
enough for the intended applications, a preliminary reorganization is first
performed on the original linearized problem

DF = 1
εm


L̃F +

j1∑
j=1

εj J̃ (F,ϕj )+g

 , F/∂�+ =Fb. (3.1)

This is related to the velocity perturbations of order m-th root of the
Knudsen number, becoming stronger in relation to the Knudsen num-
ber with increasing m. We carry out the procedure for the case m= 4.
Some terms will be moved from ε−3J̃ (F,ϕ1) in (3.1) to the ε−4L̃F -term,
together with follow-up changes in other terms in order to move certain
couplings between moments from lower to higher order terms. This will
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be important in the control of the outgoing fluxes in Proposition 3.2. With
w1 and u3 as defined in the previous section, set

k4 :=
∫
v2
r ψ4ĀMdv, k5 :=

∫
vr J̃ (ψ4, vr )ĀMdv,

k6 :=
∫
vrvθ J̃ (vθ , vr )B̄Mdv, c := k5u3

k4
, d := k6u3

w1
,

m4 := k−1
4

(
( r
rA
)
c
ε −1

( rB
rA
)
c
ε −1

F̃4(rB)+
( r
rB
)
c
ε −1

( rA
rB
)
c
ε −1

F̃4(rA)

)
,

mθ : = w−1
1


 ( rrA )

d
ε −1

( rB
rA
)
d
ε −1

F̃θ (rB)+
( r
rB
)
d
ε −1

( rA
rB
)
d
ε −1

F̃θ (rA)


 .

Lemma 3.1. A solution F of (3.1) can be split into the sum of a
function F− and ε times a nonhydrodynamic linear combination of Fr(1),
m4 and mθ , with F‖ =F−‖ and F− solution to the equation

DF− = 1
ε4
L̃F− + 1

ε3
J̃

(
F− − Fr(1)

r
vr −mθvθ −m4ψ4, ϕ

1
)

+
4∑
j=2

εj−4J̃

(
F− − Fr(1)

r
vr , ϕ

j

)
+

j1∑
j=5

εj−4J̃ (F−, ϕj )

+ 1
ε4
g+ ε(Fr(1)β1 +mθβ2 +m4β3), (3.2)

where βi , 1� i�3, are known functions in nonnegative powers of ε.

Proof of Lemma 3.1. Equation (3.1) can also be written as

DF = 1
ε4
L̃

(
F − ε c(r)

2

(
Fr(1)
r

vrvθ +mθ(v2
θ −1)+ m4√

6
vθ (v

2 −5)
))

+ 1
ε3
J̃

(
F − Fr(1)

r
vr −mθvθ −m4ψ4, ϕ

1
)

+
j1∑
j=2

εj−4J̃ (F,ϕj )+ 1
ε4
g

= 1
ε4
L̃

(
F − ε c(r)

2

(
Fr(1)
r

vrvθ +mθ(v2
θ −1)+ m4√

6
vθ (v

2 −5)
)
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+ε2
(
Fr(1)
r

α1 +mθα2 +m4α3

))
+ 1
ε3
J̃

(
F − Fr(1)

r
vr −mθvθ −m4ψ4

−ε c(r)
2

(
Fr(1)

2
vrvθ +mθ(v2

θ −1)+ m4√
6
vθ (v

2 −5)
)
, ϕ1

)

+
j1∑
j=2

εj−4J̃ (F,ϕj )+ 1
ε4
g,

where

L̃(α1)= c1J̃ (vrvθ , vθ ), L̃(α2)= c2J̃ (v
2
θ , vθ ), L̃(α3)=c3J̃

(
vθ (v

2−5)√
6

, vθ

)
.

Continuing the same way one gets the equation

DF = 1
ε4
L̃F− + 1

ε3
J̃

(
F− − Fr(1)

r
vr −mθvθ −m4ψ4, ϕ

1
)

+
4∑
j=2

εj−4J̃

(
F− − Fr(1)

r
vr , ϕ

j

)
+

j1∑
j=5

εj−4J̃ (F,ϕ
j )+ 1

ε4
g+ εJ1,

where J1 is a nonhydrodynamic linear combination of Fr(1), mθ and m4,
F−‖ =F‖ and F−⊥ is the sum of F⊥ and a nonhydrodynamic linear com-
bination of Fr(1), mθ and m4. And so, writing DF as the sum of DF−
and known terms leads to the Equation (3.2).

