
Bose-Einstein condensates at very low temperatures. A mathematical

result in the isotropic case.

A. Nouri 1

Abstract. A system coupling the condensate density to the non-condensate

distribution function of a gas at very low temperature is considered. A global

existence in time of a solution to the Cauchy problem is proven for an initial

datum with finite mass and energy.

1 Introduction.

Since the recent discovery of Bose-Einstein condensation in ultracold trapped

atomic gases [1] [3], that makes possible to observe fundamental properties

of quantum statistics, the interest in the quantum framework of the
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Boltzmann equation has increased. In the 1920’s, Bose and Einstein

theoretically predicted the existence of Bose-Einstein condensates. A fun-

damental result of quantum statistics stated that above a certain critical

density all added bosons enter the ground state, so that Bose-Einstein con-

densates form. Since then, the presence of Bose-Einstein condensates has

been inferred rather than observed in a number of phenomena, like super-

conductivity and supraconductivity in helium. It is in 1995 only that they

were produced in a very low temperature context for a gas of rubidium

in a trapped potential. Mathematically, the quantum Boltzmann equa-

tion presents formal analogies to the classical Boltzmann equation, but its

solutions present quite different features. In particular, the boundedness

of the classical entropy provides L1 compactness for the distribution func-

tion, whereas the boundedness of the quantum entropy does not. Indeed,

the quantum entropy is bounded from above by a multiple of the mass.

Hence the a priori bounds of mass, energy and entropy reduce to bounds

on mass and energy. Therefore, concentrations of the distribution func-

tion are expected. Splitting the gas distribution function into its Lebesgue

absolutely continuous part and its singular part enables to distinguish the

non-condensate from the condensate parts of the gas. For a mathematical

analysis of the quantum Boltzmann equation we refer to [8], [2], [4]. In [8],

global existence and time asymptotics of isotropic solutions to a modified

quantum Boltzmann equation are studied in a space-homogeneous frame,
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under a cut-off condition on the collision kernel. This cut-off prevents Dirac

measures to form in finite time. For an initial mass bigger than the mass of

the Planckian distribution function, some velocity concentration is proven to

occur at infinite time. In [9], distributional isotropic solutions to the homoge-

neous quantum Boltzmann equation are determined in a hard sphere frame.

In [2], some modelling and numerical aspects in quantum kinetic theory for

a gas of interacting bosons are reviewed. In order to study the evolution of

the condensates, a system is presented, coupling the Gross-Pitaevskii equa-

tion for the condensate wave function and a quantum Boltzmann equation

for the non-condensate distribution function. In [4], the questions of well-

posedness, i.e. existence, uniqueness, stability of solutions, and long time

behaviour of the solutions are treated in some particular cases.

In this paper we consider a system of equations coupling the non-condensate

and the condensate parts evolutions. This results in a quantum kinetic

equation for the non-condensate distribution function, coupled to a Gross-

Pitaevskii equation for the condensate wave function. In a very low temper-

ature setting, only the coupling source terms remain in the quantum kinetic

equation. Isotropic non-condensate distribution functions are considered in

a space-homogeneous frame. Existence of solutions to the coupled system

is proven, with bounded condensate densities and measure non-condensate

distribution functions. The boundedness of mass and energy allows to give a

weak sense to the collision term of the non-condensate distribution function,
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as the derivative of a bounded measure.

2 The model.

For the derivation of kinetic quantum models and the use of the Gross-

Pitaevskii equation for the condensate wave function as well as their physical

study, we refer to [6], [10], [11], [12], [13]. The observation of Bose-Einstein

condensation in some atomic gases motivates a description of the evolution

of the condensates that takes full account of the microscopic nature of atomic

interactions in a trap, both close to and far from equilibrium. The conven-

tional description relies on the well-known Gross-Pitaevskii equation, also

known as a nonlinear Schrödinger equation. In this equation, one assumes

that the atoms are all effectively condensed and the atomic interactions can

be accurately modeled by a pseudopotential, expressed in terms of the s-

wave scattering length. The resulting equation of motion for the condensate

wave function ψ is

ih̄
∂ψ

∂t
= (− h̄2

2m
∆x + V + g | ψ |2)ψ.

