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Abstract. A linear Boltzmann model is used for studying a condensation–evaporation prob-
lem in a bounded domain. First the time asymptotic limit is derived, which solves the associated
stationary problem. Then the Milne problem is discussed for the boundary layer. Finally a fluid
approximation is obtained in the small mean free path limit with initial and boundary layers of
zeroth order.
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Introduction. The kinetic description of a rarefied gas can be given through
the Boltzmann equation for the density function f(t, x, v) of particles with velocity
v at position x and time t. A coarser theory consists of describing the gas as a
continuous fluid with local density ρ(t, x), velocity u(t, x), and temperature T (t, x)
satisfying the Euler or Navier–Stokes equations. In the limit of small mean free path,
the fluid dynamic equations may be derived from the Boltzmann equation through
either a Hilbert or Chapman–Enskog expansion; see, e.g., [2, 8, 9, 12]. However, the
fluid dynamic limits fail near shocks and for general indata near spatial or temporal
boundaries.

Among the many studies of the boundary layer structure let us mention the
following. In [3], the steady nonlinear Boltzmann equation for a gas with zero bulk
velocity between two plates at two different temperatures is solved for a small mean
free path, using a Chapman–Enskog expansion between the two plates. Here the fluid
part of the solution contains Fourier’s law for heat conduction which can be made to
satisfy different temperature values at the two plates. This is why the boundary layer
terms only need to be of first order with respect to the mean free path. An analogous
study also including the initial layer is performed in [16] for the linear semiconductor
case where further references in the field may also be found. For more results in the
area see also [5, 10, 13, 19].

The present paper addresses the added presence of condensation–evaporation on
the boundary. In this context a formal analysis and numerical computations are
carried out in [17, 18] for a rarefied gas with varying temperatures and condensation–
evaporation on the boundaries. On the basis of the linearized Boltzmann equation
for hard sphere molecules, zeroth-order boundary layer terms are needed for solving
the problem. Our paper considers the same problem for a rarefied solute in a solvent
gas, and with varying temperatures on the boundary. The linear Boltzmann equation
is used as a model for the solute. We prove that a fluid approximation in the interior
together with initial and boundary layer structures are available to describe the solute
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gas. Here the fluid approximation is derived from the boundary layer analysis. Indeed,
like [17, 18] this boundary layer structure requires zeroth-order terms with respect to
the mean free path.

In the first section an existence and uniqueness result for the initial boundary
value problem with given indata in a bounded region is recalled. We then determine
the solution to the stationary boundary value problem from the time asymptotics of
the initial boundary value solution. The approach is designed for prospective future
use in the nonlinear case. For another approach to the nonlinear stationary problem
see [1]. Section 2 is devoted to the solution of the Milne problem. For indepth
discussions and bibliography see [4, 6]. Depending on the sign of the normal velocity
of the solvent gas, two kinds of solutions are of interest for the following boundary
layer analysis. In the last section we perform in the slab case a fluid approximation
with respect to the mean free path by splitting the solution into a zeroth-order initial
layer term together with a stationary boundary value contribution having a fluid part
with zeroth-order boundary layer terms and a first order remainder term.

1. The initial boundary value problem and its time asymptotic behav-
ior. The linear Boltzmann equation models the interaction between a solvent gas
and a solute gas. The solute gas is rarefied enough so that collisions with itself are
negligible in comparison with collisions with the solvent gas. Both gases are located
in a bounded convex domain Ω ⊂ R3. The distribution function f(t, x, v) of the solute
gas satisfies the linear Boltzmann equation

∂tf + v · ∇xf = Q(f),(1.1)

where

Q(f)(t, x, v) =
∫
B(θ, w)(f ′F ′∗ − fF∗)dv∗dθdε = Q+(f)− νf.

Here

f ′ = f(t, x, v′), F ′∗ = F (t, x, v′∗),

f = f(t, x, v), F∗ = F (t, x, v∗),

w = |v − v∗|, v′ = v − 2
1 + κ

((v − v∗) · e)e,

v′∗ = v∗ +
2κ

1 + κ
((v − v∗) · e)e, e ∈ S2.

F is the solvent distribution function, assumed to be known, and κ is the ratio between
the solute molecular mass m and the solvent molecular mass m∗.

Assuming that the collisions between the two gases are governed by a cut-off in-
verse power law interaction potential U(ρ) = cρ−k+1, k > 2 depending on the distance
ρ of two colliding particles, the weight function B is B(θ, w) = wγb(θ), 0 ≤ θ < π

2 ,
w > 0 (cf. [7]), where γ = k−5

k−1 and b is a nonnegative L1-function defined on [0, π2 ],

with
∫ π

2
0 b(θ)dθ > 0. We assume hard interactions, i.e., k > 5 or 0 < γ < 1. A

principle of detailed balance only holds [14], when F is a Maxwellian,

F (v) =
(

2πT
m∗

)− 3
2

exp
(
−m∗

(v − U)2

2T

)
.