Lemma 3.2. Let F̃−4 := k4F4 + F−r2Ā and F̃−θ := w1Fθ + F−θr2B̄ .
Then

F̃−4(r) = m4(r)+
∫ r

1

( rB
s
)
k5u3
k4 − ( r

s
)
k5u3
k4

r

k5u3
k4

B −1

G4(s)ds

+
∫ rB

r

( r
s
)
k5u3
k4 − ( 1

s
)
k5u3
k4

( 1
rB
)
k5u3
k4 −1

G4(s)ds,

F̃−θ (r) = mθ(r)+
∫ r

1

( rB
s
)
k6u3
w1 − ( r

s
)
k6u3
w1

r

k6u3
w1
B −1

Gθ(s)ds

+
∫ rB

r

( r
s
)
k6u3
w1 − ( 1

s
)
k6u3
w1

( 1
rB
)
k6u3
w1 −1

Gθ(s)ds,
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where G4 and Gθ satisfy

|G4 |2 +|Gθ |2� c
(

‖F−⊥ ‖2 +εδ′ ‖F‖ ‖2 + 1
ε8

|g‖ |2 + 1
ε4

|g⊥ |2
+ε(|Fr(1) |+ |mθ |2 +|m4 |2)

)
. (3.3)

Proof of Lemma 3.2. A multiplication of (3.2) with vθM (resp.
v2M) and integration over IR3

v leads to

F−θr (r) = F−θr (1)
r2

+ 1
r2

∫ r

1
s2 gθ

ε4
ds+O(ε),

F−r2(r) = F−r2(1)
r

+ 1
rε4

∫ r

1
s
(√

6g4 +3g0

)
ds+O(ε).

Multiply equation (3.2) with Ā(|v|)vrM and integrate over R
3
v,

(∫
v2
r ĀMF−dv

)′
=

(
k4F4 +F−r2Ā

)′ = 1
r

(
F−θ2Ā−F−r2Ā

)
(3.4)

+ 1
ε4

(cr2
r

+ 1
rε4

∫ r

1
s(

√
6g4 −2g0)ds+

∫
vrĀJ̃

(
F−⊥,

4∑
1

εjϕj
)
Mdv

+ε3F4(c3 + εc4)k5 + ε4Fθb1c3

∫
vrĀJ̃ (vθ , vrvθ )Mdv

)

+
j1∑
j=5

εj−4
∫
vrĀJ̃ (F−, ϕj )Mdv+ 1

ε4

∫
gvrĀMdv

+ε
∫
vrĀ(Fr(1)γ1 +mθγ2 +m4γ3)Mdv.

Here γi , i=1,2,3, are known functions in positive powers of ε. Using the
spectral inequality, we notice that

k4 =
∫
v2
r ψ4ĀMdv= 1√

6

∫
vrv

2vrĀMdv

= 1√
6

∫
vr(v

2 −5)vr ĀMdv= 1√
6

∫
L̃(vr Ā)vr ĀMdv

< −c
∫

|vrĀ|2Mdv<0.

In (3.4) c3 and c4 respectively denote the coefficients of vr in ϕ3 and ϕ4.
Then c3 = u3

r
, with u3>0 in the present case. Its coefficient in the ε−1-term
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of (3.4) is F4k5 =F4
∫
J̃ (ψ4, vr )vr ĀMdv, where

−
∫
J̃ (ψ4, vr )vr ĀMdv = 1√

6

∫
L̃vrv

2 ·vr ĀMdv= 1√
6

∫
L̃vr (v

2 −5) ·vr ĀMdv

= 1√
6

∫
vr(v

2 −5) · L̃vr Ā ·Mdv

= 1√
6

∫
|vr(v2 −5)|2Mdv>0.