Here h̄ is the Planck constant, m the mass of the atoms, V an external

potential, and g = 4πh̄as

m
is the interaction strength determined by the s-

wave scattering length as. If the atoms are in the dilute gas, they can be
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studied by a kinetic quantum equation of Boltzmann type,

∂F

∂t
+ p · 5xF =

∫

B(p− p∗, p
′ − p)

(

F ′F ′
∗(1 + F )(1 + F∗)

−FF∗(1 + F ′)(1 + F ′
∗)

)

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p′2 + p′2∗ )dp∗dp
′dp′∗,(2.1)

where B is a given collision kernel and F ′ = F (p′), F ′
∗ = F (p′∗), F = F (p),

F∗ = F (p∗).

After the time of condensate formation, the kinetic equation (2.1) is inap-

propriate, and the finite number of particles in the condensate corresponds

to the infinite value of the distribution function at energy zero. In order to

describe the system of particles interacting with the condensates, the simul-

taneous treatment of both condensate and non-condensate parts has been

developed in [8]. The resulting equations of motion reduce to a generalized

Gross-Pitaevskii equation for the condensate wave function, coupled with a

quantum Boltzmann equation for the thermal cloud,

ih̄
∂ψ

∂t
(x, t) = − h̄2

2m
∆xψ(x, t) + V (x)ψ(x, t)

+[U0(nc(x, t) + 2n(x, t)) − iR(x, t)]ψ(x, t), (2.2)

∂F

∂t
+
p

m
· 5xU · 5pF = Q̄(F ) +Qc(F ). (2.3)

Here, nc(t, x) =| ψ(x, t) |2 is the condensate density and V (x) the confining

potential. The collision integral Q̄(F ) is the quantum operator defined in

(2.1), whereas Qc(F ) describes the collisions between condensate and non-
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condensate particles and is given by

8a2
snc

m2

∫

δ(pc + p∗ = p′ + p′∗, εc + ε∗ = ε′ + ε′∗)[δ(p = p∗) − δ(p = p′) − δ(p = p′∗)]

(

F ′F ′
∗(1 + F∗) − F∗(1 + F ′)(1 + F ′

∗)
)

dp∗dp
′dp′∗. (2.4)

Here, ε = 1
2p

2 + U(x, t), where U = V + 2U0(nc + n) is the mean field

potential, and n denotes the non-condensate density

n(x, t) =
1

(2πh̄)3

∫

F (x, p, t)dp.

F∗ (resp. F ′, F ′
∗) denotes F (p∗) (resp. F (p′), F (p′∗)). The source term R is

given by

R(x, t) =
h̄

2nc(2πh̄)3

∫

Qc(F )dp.

In the space-homogeneous case, the system (2.2-3) becomes

ih̄
∂ψ

∂t
= (V + U0(nc + 2n) − iR)ψ, (2.5)

∂F

∂t
= Q̄+Qc(F ), (2.6)

so that the condensate density nc and the non-condensate gas density F

evolutions are given by h̄n′c = −2Rnc, i.e.

n′c = − 1

(2πh̄)3

∫

Qc(F )dp, (2.7)

and equation (2.6). Solving the system (2.5-6) comes back to solve (2.6-

7) first, where the unknowns are F and nc, then easily compute the wave

function ψ from (2.5). Therefore, we aim at solving (2.6-7). Notice that this
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system can also be formally obtained by starting from the quantum kinetic

equation (2.1) with collision kernel identically equal to one for the total -

condensate and non-condensate - gas distribution function f ,

∂f

∂t
=

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p
′2 + p

′2
∗ )

(

f ′f ′∗(1 + f + f∗) − ff∗(1 + f ′ + f ′∗)
)

dp∗dp
′dp′∗,

then splitting f into its condensate part nc(t)δp=pc
and its non-condensate

part F , ([10], [12])

f(t, p) = nc(t)δp=pc
+ F (t, p).