This is also assumed throughout the paper.
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The collision frequency ν(v) is bounded from above and below by a positive
multiple of (1 + |v|)γ . The choice of the bulk velocity U = (u, 0, 0) ∈ R3 in connection
with the given boundary temperature follows from the boundary value problem for
the solvent gas. The present study of the solute holds for any U and boundary
temperature. The solute Maxwellian with the same bulk velocity U and temperature
T is M(v) = (2πT

m )−
3
2 exp(−m (v−U)2

2T ). It satisfies

F∗M = F ′∗M
′.(1.2)

(1.1) is complemented with an initial condition

f(0, x, v) = fi(x, v)(1.3)

and given indata on the boundary

f(t, x, v) = fb(x, v), x ∈ ∂Ω, v · n(x) > 0.(1.4)

Here n(x) denotes the inward normal at x. Let (∂Ω× R3)+ and (∂Ω× R3)− denote
the sets of (x, v) ∈ ∂Ω× R3 such that v · n(x) > 0 and v · n(x) < 0, respectively.

For ∂Ω sufficiently smooth, say C1, the existence and uniqueness approach of [15]
can be used to prove the following theorem.

THEOREM 1.1. If (1+|v|)γfi and (1+|v|)γfb belong to L1(Ω×R3) and L1
v·n(x)((∂Ω×

R3)+), respectively, then there exists a unique solution f of (1.1)–(1.3–1.4) with
f(t)(1 + |v|)γ ∈ L1(Ω × R3) for t > 0. Moreover, f is nonnegative whenever fi
and fb are nonnegative.

Let us next discuss the collisions and the collision operator in velocity space. The
momentum and energy conservations imply

mv +m∗v∗ = mv′ +m∗v
′
∗,

m|v|2 +m∗|v∗|2 = m|v′|2 +m∗|v′∗|2.

A transformation to the equal mass situation m = m∗ is given by

ṽ = v − α

2
(v − v∗), ṽ∗ = v∗ −

α

2
(v − v∗),

where α = m∗−m
m∗+m

. Hence

ṽ + ṽ∗ = ṽ′ + ṽ′∗,

|ṽ|2 + |ṽ∗|2 = |ṽ′|2 + |ṽ′∗|2.

Denote by f̃ , Q̃+(f̃), and Q̃(f̃)

f̃ = f

√
ν

M
, Q̃+(f̃) =

1√
νM

Q+(f), Q̃(f̃) = Q̃+(f̃)− f̃ .

By (1.2)

Q̃+(f̃) =
∫
B

√
F ′∗F∗
ν′ν

f̃ ′dv ∗ dθdε.

Let ( , ) denote the scalar product in L2(R3).



A CONDENSATION–EVAPORATION PROBLEM IN KINETIC THEORY 33

LEMMA 1.2. Every f̃ ∈ L2(R3) can uniquely be written

f̃ = cf
√
νM + w̃f ,(1.5)

with (
√
νM , w̃f ) = 0. Moreover

|(Q̃+w̃f , w̃f )| ≤ (1− σ)‖w̃f‖2L2(1.6)

for some constant σ such that 0 < σ < 1.
Proof. Q̃+ satisfies Grad’s conditions [12], so Q̃+ is a compact operator in Lqs :=

Lq(R3, 1 + |v|s), 1 ≤ q < ∞, s ∈ R. Moreover, Q̃+ is symmetric in L2. Hence its
eigenvector spaces span L2 and are finite dimensional for nonzero eigenvalues. Then

|(Q̃+f̃ , f̃)| =
∫
B

√
F ′∗
ν′

f̃ ′
√
F∗
ν
f̃ ≤

∫
B
F∗
ν
|f̃ |2 =

∫
|f̃ |2,

so −Q̃ is positive in L2 and ‖Q̃+‖ ≤ 1. The Q̃+-eigenvalue 1 is simple. Indeed,
Q̃+f̃ = f̃ implies (Q̃f̃ , f̃) = 0, which can be written∫

B

(√
F ′∗
ν′

f̃ ′ −
√
F∗
ν
f̃

)2

dvdv∗ dθdε = 0.

Hence √
F ′∗
ν′

f̃ ′ =

√
F∗
ν
f̃ ,

or f ′

M ′ = f
M by (1.2). It follows (see [14]) that f̃ = c

√
νM , where c is a constant. Now

−1 is not an eigenvalue of Q̃+. Otherwise, Q̃+f̃ = −f̃ for some f̃ implies∫
B

(√
F ′

ν′
f̃ ′ +

√
F∗
ν
f̃

)2

dvdv∗ dθdε = 0,

so f ′

M ′ = − f
M . Varying v∗ and the angular coordinate for v fixed gives that f has a

constant sign. Hence f̃ = 0. Since Q̃+ is compact and symmetric, ‖Q̃+‖ ≤ 1, −1 is
not an eigenvalue, and the eigenspace of 1 is c

√
νM , it follows that every f̃ ∈ L2 can

be uniquely written as

f̃ = cf
√
νM + w̃f , with (

√
νM, w̃f ) = 0

and

|(Q̃+w̃f , w̃f )| ≤ (1− σ)‖w̃f‖2L2 , 0 < σ < 1.

Let us next describe the time asymptotics for the solution of the initial boundary
value problem (1.1)–(1.3–1.4).