Hence k4k5>0.
Let F̃−4 =k4F4 +F−r2Ā. In (3.4) regroup the terms as

F̃ ′
−4 − k5u3

k4rε
F̃−4 = cr2

rε4
+

{
1
r

(
F−θ2Ā−F−r2Ā

)

+ 1
ε4

(
1
rε4

∫ r

1
s(

√
6g4 −2g0)ds

+
∫
vrĀJ̃

(
F−⊥,

4∑
1

εjϕj
)
Mdv

)

−k5u3

k4rε
F−r2Ā+F4c4k5 +Fθb1c3

∫
vrĀJ̃ (vθ , vrvθ )Mdv

+
j1∑
j=5

εj−4
∫
vrĀJ̃ (F−, ϕj )Mdv+ 1

ε4

∫
gvrĀMdv

+ε
∫
vrĀ(Fr(1)γ1 +mθγ2 +m4γ3)Mdv

}
.

Here denoting the expression within
{
...

}
by G4 and setting c := k5u3

k4
, gives

c>0 and
(
F̃−4r

− c
ε

)′ = cr2

ε4
r−

c
ε
−1 +G4r

− c
ε .

This implies

F̃−4(rB)r
− c
ε

B − F̃−4(rA)r
− c
ε

A = cr2

ε4

ε

c

(
r
− c
ε

A − r−
c
ε

B

)
+

∫ rB

rA

G4(s)s
− c
ε ds,

F̃−4(r)r
− c
ε = F̃−4(rB)r

− c
ε

B + cr2

ε4

ε

c

(
r
− c
ε

B − r− c
ε

)

+
∫ r

rB

dsG4(s)s
− c
ε .
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Eliminating cr2, it follows that

F̃−4(r) =
( r
rA
)
c
ε −1

( rB
rA
)
c
ε −1

F̃−4(rB)+
( r
rB
)
c
ε −1

( rA
rB
)
c
ε −1

F̃−4(rA)+
∫ r

rA

( rB
s
)
c
ε − ( r

s
)
c
ε

( rB
rA
)
c
ε −1

G4(s)ds

+
∫ rB

r

( r
s
)
c
ε − ( rA

s
)
c
ε

( rA
rB
)
c
ε −1

G4(s)ds. (3.5)

The computation leading to (3.5) holds analogously for F and (3.1) with
F̃4 = (k4F4 +Fr2Ā). At this point we recall that m4 has been defined by

m4 =k−1
4

(
( r
rA
)
c
ε −1

( rB
rA
)
c
ε −1

F̃4(rB)+
( r
rB
)
c
ε −1

( rA
rB
)
c
ε −1

F̃4(rA)

)
. (3.6)

Replace all moments of F−⊥ of negative ε-order in G4 with higher order
ones, iteratively until all are of nonnegative order. E.g.

∫
MdvJ̃ (F−⊥, vθ )

vr Ā can be written as
∫
MdvF⊥λ and expressed by moments of higher

order by projecting (3.2) along L̃−1λ. This can be repeated until all
appearing moments of F−⊥ are of nonnegative order in ε. Notice that all
appearing hydrodynamic moments are of ε-order zero or higher with a
factor δ′. The negative ε-order Fr -moments were eliminated by the passage
from F to F−, and the integrals of the J̃ -terms containing the remain-
ing negative order hydrodynamic moments come out as zero, essentially
because L̃ and L̃−1 preserve even/odd symmetry under change of signs
in v.

An analogous estimate for F̃−θ
r

:= w1Fθ
r

+ F−θr2B̄
r

can be obtained in the
same way. Namely, multiply the Equation (3.2) with Mvrvθ B̄(|v|) and inte-
grate over R

3
v. It follows that

(
w1Fθ

r
+ F−θr2B̄

r

)′
− F−θ3B̄ −3F−θr2B̄

r2
(3.7)

= 1
rε4

(cθr
r2

+ 1
r2

∫ r

1
s2 gθ

ε4
+

∫
vrvθ B̄J̃

(
F−⊥,

4∑
1

εjϕj
)
Mdv

)

+η1

∫ r

1
s
g0

ε3
ds+ ε3Fθc3k6 + ε4Fθη2 +

j1∑
j=5

εj−4
∫
vrvθ B̄J̃ (F−, ϕj )Mdv

+ 1
ε4

∫
vrvθ B̄Mgdv+ ε

∫
vrvθ B̄(Fr(1)γ̄1 +mθ γ̄2 +m4γ̄3)Mdv.
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Here, η1 and η2 are known coefficients. Making analogous computations
to the F̃−4-case leads to (3.3).