It means that nc and F should respectively satisfy

n′c(t) = nc(t)

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2

∗ = p′2 + p′
2
∗)(F

′F ′
∗

−F∗(1 + F ′ + F ′
∗))dp∗dp

′dp′∗ + n2
cB1 + n3

cC1,

∂F

∂t
=

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p′2 + p′
2
∗)

(

F ′F ′
∗(1 + F + F∗)

−FF∗(1 + F ′ + F ′
∗)

)

dp∗dp
′dp′∗ + ncA+ n2

cB2 + n3
cC2,

where

B1 =

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2

∗ = p′2 + p′
2
∗)

(

F ′δ(p′∗ = pc) + F ′
∗δ(p

′ = pc)

−F∗δ(p
′ = pc) − F∗δ(p

′
∗ = pc) − (1 + F ′ + F ′

∗)δ(p∗ = pc)
)

dp∗dp
′dp′∗,

C1 =

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2

∗ = p′2 + p′
2
∗)

(

δ(p′ = p′∗ = pc)

+δ(p∗ = p′ = p′∗ = pc) − δ(p∗ = p′ = pc) − δ(p∗ = p′∗ = pc)
)

dp∗dp
′dp′∗,
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A =

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p′2 + p′
2
∗)

(

F ′F ′
∗δ(p∗ = pc)

+F ′(1 + F + F∗)δ(p
′
∗ = pc) + F ′

∗(1 + F + F∗)δ(p
′ = pc) − FF∗δ(p

′ = pc)

−FF∗δ(p
′
∗ = pc) − F (1 + F ′ + F ′

∗)δ(p∗ = pc)
)

dp∗dp
′dp′∗,

B2 =

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p′2 + p′
2
∗)

(

F ′δ(p′∗ = p∗ = pc)

+F ′
∗δ(p

′ = p∗ = pc) − Fδ(p∗ = p′ = pc) − Fδ(p∗ = p′∗ = pc)

+(1 + F + F∗)δ(p
′ = p′∗ = pc)

)

dp∗dp
′dp′∗,

C2 =

∫

δ(p + p∗ = p′ + p′∗, p
2 + p2

∗ = p′2 + p′
2
∗)δ(p

′ = p′∗ = p∗ = pc)dp∗dp
′dp′∗.

Moreover, the four first terms in B1 cancel each other. The set defined by

2pc = p′ + p′∗, 2p
2
c = p′2 + p′2∗ reduces to p = p∗ = pc, so that the integration

on it of the measure F which support does not contain pc is zero. And so,

B1 = 0. The term C1, equal to

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2

∗ = p′2 + p′2∗ )(2δ(p∗ = pc)

−δ(p′∗ = pc) − δ(p′ = pc))dp∗dp
′dp′∗,

vanishes. The term A can also be written as

∫

δ(pc + p∗ = p′ + p′∗, p
2
c + p2

∗ = p′2 + p′2∗ )
(

δ(p = p∗) − δ(p = p′) − δ(p = p′∗))

(F ′F ′
∗ − F∗(1 + F ′ + F ′

∗)
)

dp∗dp
′dp′∗.

It follows from the same arguments as for B1 that B2 = 0. And so, the

system (2.6-7) is recovered for nc and F .
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In a way similar to the procedure used by Lee and Yang ([7]) for the

equilibrium properties of a condensed Bose gas, two regions can be distin-

guished, namely

- a moderately low temperature region,

and

- a very low temperature region.

In this paper, we restrict to the second region of very low temperature.

Moreover, if the number of particles in the condensate is sufficiently large,

the interactions with the condensate will dominate the dynamics of the sys-

tem, so that Q̄ is negligible compared to Qc ([5]). If we finally consider a

space-homogeneous frame and isotropic distribution functions, and denote

by ε and F (t, ε), respectively 1
2p

2 and the distribution function of the dilute

gas, the collision operator Qc writes Qc(F ) = nc(X − 2Y ), with

X =

∫

δ(p∗ = p′ + p′∗)δ(p
2
∗ = p′2 + p′

2
∗)δ(p = p∗)

(

F ′F ′
∗ − F∗(1 + F ′ + F ′

∗)
)

dp∗dp
′dp′∗,

Y =

∫

δ(p∗ = p′ + p′∗, p
2
∗ = p′2 + p′2∗ )δ(p = p′∗)

(

F ′F ′
∗ − F∗(1 + F ′ + F ′

∗)
)

dp∗dp
′dp′∗.