THEOREM 1.3. Let fi and fb be functions belonging to L2
1
M

(Ω × R3) and

L2
v·n(x)
M

((∂Ω × R3)+). When t tends to infinity, the solution to the initial bound-

ary value problem (1.1)–(1.3–1.4) converges in L1(Ω × R3) to the unique stationary
solution g of the linear stationary Boltzmann equation

v · ∇xg = Q(g),(1.7)

with g̃ ∈ L2, complemented with the boundary condition

g(x, v) = fb(x, v), (x, v) ∈ (∂Ω× R3)+.(1.8)
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Proof. Due to the linearity of (1.1), f can be split into the sum of the solution
to (1.1) with initial condition fi and zero boundary condition, and the solution to
(1.1) with a zero initial condition and fb boundary condition. Again by linearity it is
enough to consider nonnegative initial and boundary values. Let us first prove that
the first part tends to zero in L1

x,v when t tends to infinity. Let dα(x) denote the
measure on the boundary ∂Ω. The Green formula applied to (1.1), together with
(1.6), implies ∫

Ω×R3

|f̃(t, x, v)|2
ν(v)

dxdv

+
∫ t

0

∫
(∂Ω×R3)−

|v · n(x)|
ν(v)

|f̃(s, x, v)|2dsdα(x)dv

+ σ

∫ t

0

∫
Ω×R3

|w̃(s, x, v)|2dsdxdv ≤
∫

Ω×R3

|f̃(t, x, v)|2
ν(v)

dxdv

+
∫ t

0

∫
(∂Ω×R3)−

|v · n(x)|
ν(v)

|f̃(s, x, v)|2dsdα(x)dv

−
∫ t

0

∫
Ω

(Q̃w̃, w̃)(s, x)dsdx =
∫

Ω×R3

|f̃i(x, v)|2
ν(v)

dxdv.(1.9)

It follows that
∫

Ω×R3
1

ν(v) |f̃(t, x, v)|2dxdv decreases with time. Moreover, there is a

sequence tj tending to infinity and a function f̃∞ such that f̃(tj + t) tends weakly
to f̃∞ in L2

1
ν

, and
∫ t

0

∫
Ω×R3 |w̃(tj + t, x, v)|2 dtdxdv and

∫ 1
0

∫
(∂Ω×R3)−

|v·n(x)|
ν(v) |f̃(tj +

t, x, v)|2 dtdα(x)dv tend to zero when j tends to infinity. The function f∞ is a weak
solution to the equation (1.1) with zero boundary condition and w̃f∞ = 0. It follows
that f∞ = c∞M for some constant c∞. The null boundary conditions imply that
c∞ = 0. Hence f̃(t) weakly converges to zero in L2

1
v

. Since

‖f(t)‖L1
x,v

=
∫

Ω

∫
R3

√
M(v)
ν(v)

f̃(t, x, v)dxdv,

f(t) tends to zero strongly in L1
x,v, when t tends to infinity.

Let us prove that the solution to the initial boundary value problem (1.1)–(1.3–
1.4) with null initial condition and boundary condition fb tends to a stationary so-
lution g to (1.7–1.8). In view of possible future applications we prefer not to give a
proof based on the existence of stationary solutions being known but instead to de-
duce their existence from the long time behavior. By translation invariance in time,
the solution at time t+ s is the sum of the solution at time t and the contribution at
time s carried forward with zero boundary values to t + s. So f(t, x, v) is increasing
with time and converges pointwise in x, v to a measurable function f∞, when t tends
to infinity. Let us prove that f̃∞ belongs to L2. For any set Γ ⊂ Ω×R3, multiplying
(1.1) by f̃ and using Green’s formula leads to∫

Γc

1
ν(v)

(|f̃(t+ s)|2 − |f̃(t)|2)dxdv +
∫

Γ

1
ν(v)
|f̃(t+ s)|2dxdv

+σ
∫ t+s

t

∫
Ω×R3

|w̃(τ, x, v)|2dτdxdv



A CONDENSATION–EVAPORATION PROBLEM IN KINETIC THEORY 35

+
∫ t+s

t

∫
(∂Ω×R3)−

|v · n(x)|
ν(v)

|f̃(τ, x, v)|2dτdα(x)dv

≤
∫

Γ

1
ν(v)
|f̃(t)|2dxdv + sc,(1.10)

where

c :=
∫

(∂Ω×R3)+

v · n(x)
ν(v)

|f̃b(x, v)|2dα(x)dv.

Let Γsε ⊂ Ω×R3 be the set of (y, v) such that |v| ≤ 1
ε and the characteristic starting

at (t, y, v), namely, {(t + τ, y + τv, v); τ ≥ 0}, reaches (∂Ω × R3)− at a time smaller
than t+ s. Then from the exponential form of the equation∫ t+s

t

∫
(∂Ω×R3)−

|v · n(x)|
ν(v)

|f̃(τ, x, v)|2dτdα(x)dv

≥ c(s, ε)
∫

Γsε

1
ν(v)

|f̃(t, x, v)|2dxdv

for some c(s, ε) ∈ (0, 1). Hence by (1.10)∫
Γsε

1
ν
|f̃(t+ s)|2dxdv ≤ (1− c(s, ε))

∫
Γsε

1
ν
|f̃(t)|2dxdv + sc.

It follows that

sup
t>0

∫
Γsε

1
ν(v)

|f̃(t, x, v)|2dxdv

is finite. Then by (1.10)

sup
t>0

∫ 3
2

0

∫
Ω×R3

|w̃(t+ s, x, v)|2dsdxdv

is finite. Hence, by the previous two lines,

sup
t>0

∫ 3
2

0

∫
Γsε
|cf (t+ s, x)|2M(v)dsdxdv

is bounded. Since Ω is bounded and convex, it follows that (for ε small)

inf
x∈Ω

∫
(x,v)∈Γ 1

2 ε

ν(v)M(v)dv > c

∫
R3
ν(v)M(v)dv.