Define a specular reflection operator S at r = rA, rB as Sf (r, v)=
f (r,−vr , vθ , vz).

Proposition 3.1. Let F be a solution in W2− to (3.1). The follow-
ing estimate holds for small enough ε >0;

|F‖ |2� c
(

|F⊥ |2 + 1
ε8

|g‖ |2 + 1
ε4

|g⊥ |2 +|SF− |∼ +|Fb |∼
)
. (3.8)

Proof of Proposition 3.1. Recall that the hydrodynamic moments
of F and F− coincide. Multiplying the Equation (3.1) with M and inte-
grating over R

3
v, leads to (rFr)

′ = r g0
ε4 , i.e.

Fr(r)= Fr(1)
r

+ 1
r

∫ r

1
s
g0

ε4
ds. (3.9)

By definition of Fr(1),

|Fr(1)| =
∣∣∣
∫
vrF−(1, v)Mdv

∣∣∣

� c

(∫
|vr |F 2

−(1, v)Mdv
) 1

2

� c(|SF− |∼ +|Fb |∼).

It then follows from (3.9) that

‖Fr ‖2� c
(

1
ε4

|g‖ |2 +|SF− |2 +|Fb |∼
)
.

Multiply the Equation (3.2) with vrM and integrate with respect to v. It
follows that

(∫
v2
r F−(r, v)Mdv

)′
=

(
F0 +

√
2
3
F4 +F−r2

)′=F−θ2 −F−r2

r
+gr
ε4

+ε
∫
vr(Fr(1)β1 +mθβ2 +m4β3)Mdv.

(3.10)
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Multiply (3.10) with 2
(
F0 +

√
2
3F4 +F−r2

)
and integrate with respect to r

on (r, rB), then on (rA, rB), to obtain

∣∣∣
∣∣∣F0 +

√
2
3
F4

∣∣∣
∣∣∣
2
� c

(
|F−⊥ |2 + 1

ε4
‖gr ‖2

+
∣∣∣
∫
v2
r F−(rB, v)Mdv

∣∣∣+ ε |Fr(1) |+ |mθ |2 +|m4 |2
)
.

But

∣∣∣
∫
v2
r F−(rB, v)Mdv

∣∣∣ � c

(∫
M |vr |F 2

−(rB, v)dv
) 1

2

� c(|SF− |∼ +|Fb |∼).

Hence

∣∣∣
∣∣∣F0 +

√
2
3
F4

∣∣∣
∣∣∣
2
� c

(
|F−⊥ |2 + 1

ε4
‖gr ‖2 +|SF− |∼ +|Fb |∼

)
. (3.11)

By (3.3), (3.5), and (3.7)

‖F4 ‖2 +‖Fθ |2� c
(

|F−⊥ |2 + 1
ε8

|g‖ |2 + 1
ε4

|g⊥ |2
+|SF− |∼ +|Fb |∼ +εδ′ |F‖ |2

)
.

And so, (3.8) holds.

It remains to control |SF− |∼ and the nonhydrodynamic part F⊥.

Proposition 3.2. Let F be a solution in W∞− of (3.1) and F− a
solution in W2− of (3.2) for g=g⊥. The following estimates hold for small
enough ε >0;

ε2 |SF− |∼ +| ν̃ 1
2F−⊥ |2� c

(
ε−3 | ν̃− 1

2 g⊥ |2 +ε−7 |g‖ |2
+ε2δ′(‖Fr ‖2 +‖Fθ ‖2 +‖F4 ‖2 +‖F0 ‖2)+ ε2 |Fb |∼

)
, (3.12)

| ν̃ 1
2F |∞� c(| ν̃− 1

2 g |∞ +ε− 8
q | ν̃ 1

2F |q +| ν̃ 1
2Fb |∼), q�∞. (3.13)