Then, if ϕ0 = Arcos

√

ε′

ε
,

X =

∫ ε

0

√
2ε′

∫ 2π

0

∫ π

0
sinϕ′ δ

(

− 4
√
εε′cosϕ′ + 4ε′ = 0

)
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(

F ′F (ε− ε′) − F (1 + F ′ + F (ε− ε′)
)

dϕ′dθ′dε′

= 2π

∫ ε

0

√
2ε′

(

∫ π

0
sinϕ′ δ(4

√
εε′(sinϕ0)(ϕ

′ − ϕ0) = 0)dϕ′
)

(

F (ε′)F (ε− ε′) − F (ε)(1 + F (ε′) + F (ε− ε′))
)

dε′

=
π√
2ε

∫ ε

0

(

F (ε′)F (ε− ε′) − F (ε)(1 + F (ε′) + F (ε− ε′))
)

dε′.

Moreover,

Y = 2π

∫ √
2ε′

(

∫ π

0
sinϕ′ δ(4

√
εε′cosϕ′ = 0)dϕ′

)(

F ′F − F (ε+ ε′)(1 + F ′ + F )
)

dε′

= 2π

∫ √
2ε′

∫ π

0
sinϕ′ δ

(

4
√
εε′(ϕ′ − π

2
) = 0

)(

F ′F − F (ε+ ε′)(1 + F ′ + F )
)

dϕ′dε′

=
π√
2ε

∫

(

F ′F − F (ε+ ε′)(1 + F (ε′) + F (ε)
)

dε′.

Forgetting the constant π√
2

for the sake of clarity, Qc(F ) = nc√
ε
Q(F ), with

Q(F )(t, ε) =

∫ ε

0

(

F (ε′)F (ε− ε′) − 4F (ε)F (ε′)
)

dε′ − 2F (ε)

∫ +∞

ε

F (ε′)dε′

+2

∫

F (ε+ ε′)(F (ε′) + F (ε))dε′ − εF (ε) + 2

∫ +∞

ε

F (ε′)dε′.

And so, the system to be studied is

n′c(t) = −nc(t)

∫

Q(F )dε, (2.8)

∂

∂t
(
√
εF ) = ncQ(F ), F (0, ε) = Fi(ε), (2.9)

with the initial data nc(0) and Fi given. The total mass and energy are

assumed to be bounded, i.e.

nc(0) +

∫ √
εFi(ε)dε < +∞,

∫

ε
3

2Fi(ε)dε < +∞. (2.10)
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3 A priori estimates.

Lemma 3.1 For any function ϕ,

∫

Q(F )(ε)ϕ(ε)dε = 2

∫

F (ε)

∫ ε

0
F (ε′)

(

ϕ(ε+ ε′) + ϕ(ε− ε′) − 2ϕ(ε)
)

dε′dε

+

∫

F (ε)
(

2

∫ ε

0
ϕ(ε′)dε′ − εϕ(ε)

)

dε .(3.1)

Proof of Lemma 3.1. For any function ϕ defined on IR+,

∫

ϕ(ε)

∫ ε

0
F (ε′)F (ε− ε′)dε′dε =

∫

F (ε)F (ε′)ϕ(ε+ ε′)dεdε′

= 2

∫

F (ε)
(

∫ ε

0
F (ε′)ϕ(ε + ε′)dε′

)

dε,

∫

ϕ(ε)F (ε + ε′)(F (ε′) + F (ε))dε′dε =

∫

F (ε)

∫ ε

0
F (ε′)(ϕ(ε− ε′) + ϕ(ε′))dε′dε.

And so,

∫

Q(F )(ε)ϕ(ε)dε = 2

∫

F (ε)

∫ ε

0
F (ε′)(ϕ(ε+ ε′) + ϕ(ε− ε′) − 2ϕ(ε))dε′dε

+

∫

F (ε)
(

2

∫ ε

0
ϕ(ε′)dε′ − ϕ(ε)

)

dε.

Lemma 3.2

nc(t) +

∫ √
εF (t, ε)dε = nc(0) +

∫ √
εFi(ε)dε, (3.2)

∫

ε
3

2F (t, ε)dε =

∫

ε
3

2Fi(ε)dε, a.a.t ∈ [0, T ]. (3.3)

Proof of Lemma 3.2. (3.2) follows from adding (2.8) integrated from 0 to

t and (2.9) integrated on (0, t) × IR+. (3.3) follows from Lemma 3.1 with

ϕ(ε) = ε.
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Lemma 3.3 Under (2.10), the bilinear part of Q(F ),

∫ ε

0

(

F (ε′)F (ε− ε′) − 4F (ε)F (ε′)
)

dε′ − 2F (ε)

∫ +∞

ε

F (ε′)dε′

+2

∫

F (ε+ ε′)(F (ε′) + F (ε))dε′,

is the derivative of a bounded measure.