This implies that

sup
t>0

∫ 3
2

1
2

∫
Ω×R3

|cf (t+ s, x)|2ν(v)M(v)dsdxdv <∞.

And so

sup
t>0

∫ 1

0

∫
Ω×R3

|cf (t+ s, x)|2ν(v)M(v)dsdxdv
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is bounded. Finally

sup
t>0

∫ 1

0

∫
Ω×R3

|f̃(t+ s, x, v)|2dsdxdv

and (since f̃ is an increasing function of time)

sup
t>0

∫
Ω×R3

|f̃(t, x, v)|2dxdv

are bounded. Hence f̃∞ belongs to L2(Ω× R3). Moreover, f∞ solves the stationary
problem (1.7–1.8), and f̃(t) tends to f̃∞ in L2(Ω × R3), when t tends to infinity.
Finally the solution of the stationary problem is unique in the class of functions g
such that g̃ ∈ L2. Indeed, let us prove that if a function g such that g̃ ∈ L2 satisfies

v · ∇xg = Q(g),(1.11)

g(x, v) = 0, (x, v) ∈ (∂Ω× R3)+,(1.12)

then g = 0. We notice that∫
Q+(g)sign(g)dv −

∫
ν|g|dv ≤

∫
Q+(|g|)dv −

∫
ν|g|dv = 0.

So, multiplying (1.11) by sign(g) and integrating implies that∫
(∂Ω×R3)−

v · n|g| = 0.

Hence

g(x, v) = 0, (x, v) ∈ ∂Ω× R3.(1.13)

g̃ belongs to L2 and can be expressed by (1.5) as

g̃ = c
√
Mν + w̃.(1.14)

It satisfies

1
ν(v)

v · ∇xg̃ = Q̃w̃.(1.15)

Integrating (1.15) with respect to x and v using (1.6) implies by (1.13) that w̃ is equal
to zero. Then g̃ = 0 follows from (1.11–1.12).

2. The Milne problem. Write the velocity as v = (ξ, v′) with ξ the velocity
component in the x-direction and v′ the orthogonal velocity component. We consider
the Milne problem

ξ

ν
∂xf̃ = Q̃f̃ , x > 0, v ∈ R3,(2.1)

f̃(0, v) = ϕ̃(v), ξ > 0.(2.2)

THEOREM 2.1. Let ϕ̃ ∈ L2
ξ
ν

(R+ ×R2). There is a solution to (2.1–2.2) in the set

{f̃ ;∃c∞ ∈ R, f̃ − c∞
√
νM ∈ L2(R+ × R3)}, which satisfies

∫
ξf(x, v)dv = c∞u for

all x ≥ 0. For u < 0, this holds with c∞ = 0, i.e.,
∫
ξf(x, v)dv = 0 for all x ≥ 0.
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Proof. There is—by the approach of Theorem 1.3—a unique solution f̃a ∈
L2([0, a]× R3) of

ξ

ν
∂xf̃

a = Q̃f̃ , x ∈ [0, a], v ∈ R3,

together with (2.2) and boundary conditions at x = a suitable for our purpose. For
u ≥ 0, we take

f̃a(a, ξ, v′) = f̃a(a,−ξ + 2u, v′), ξ < 0,(2.3)

whereas for u < 0,

f̃a(a, v) =

√
M(v)ν(v)∫

ξ<0 |ξ|M(v)dv

∫
ξ>0

ξfa(a, v)dv, ξ < 0.(2.4)

Remark. The boundary condition (2.3) can only be used for u > 0. A desired
nonnegativity (2.9) would not be obtained from the boundary condition (2.4) for
u > 0.

Clearly
∫
ξfa(x, v)dv is constant in both cases, moreover equal to zero for u ≤ 0.

Denote by uca this constant and bound it for u > 0 from above and below. First

uca =
∫
ξfa(0, v)dv ≤

∫
ξ>0

ξϕ(v)dv.(2.5)

Let f̃a(x, v) = ca(x)
√
ν(v)M(v) +w̃a(x, v) be the decomposition of f̃a from section 1.

By orthogonality

−(Q̃f̃a, f̃a) = −(Q̃w̃a, w̃a) ≥ σ(w̃a, w̃a).(2.6)

Multiplying (2.1) by f̃a and integrating over R3
v leads to

∂x

∫
ξ

ν
|f̃a|2(x, v)dv = 2(Q̃f̃a, f̃a) ≤ −2σ‖w̃a‖2 ≤ 0.(2.7)

Hence for u ≥ 0, ∫
ξ

ν
|f̃a|2(x, v)dv ≥

∫
ξ

ν
|f̃a|2(a, v)dv(2.8)

≥
∫
ξ<0

ξ

ν
|f̃a|2(a, v)dv +

∫
ξ>2u

ξ

ν
|f̃a|2(a, v)dv

= 2u
∫
ξ>2u

1
ν
|f̃a|2(a, v)dv ≥ 0,

whereas for u < 0, ∫
ξ

ν
|f̃a|2(x, v)dv ≥

∫
ξ

ν
|f̃a|2(a, v)dv(2.9)

≥
(

1−
∫
ξ>0 ξM∫
ξ<0 |ξ|M

)∫
ξ>0

ξ

ν
|f̃a|2(a, v)dv ≥ 0.
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Indeed, using (2.4)∫
ξ<0

|ξ|
ν(v)

|f̃a|2(a, v)dv =
1∫

ξ<0 |ξ|M

(∫
ξ>0

ξfa(a, v)dv
)2

≤
∫
ξ>0 ξM∫
ξ<0 |ξ|M

∫
ξ>0

ξ

ν(v)
|f̃a|2(a, v)dv.