Stationary Nonlinear Boltzmann Equation in a Couette Setting 875

Proof of Proposition 3.2. We first turn to the estimate (3.13).
Employing ref. 23, p. 101 for ϕ= 0, F can via a double iteration of the
problem in exponential form, and splitting of the compact part K of L̃, be
written as

F =Uε K
′

ε4
Uε
K ′

ε4
F +Z1F +Z2g+Z3γ

+F, (3.14)

where

∣∣∣ν̃ 1
2Uε

K ′
ε4 Uε

K ′
ε4 F

∣∣∣∞ � cδε−
8
q | ν̃ 1

2F |q, (3.15)

| ν̃ 1
2Z1F |∞� cδ | ν̃ 1

2F |∞, | ν̃ 1
2Z2g |∞� c | ν̃− 1

2 g |∞,
| ν̃ 1

2Z3γ
+F |∞� c | ν̃ 1

2Fb |∼ .

Using (3.14), (3.15) with δ a small enough constant, gives (3.13). For ε
small enough, the addition of εJ̃ (F,ϕ1) to g does not change the result,
nor does the addition of the higher order asymptotic terms. We notice that
in this part of the proof, a hydrodynamic component in g does not change
the proof.

For ϕ=0 (3.1) coincides with (3.2). Then the mapping from ν̃− 1
2 L̃q ×

L+ into Wq− given by (g,Fb)→F−, is continuous and bijective by (ref.
23, Ch. 6.1.). The analysis in ref. 23 is carried out for 2 �q�∞. Green’s
formula and the spectral inequality for L̃,

−
∫
Mf L̃f dv� c

∫
Mν̃f 2

⊥dv

with c>0, give

ε4 |SF− |2∼ +| ν̃ 1
2F−⊥ |22� c

(
ε4 |Fb |2∼ +| ν̃− 1

2 g⊥ |22 + 1
ε6

|g‖ |22 +ε6 |F‖ |22
)
.

The case ϕ �=0 adds to the (g,F−)-term

∫ (
εJ̃

(
F− − Fr(1)

r
vr −mθvθ −m4ψ4, ϕ

1
)

+
4∑
j=2

εj J̃

(
F− − Fr(1)

r
vr , ϕ

j

))

×F−Mdvdr.
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There

∫
εJ̃

(
F− − Fr(1)

r
vr −mθvθ −m4ψ4, ϕ

1
)
F−Mdvdr

� ε2δ′2

2δ

∫
J̃ 2

(
F− − Fr(1)

r
vr −mθvθ −m4ψ4, vθ

)
Mdvdr+ δ

2
|F−⊥ |22,

which is smaller than

cδ′2

2δ

(
ε2 ‖F⊥ ‖2

2 +ε4 ‖F‖ ‖2
2 + 1

ε14
|g‖ |22 + 1

ε6
|g⊥ |22 +ε4 |SF− |2∼ +ε4 |Fb |2∼

)

+cδ |F−⊥ |22,

by the expressions of F− − Fr (1)
r
vr −mθvθ −m4ψ4 in terms of g0, Gθ and

G4 given by (3.5), (3.7) and (3.9). It is here that the removal of Fr (1)
r
vr +

mθvθ +m4ψ4 from F− in the ε−3-term of Equation (3.2) satisfied by F−
plays a central role. The term

∫ 4∑
j=2

εj J̃

(
F− − Fr(1)

r
vr , ϕ

j

)
F−Mdvdr

can be handled similarly. This completes the proof of (3.12).

It directly follows from Proposition 3.1 and Proposition 3.2 that

Corollary 3.3. If 0<δ′ is small enough and g= g⊥, then for small
enough ε >0 the following estimates hold for the solution of (3.1),

| ν̃ 1
2F⊥ |2 � c

(
ε−3 | ν̃− 1

2 g⊥ |2 +ε2 |Fb |∼
)
,

‖F0 ‖2 +‖Fr ‖2 +‖F4 ‖2 +‖Fθ ‖2 � c
(
ε−5 | ν̃− 1

2 g⊥ |2 +|Fb |∼
)
.