Proof of Lemma 3.3. By Lemma 3.1 and (2.10), for any function ϕ ∈ C1(IR+)

such that ϕ and ϕ′ are bounded,

|
∫

Q(F )(ε)ϕ(ε)dε |

≤ 2

∫ √
εF (ε)

∫ ε

0

√
ε′F (ε′) |

√

ε′

ε

∫ 1

0

(

ϕ′(ε+ λε′) − ϕ′(ε− λε′)
)

dλ | dε′dε

≤ 4 | ϕ′ |∞
(

∫ √
εF (ε)dε

)2

≤ c | ϕ′ |∞ .

It follows from Lemmas 3.1 and 3.3 that weak solutions of the Cauchy prob-

lem (2.8-9) can be defined.

Definition 3.1 A weak solution to the Cauchy problem (2.8-9) on the in-

terval of time [0, T ] is (nc, F ) ∈ C1([0, T ]) × L∞(0, T,M√
ε(IR+)) such that

for any function ϕ ∈ C1(IR+) such that ϕ and ϕ′ are bounded,

nc(t) = nc(0)e
−

∫ t

0

∫

εF (s,ε)dεds,

∫ √
εF (t, ε)ϕ(ε)dε −

∫ √
εFi(ε)ϕ(ε)dε = nc(0)

∫ t

0
e−

∫ s

0

∫

εF (τ,ε)dεdτ

(

∫ √
εF (s, ε)

∫ ε

0

√
ε′F (s, ε′)

√

ε′

ε

∫ 1

0
(ϕ′(ε+ λε′) − ϕ′(ε− λε′))dλdε′dε

+

∫

F (s, ε)(2

∫ ε

0
ϕ(ε′)dε′ − εϕ(ε))dε

)

ds.
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4 The existence theorem for the Cauchy problem.

Theorem 4.1 Under assumption (2.10) of bounded initial mass and energy,

there exists a weak solution (nc, F ) ∈ C1([0, T ])×L∞(0, T ;M√
ε(IR

+)) to the

Cauchy problem (2.8-9) in the sense of Definition 3.1.

The proof of Theorem 4.1 splits into two parts. An approximation pro-

cedure first leads to a sequence (F j), solution to a Cauchy problem with ap-

proximated collision operators behaving smoothly close to the energy zero.

Then the passage to the limit in the equation satisfied by F j when j → +∞

provides a weak solution to the Cauchy problem (2.8-9).

Lemma 4.4 For any j ∈ IN∗, there is a unique solution (nj
c, F

j) ∈ C1([0, T ])×

C1([0, T ], L1√
ε
(IR+)) to

nj
c
′ = −nj

c

∫

Qj(F
j)dε, nj

c(0) = nc(0), (4.1)

√
ε
∂F j

∂t
= nj

cQj(F
j), F j(0, ε) = Fi(ε), (4.2)

where

Qj(F )(ε) =

∫ ε− 1

j

1

j

F ′F (ε− ε′)dε′ − 4χε> 1

j
F (ε)

∫ ε

1

j

F ′dε′

−2χε> 1

j
F (ε)

∫ +∞

ε

F ′dε′ + 2

∫ +∞

1

j

F ′F (ε+ ε′)dε′

+2χε> 1

j
F (ε)

∫

F (ε+ ε′)dε′ − χε<jεF (ε) + 2χ 1

j
<ε<j

∫ +∞

ε

F ′dε′.