But
∫
ξ>0 ξM(v)dv∫
ξ<0 |ξ|M(v)dv < 1 for u < 0 and so (2.9) follows. Finally by (2.8)

uca ≥
∫
ξ<0

ξfa(0, v)dv

= −
∫
ξ<0
|ξ|

√
M(v)
ν(v)

f̃a(0, v)dv

≥ −
(∫

ξ<0
|ξ|M(v)dv

∫
ξ<0

|ξ|
ν
|f̃a|2(0, v)dv

) 1
2

≥ −
(∫

ξ<0
|ξ|M(v)dv

∫
ξ>0

ξ

ν(v)
ϕ̃2(v)dv

) 1
2

.(2.10)

In the case u = 0 the theorem can from here be derived using, e.g., [2] or [16]. So let
us only detail the case when u 6= 0. First w̃a is bounded in L2([0, a]× R3) uniformly
with respect to a. Indeed by (2.8), (2.9)

σ

∫ a

0

∫
|w̃a|2(x, v)dxdv

≤ −
∫ a

0
(Q̃f̃a, f̃a) = −

∫ a

0

∫
ξ

ν(v)
f̃a∂xf̃

adxdv

=
1
2

(∫
ξ

ν(v)
|f̃a|2(0, v)dv −

∫
ξ

ν
|f̃a|2(a, v)dv

)
(2.11)

≤ 1
2

∫
ξ>0

ξ

ν(v)
ϕ̃2(v)dv.

Since fa(x, v) = ca(x)M(v) + wa(x, v),

|ca − ca(x)| = 1
|u|

∣∣∣∣∫ ξwa(x, v)dv
∣∣∣∣

≤ 1
|u|

(∫
ξ2 M(v)

ν(v)
dv

∫
|w̃a|2(x, v)dv

) 1
2

so that ∫ a

0

∫ ∣∣∣f̃a(x, v)− ca
√
M(v)ν(v)

∣∣∣2 dxdv ≤ c∫ a

0

∫
|w̃a|2(x, v)dxdv.(2.12)

By (2.5), (2.11), and (2.12), there exist a sequence (aj) tending to infinity, a number
c∞, and a function f̃ such that caj tends to c∞ and f̃aj − caj

√
νM converges weakly
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in L2 to f̃ − c∞
√
νM . One can then check that f̃ is a solution to the Milne problem

(2.1–2.2) with the desired properties.
For the boundary layer study in section 3, some decay of g̃ := f̃ − c∞

√
νM is

needed.
PROPOSITION 2.2. Assume that

sup
v∈R3

+

|ϕ̃(v)|(1 + |v|)s <∞, s ∈ R+.(2.13)

Then for s ∈ R+,
∫ |ξ|
ν(v) |g̃(x, v)|2dv ≤ cx−s, x > 0.

This result can essentially be found in [11]. For the convenience of the reader
we give their proof with the differences introduced by the nonzero bulk velocity of
the Maxwellian. The proof is based on the entropy method introduced by Bardos,
Santos, and Sentis [2], and uses the following decay properties of g̃, pointwise in v
and integral in x.

LEMMA 2.3. Under (2.13) for s ∈ R+,

sup
x>0,v∈R3

(1 + |v|)s|g̃(x, v)| ≤ c1,(2.14)

∫ ∞
0

∫
R3
xs|g̃(x, v)|2dxdv ≤ c2.(2.15)

The constants c1, c2 depend on ϕ and s.
Proof of Proposition 2.2. Write∫

R3

|ξ|
ν
|g̃(x, v)|2dv ≤

∫
|ξ|≤r

|ξ|
ν
|g̃(x, v)|2dv

+
∫
|ξ|>r,|v|≤ρ

|ξ|
ν
|g̃(x, v)|2dv +

∫
|v|≥ρ

|ξ|
ν
|g̃(x, v)|2dv

:= a+ b+ c.

By (2.14), a(r) and c(ρ) satisfy

a(r) ≤ cr
∫
|ξ|≤r

(1 + |v|)−2s−γdv ≤ cr for s >
3
2
− γ

2
,(2.16)

c(ρ) ≤ c
∫
|v|≥ρ

(1 + |v|)−2s+1−γdv ≤ cρ−1 for s >
5
2
− γ

2
.(2.17)

Evidently

b(r, ρ) ≤ cr−1ργ
∫
R3

∣∣∣∣ξg̃(x, v)
ν(v)

∣∣∣∣2 dv.
Now

ξ

ν
(g̃(y, v)− g̃(x, v)) =

∫ y

x

Q̃(w̃g)(z, v)dz,

and so by (2.15)∫
|ξ|>r,|v|≤ρ

∣∣∣∣ ξν (g̃(y, v)− g̃(x, v))
∣∣∣∣2 dv ≤ c

(∫ y

x

(∫
R3
|w̃g(z, v)|2dv

) 1
2

dz

)2

≤ cx−s+1
∫ y

x

∫
R3
zs|g̃(z, v)|2dvdz ≤ cx−s+1.
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Since g̃ ∈ L2(R+×R3), a sequence yj →∞ can be chosen so that limj→∞ g̃(yj , . ) = 0
in L2(R3). It follows that∫

|ξ|>r,|v|≤ρ

∣∣∣∣ ξν g̃(x, v)
∣∣∣∣2 dv ≤ cx−s+1

and so

b(r, ρ) ≤ cr−1ργx−s+1.