Using this corollary we prove

Proposition 3.4. Let g = g⊥, ν̃− 1
2 g ∈ L̃q , Fb ∈L+, 2 � q <∞, and

j1 � 4 be given. When δ′> 0 is small enough, there exists a unique solu-
tion F ∈Wq− to (3.1) for all small enough ε >0.
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Proof of Proposition 3.4. By [ref. 23, pp. 68–69] there is a unique
solution F ∈ W2− for ϕ= 0. That still holds, if we add 1

ε4 J̃ (F,ϕ) to the
right hand side of (3.1). Namely, for ϕ=0 start from the integrated solu-
tion formula with a single iteration (cf ref. 23, p. 69),

F =Uε K
ε4
F +Uε g

ε4
+Wεγ

+F. (3.16)

Adding J̃ (F,ϕ) to g, a similar formula holds and, like (ref. 23 pp. 68–69),
gives a compact perturbation of a well-posed problem. The index remains
equal to zero, and the a priori estimates of Corollary 3.3 imply injectivi-
ty, hence also surjectivity. That completes the proof of the proposition in
the W2− case. From here the case q=∞ follows using (3.13), and the case
2<q<∞ from a corresponding generalization of (3.13).

4. THE REST TERM

This section discusses the rest term, when |uθA1|, |uθB1|, and |τB2| are
bounded by δ′>0, so that the results of the previous section hold. Given
the asymptotic expansion ϕ, the aim is to prove that there exists a rest
term R so that

f =M(1+ϕ+ ε4R) (4.1)

is an isolated solution to (1.1–2) with M−1f ∈ L̃∞. This corresponds to the
function R being a solution to

DR= 1
ε4

(
L̃R+2J̃ (R,ϕ)+ ε4J̃ (R,R)+ l

)
.

Notice that ϕ is constructed so that Dϕ= (I −P0)Dϕ, hence that l= l⊥. In
Section 2 for the bifurcation case with (uθA1 −uθB1rB)(3uθA1 +uθB1rB)>

0, 
�
bif , an asymptotic expansion ϕ of order four in ε was constructed
so that l is of ε-order one in L̃q . Continue the same ϕ-expansion up to ε-
order eighteen, giving an l-term of ε-order fifteen, but without requiring
the boundary conditions to be satisfied for ϕ beyond order thirteen.

Let the sequences (Rn)n∈IN be defined by R0 =0, and

DRn+1 = 1
ε4

(
L̃Rn+1 +2

18∑
j=1

εj J̃ (Rn+1, ϕj )+gn
)
, (4.2)

Rn+1(1, v) = RA(v), vr >0, Rn+1(rB, v)=RB(v), vr <0. (4.3)
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In (4.2–3)

gn := ε4J̃ (Rn,Rn)+ l,

ε4RA(v) := eεuθA1vθ− ε2
2 u

2
θA1 −1−∑18

j=1 ε
jϕj (rA, v), vr >0,

ε4RB(v) := 1+ωB
(1+τB)

3
2
e

1
2

(
v2− 1

1+τB (v
2
r+(vθ−εuθB1)

2+v2
z )
)

−1−∑18
j=1 ε

jϕj (rB, v), vr <0,

with RA, RB of ε-order ten.
We now turn to the properties of the rest term iteration scheme

(4.2–3).

Proposition 4.1. For ε > 0 and small enough, there is a unique
sequence (Rn) of solutions to (4.2–3) in the set X :={R; | ν̃ 1

2R |q�K} for
some constant K. The sequence converges in L̃q for 2�q�∞, to an iso-
lated solution of

DR = 1
ε4

(
L̃R+ ε4J̃ (R,R)+2J̃ (R,ϕ)+ l

)
, (4.4)

R(1, v) = RA(v), vr >0, R(rB, v)=RB(v), vr <0. (4.5)

When ε tends to zero, the corresponding hydrodynamic moments of (4.1)
converge to solutions of the (Hilbert) limiting fluid equations of leading
order in ε (third order for the radial velocity).