The choice r = x−
s
3 , ρ = x

s
3 in (2.16–2.17) gives the desired result.

Proof of (2.14). By [11, Prop. 4.3]

sup
x>0
‖g̃(x, . )‖L2(R3) ≤ c,(2.18)

where c depends on ϕ̃ in the L2 ∩ L∞ sense. Also

Q̃+(g̃)(x, v) =
∫
R3
k(v, v1)g̃(x, v1)dv1(2.19)

with

|k(v, v1)| ≤ (1 + |v|+ |v1|)−1+γ(1 + |v1|)−
γ
2 φ(v, v1)

and ∫
R3
φ2(v, v1)dv1 ≤ c(1 + |v|)−1−γ .

Hence

(1 + |v|) 3
2−

γ
2 |Q̃+g̃(x, v)| ≤ c‖g̃(x, . )‖L2(R3).

The exponential form of (2.1–2.2) gives

(1 + |v|) 3
2−

γ
2 |g̃(x, v)| ≤ |ϕ̃(v)|(1 + |v|) 3

2−
γ
2 χξ>0

+ c sup
x>0
‖g̃(x, . )‖L2(R3).(2.20)

Here χξ>0 is the characteristic function of the set {v ∈ R3; ξ > 0}. By (2.18) the
right-hand side is finite. Also∫

R3
(1 + |v|)s+1(1 + |v1|)−sk(v, v1)dv1 <∞, s ∈ R+.

Using this together with (2.20), a direct estimate in the exponential form of (2.1–2.2)
gives (2.14).

Proof of 2.15. By (2.11), which also holds for w̃g, there is a sequence yj → ∞
such that ∫

|w̃g(yj , v)|2dv → 0.(2.21)
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It follows from Theorem 2.1 that
∫
R3 ξg(x, v)dv = 0, x ∈ R+, and so the orthogonal

decomposition g̃(x, v) = c∞(x)
√
ν(v)M(v) + w̃g(x, v) gives

|uc∞(x)| =
∣∣∣∣∫ ξwg(v)dv

∣∣∣∣
≤
(
ξ2M(v)
ν(v)

dv

∫
|w̃g(x, v)|2dv

) 1
2

.(2.22)

In particular

lim
j→∞

c∞(yj) = 0.(2.23)

Now the proof is based on a study of the entropy flux

H(x) =
∫

ξ

ν
|g̃(x, v)|2dv.

Using the orthogonal decomposition of g̃ and splitting the domain of integration we
get

lim
j→∞

H(yj) ≤ lim
j→∞

Cc(yj)2 + lim
j→∞

C

∫
R3
w̃g(yj , v)2dv

+ lim
j→∞

C

∫
|v|≥ρ

ξ

ν(v)
g̃(yj , v)2dv.

By (2.21) and (2.23) the first two of these limits are zero. By (2.14) the third one is
bounded by

c

∫
|v|≥ρ

|ξ|
ν(v)

(1 + |v|)−5dv ≤ c

ρ
.

It follows that limj→∞H(yj) = 0. A multiplication of (2.1) by g̃ and v-integration
show that H(x) is nonincreasing. And so

0 ≤ H(x) ≤ H(0) ≤
∫
ξ>0

ξ

ν
ϕ̃(v)2dv.(2.24)

Since g̃ ∈ L2(R+ × R3), it is enough for (2.15) to consider∫ ∞
1

∫
R3
xsg̃(x, v)2dxdv.

A multiplication of (2.1) by xsg̃ and integration gives

H(y)ys +
∫ y

1

(
xs
∫
R3
w̃g(x, v)2dv − sxs−1H(x)

)
dx

≤ H(1) ≤
∫
ξ>0

ξ

ν
ϕ̃(v)2dv.(2.25)

The positivity of H(y) implies that∫ y

1

(
xs
∫
R3
w̃g(x, v)2dv − sxs−1H(x)

)
dx ≤ H(1).
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Now ∫
|v|≤ρ

|ξ|
ν
g̃(x, v)2dv ≤ cρ1−γ‖g̃(x, . )‖2L2(R3),

and by (2.14), for any λ ∈ R+,∫
|v|≥ρ

|ξ|
ν
g̃(x, v)2dv ≤ cλρ−λ.

This together with (2.22) and (2.25) implies for some α > 0 that∫ y

1
xs
(∫

g̃(x, v)2dv

)(
α− cρ1−γ

x

)
dx ≤ H(1) + cλ

∫ y

1
ρ−λsxs−1dx.

The choice ρ(x) = (αx2c )
1

1−γ , λ > s(1− γ) yields∫ ∞
1

xs
∫
g̃(x, v)2dvdx ≤ cs.

3. The fluid approximation with initial and boundary layers for nonzero
bulk velocity. Introduce the mean free path ε > 0 and take u > 0. This section
considers the slab problem

∂tfε +
1
ε2
ξ∂xfε =

1
ε3
Q(fε), t > 0, x ∈ (0, 1), v ∈ R3,(3.1)

together with the initial condition

fε(0, x, v) = fi(x, v), x ∈ (0, 1), v ∈ R3,(3.2)

and the boundary conditions

fε(t, 0, v) = f0(v), t > 0, ξ > 0; fε(t, 1, v) = f1(v), t > 0, ξ < 0.(3.3)

After an initial layer, the unique solution satisfies the stationary problem

ξ∂xgε =
1
ε
Q(gε), x ∈ (0, 1), v ∈ R3,(3.4)

together with the boundary conditions

gε(0, v) = f0(v), ξ > 0; gε(1, v) = f1(v), ξ < 0,(3.5)

if one disregards the error term from the initial layer. Moreover, gε can be split into
a fluid part cM in the interior of the domain together with boundary layers and with
the error term tending to zero strongly in L1, when ε tends to zero.

THEOREM 3.1. Let fi, f0, f1 be given with f̃i ∈ L2
1
ν

((0, 1)×R3), f̃0 ∈ L2
ξ
ν

(Rξ+×R2),

f̃1 ∈ L2
|ξ|
ν

(Rξ−×R2). Denote by fε and gε the unique solutions of (3.1–3.3), respectively,

(3.4–3.5) with these given initial and boundary values. Then for t > 0

lim
ε→0

fε(t, . )− gε(. ) = 0

strongly in L1((0, 1)× R3).
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THEOREM 3.2. Under the same hypotheses there are a constant c, boundary
layer terms lε(x, v) = l0(xε , v), and rε(x, v) = r0(x−1

ε , v), with l̃0 and r̃0, respectively,
belonging to L2(R+ × R3) and L2(R− × R3) such that

gε = cM + lε + rε + Sε.(3.6)

Here the terms l̃0 and r̃0 have the decay properties of Proposition 2.2, and the remain-
der term Sε tends to 0 in L1((0, 1)× R3

v), when ε tends to 0.
The proof of Theorem 3.1 is based on the following lemma.
LEMMA 3.3. Let fi be given with 0 ≤ f̃i ∈ L2

1
ν

((0, 1) × R3). Denote by fε(t, x, v)
the solution of (3.1–3.3) with fi as initial value and boundary values f0 = f1 = 0. For
s > 0, fε(s, . , . ) converges strongly in L1((0, 1)× R3) to zero, when ε tends to zero.

Proof. After scaling t→ t
ε2 , the solution (still denoted fε) satisfies

(∂t + ξ∂x)fε =
1
ε
Q(fε), t ∈ R+, x ∈ (0, 1), v ∈ R3,

fε(0, . ) = fi(. ),

fε(t, 0, v) = 0, t > 0, ξ > 0, fε(t, 1, v) = 0, t > 0, ξ < 0.

Green’s formula implies that mass and entropy∫ 1

0

∫
R3
fε(t, x, v)dxdv,

∫ 1

0

∫
R3

f̃ε(t, x, v)2

ν(v)
dxdv

are decreasing with time. Suppose that the lemma does not hold. Then for some
s > 0, there is a sequence (εj) with limj→∞ εj = 0 such that

inf
j

∫ 1

0

∫
R3
fεj (tj , x, v)dxdv > 0.

Here tj = s
ε2j

. The lemma follows if for a subsequence of (tj) (still denoted (tj)) there

is a sequence (t′j) with 0 ≤ t′j ≤ tj such that

lim
j→∞

∫ 1

0

∫
R3
fεj (t

′
j , x, v)dxdv = 0.

With f̃εj := f̃j , w̃εj := w̃j , (1.9) gives∫ 1

0

∫
R3

f̃j(tj , x, v)2

ν(v)
dxdv +

σ

εj

∫ tj

0

∫ 1

0

∫
R3
w̃j(τ, x, v)2dτdxdv

≤
∫ 1

0

∫
R3

f̃i(x, v)2

ν(v)
dxdv := σc1.

If each of the sε−
3
2

j intervals [lε−
1
2

j , (l + 1)ε−
1
2

j ] of [0, tj ] has

1
εj

∫ (l+1)ε
− 1

2
j

lε
− 1

2
j

∫ 1

0

∫
R3
w̃j(τ, x, v)2dτdxdv > ε

3
2
j

c1
s
,
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then

σ

εj

∫ tj

0

∫ 1

0

∫
R3
w̃j(τ, x, v)2dτdxdv > c1σ.

This contradiction implies that for some interval Ij ⊂ [0, tj ] and of length ε
− 1

2
j

1
εj

∫
Ij

∫ 1

0

∫
R3
w̃j(τ, x, v)2dτdxdv ≤ e

3
2
j

c1
s
.

In particular

lim
j→∞

ε−2
j

∫
Ij

∫ 1

0

∫
R3
w̃j(τ, x, v)2dτdxdv = 0.

With Ij = (t′j , t
′′
j ) it follows that for t ≥ 0 (and some subsequence of the j’s)

f̃j(t′j + t, x, v) ⇀ f̃∞(t, x, v)

weakly in L2
1
ν

((0, 1)× R3). Here∫ 1

0

∫
R3

f̃∞(t, x, v)2

ν(v)
dxdv ≤ σc1.

By the equicontinuity in t, it is enough to prove the above weak L2-convergence for
rational t’s. Using (1.9) we have for t fixed and j large enough that∫ 1

0

∫
R3

1
ν(v)

fj(t′j + t, x, v)2dxdv ≤ σc1.

So a subsequence of f̃j(t′j + t) converges weakly when j → 0. We conclude with a
Cantor diagonalization argument.

Also for a.e. t > 0,

w̃j(t′j + t, x, v)→ 0

strongly in L2((0, 1)× R3), and so

f̃∞(t, x, v) = c∞(t, x, )
√
ν(v)M(v).