Proof of Proposition 4.1. The existence result of Proposition 3.4
holds for the boundary value problem

Df = 1
ε4

(
L̃f +2

18∑
j=1

εj J̃ (f, ϕj )+g
)
,

f (1, v) = RA(v), vr >0, f (rB, v)=RB(v), vr <0.

Consider first (4.2–3) in the case n=0 with g0 = l. As discussed before
(4.2), this g0 =g0

⊥ is of ε-order fifteen in L̃q . For R1
⊥ and q�∞, Corollary

3.3 gives,

| ν̃ 1
2R1

⊥ |2� c
(
ε−3 | ν̃− 1

2 g0
⊥ |2 +ε2 |Fb |∼

)
, (4.6)

‖R1
r ‖2 +‖R1

θ ‖2 +‖R1
4 ‖2 +‖R1

0 ‖2� c
(
ε−5 | ν̃− 1

2 g0
⊥ |2 +|Fb |∼

)
. (4.7)
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Using the properties of l, it follows from (4.6–7) that the ε-order of R1
⊥

in L̃2 is twelve, whereas the term R1
‖ is of order ten in L̃2. By Proposition

3.2, R1 is of order six in L̃∞.
For n ∈ N, we shall write Rn+1 = R1 + ∑n

j=1(R
j+1 − Rj ). It holds

that (Rn+1 −Rn) has gn=gn⊥ and the ingoing boundary values vanishing.
Consider the case n=1. By Corollary 3.3 for the difference R2 −R1,

| ν̃ 1
2 (R2

⊥ −R1
⊥) |2� cε | ν̃− 1

2 J̃ (R1,R1) |2, (4.8)

‖R2
r −R1

r ‖2 +‖R2
θ −R1

θ ‖2 +‖R2
4 −R1

4 ‖2 +‖R2
0 −R1

0 ‖2

� cε−1 | ν̃− 1
2 J̃ (R1,R1) |2 . (4.9)

Recall that

| ν̃− 1
2 J̃ (g, h) |q�C | ν̃ 1

2 g |∞| ν̃ 1
2 h |q .

We conclude from this and from (4.8–9), that

| ν̃ 1
2 (R2 −R1) |q<cε | ν̃ 1

2R1 |q for q=2,∞.

For n�2, Corollary 3.3 implies that

| ν̃ 1
2 (Rn+1 −Rn) |2� c

ε
| ν̃− 1

2 (J̃ (Rn,Rn)− J̃ (Rn−1,Rn−1)) |2 .

And so (Rn) converges for sufficiently small ε >0 to some R, solution to
(4.4–5) in L̃q for q�∞. The contraction mapping construction guarantees
that this solution is isolated.

It finally follows from the above proof that, when ε tends to zero,
the hydrodynamic moments converge to the (Hilbert type) solutions of the
corresponding leading order limiting fluid equations (2.14–15), (2.17).

Proof for Theorem 1.2. This theorem is an immediate consequence
of Proposition 2.1 and Proposition 4.1.

The approach holds with small changes for the other cases of asymp-
totic expansion in the two-roll setup that are discussed in ref. 26. We let
the case of Theorem 1.1 illustrate this.

Sketch of Proof for Theorem 1.1. Consider the boundary value
problem (1.1–2), this time without the previous coupling (1.4) between
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the boundary values. Assume that the cylinders rotate in the same direc-
tion and that 1<PSB2/[(r2

B −1)u2
θB1]<(uθA1/uθB1rB)

2. This guarantees an
asymptotic expansion with positive, as well as one with negative, second
order radial velocity, and one with fourth order radial velocity (cf. ref. 25).
Construct the expansions ϕ similarly to Section 2, and write the solution
as in (4.1) with asymptotic expansion of order eighteen and rest term of
order four. In the two cases of a second order radial velocity, the lowest
nonvanishing vr -term of ϕ appears in ϕ2 and thereby gives a minor change
in the proof of Section 3. In the case of a fourth order radial velocity, the
lowest order nonvanishing vr -term appears in ϕ4, again giving a correspond-
ing small change in the proof of Section 3. Except for this, the above proofs
carry through as before. The rest term analysis also proceeds as before and
proves Theorem 1.1.
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