But f̃∞ satisfies

(∂t + ξ∂x)f̃∞ = 0, t > 0, x ∈ (0, 1), v ∈ R3,

f̃∞(t, 0, v) = 0, t > 0, ξ > 0; f̃∞(t, 1, v) = 0, t > 0, ξ < 0,

and so f̃∞ ≡ 0. In particular limj→∞ f̃j(t′j , . , . ) = 0 weakly in L2
1
ν

((0, 1) × R3). It
follows that

0 ≤ lim
j→∞

∫ 1

0

∫
R3
fj(tj , x, v)dxdv

≤ lim
j→∞

∫ 1

0

∫
R3
fj(t′j , x, v)dxdv = lim

j→∞

∫ 1

0

∫
R3

√
M(v)
ν(v)

f̃j(t′j , x, v)dxdv

= 0.

This completes the proof of the lemma.
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Proof of Theorem 3.1. The function fε − gε satisfies (3.1–3.3) with initial value
fi − gi and boundary value zero. By linearity it is enough to prove the theorem
when the boundary values are zero and fi − gi ≥ 0, and this case is contained in
Lemma 3.3.

Proof of Theorem 3.2. Essentially by section 1, there is a unique solution gε(x, v)
with g̃ε ∈ L2 to

ξ∂xgε =
1
ε
Q(gε),

gε(0, v) = f0(v), ξ > 0,

gε(1, v) = f1(v), ξ < 0.

From the results on the Milne problem in Theorem 2.1, there is a constant c such that

ξ

ν(v)
∂xq̃(x, v) = Q̃q̃(x, v), x > 0, v ∈ R3,

q̃(0, v) = f̃0(v), ξ > 0

has a solution q̃ = c
√
νM + l̃, with l̃ ∈ L2(R+ × R3

v). Define l0 by

l0(y, v) =

√
M(v)
ν(v)

l̃(y, v).

Also by Theorem 2.1 the Milne problem

ξ

ν(v)
r̃x(x, v) = Q̃r̃(x, v), x < 0, v ∈ R3,

r̃(0, v) = f̃1(v)− c
√
ν(v)M(v), ξ < 0

has a solution r̃ ∈ L2(R− × R3
v). Indeed for u > 0, looking for a solution defined in

R− corresponds to considering u < 0 in the R+ situation. Define r0 by

r0(y, v) =

√
M(v)
ν(v)

r̃(y, v).

Sε := gε − cM − lε − rε satisfies

ξ∂xSε =
1
ε
Q(Sε), x ∈ (0, 1), v ∈ R3,(3.7)

Sε(0, v) = −r0
(
−1
ε
, v

)
, ξ > 0,

Sε(1, v) = −l0
(

1
ε
, v

)
, ξ < 0.

Introduce as above the orthogonal decomposition

S̃ε(x, v) = cε(x)
√
νM + w̃ε.
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It follows from (3.4), Green’s formula, and (1.6) that∫
ξ<0

|ξ|
ν
|S̃ε(0, v)|2dv +

∫
ξ>0

ξ

ν
|S̃ε(1, v)|2dv

+
σ

ε

∫ 1

0

∫
R3
|w̃ε(x, v)|2dxdv

≤
∫
ξ>0

ξ

ν

∣∣∣∣r̃0
(
−1
ε
, v

)∣∣∣∣2 dv +
∫
ξ<0

|ξ|
ν

∣∣∣∣l̃0(1
ε
, v

)∣∣∣∣2 dv.(3.8)

By Proposition 2.2 the right-hand side tends superalgebraically to zero, when ε tends
to zero. By (3.4)

ucε =
∫
ξSε(x, v)dv

is independent of x. Multiplying (3.7) with signSε and integrating we get∫
ξ<0
|ξ| |Sε(0, v)|dv +

∫
ξ>0

ξ|Sε(1, v)|dv

≤
∫
ξ>0

ξ

∣∣∣∣r0
(
−1
ε
, v

)∣∣∣∣ dv +
∫
ξ<0

∣∣∣∣ξl0(1
ε
, v

)∣∣∣∣ dv.
Thus

|cε| ≤
1
u

∫
|ξ|Sε(0, v)dv

≤ c

u

(∫
ξ>0

ξ

ν

∣∣∣∣r̃0
(
−1
ε
, v

)∣∣∣∣2 dv +
∫
ξ<0

|ξ|
ν

∣∣∣∣l̃0(1
ε
, v

)∣∣∣∣2 dv
)
,(3.9)

which tends to zero superalgebraically, when ε tends to zero. As in (2.12)∫ 1

0

∫
R3

∣∣∣S̃ε(x, v)− cε
√
ν(v)M(v)

∣∣∣2 dxdv
≤ c

∫ 1

0

∫
R3
|w̃ε(x, v)|2dxdv.(3.10)

By (3.5–3.7) ∫ 1

0

∫
R3
|S̃ε(x, v)|2dxdv

tends to zero superalgebraically, when ε tends to zero.
Remark . The evaporation at x = 0 determines the (fluid dynamic) mass flux

term cM through the boundary layer analysis. At the condensation boundary x = 1
this term is removed from the boundary layer correction.

Remark . It follows from this proof that the solution of the Milne problem in
Theorem 2.1 is unique. It also follows that the convergence to zero of the error term
in Theorem 3.2 is superalgebraic.
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