Proof of Lemma 4.1 Denote by c1 = nc(0) +
∫ √

εFi(ε)dε. Starting from a

nonnegative function f(t, ε) such that
∫ √

εf(t, ε)dε ≤ c1, t ≥ 0, there are
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functions (N(t), F (t, ε)) solutions to

N ′ = −N
∫

Q̃j(f, F )dε, N(0) = nc(0), (4.3)

√
ε
∂F

∂t
= NQ̃j(f, F ), F (0, ε) = Fi(ε), (4.4)

where Q̃j(f, F ) is defined by

Q̃j(f, F )(t, ε) =

∫ ε− 1

j

1

j

f ′f(ε− ε′)dε′ − 4χε> 1

j
F (ε)

∫ ε

1

j

f ′dε′

−2χε> 1

j
F (ε)

∫ +∞

ε

f ′dε′ + 2

∫ +∞

1

j

f ′f(ε+ ε′)dε′ + 2χε> 1

j
f(ε)

∫

f(ε+ ε′)dε′

−χε<jεF (ε) + 2χ 1

j
<ε<j

∫ +∞

ε

f ′dε′.

Indeed, consider the sequence (F j) defined by F 0 = 0, and

√
ε
∂F j+1

∂t
= N jQ̃j(f, F

j+1), F j+1(0, ε) = Fi(ε),

where N j is the solution to

N j ′ = −N j

∫

Q̃j(f, F
j)dε, N j(0) = nc(0).

From N j and F j+1 written in exponential form, it follows that N j ≥ 0 and

F j+1 ≥ 0. Then a contraction argument is used in C0([0, T ∗], L1√
ε
) for T ∗

small enough, to prove that (F j) converges. The time T ∗ is chosen so that

uniformly in j,

∫ √
εF j(t, ε)dε ≤ 2c1, t ∈ [0, T ∗].
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It can be done in the following way. Since

N j(t) = nc(0)e
−

∫ t

0

∫

Q̃j(f,F j)dεds,

|
∫

Q̃j(f, F
j)dε |≤ 5j

(

∫ √
εfdε

)2
+ 4j

(

∫ √
εfdε

)(

∫ √
εFdε

)

+
√

j

∫ √
εFdε+ 2j

3

2

∫ √
εfdε,

and

∫ √
εfdε ≤ c1,

∫ √
εF jdε ≤ 2c1,

it holds that

N j(t) ≤ nc(0)e
20c21j2T ∗

, t ∈ [0, T ∗], j ∈ IN∗,

and

∫ √
εF j+1(t, ε)dε ≤

∫ √
εFi(ε)dε+ 20c21j

2nc(0)T
∗e20c21j2T ∗

≤ c1 + 20c21j
2nc(0)T

∗e20c21j2T ∗ ≤ 2c1,

for T ∗ small enough. Let us prove that

sup
t∈[0,T ∗]

∫ √
ε | (F j+2 − F j+1)(t, ε) | dε ≤ k sup

t∈[0,T ∗]

∫ √
ε | (F j+1 − F j)(t, ε) | dε,

for some k < 1, uniformly with respect to j.

First, writing Q̃j(f, F ) as α(f) − Fν(f), the difference
√
ε ∂

∂t
(F j+2 − F j+1)

can be split into

√
ε
∂

∂t
(F j+2 − F j+1) = N j+1(α(f) − F j+2ν(f)) −N j(α(f) − F j+1ν(f))

= α(f)(N j+1 −N j) −N j+1(F j+2 − F j+1)ν(f) + (N j+1 −N j)F j+1ν(f).
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Then,

| (N j+1 −N j)(t) |≤ nc(0)e
−

∫ t

0

∫

α(f)dεds ×

× | e
∫ t

0

∫

ν(f)F j+1(s,ε)dεds − e
∫ t

0

∫

ν(f)F j(s,ε)dεds |

≤ nc(0) |
∫ t

0

∫

ν(f)(F j+1 − F j)(s, ε)dεds | ecT ∗

≤ c

∫ t

0

∫ √
ε | (F j+1 − F j)(s, ε) | dεds.

Consequently,

∂

∂t

∫ √
ε | (F j+2 − F j+1)(t, ε) | dε ≤ c

∫ t

0

∫ √
ε | (F j+1 − F j)(s, ε)dεds

+c

∫ √
ε | (F j+2 − F j+1)(t, ε)dε.

Hence,

∫ √
ε | (F j+2 − F j+1)(t, ε) | dε ≤ c

∫ t

0

∫ √
ε | (F j+1 − F j)(s, ε)dεds.

And so,

sup
t∈[0,T ∗]

∫ √
ε | (F j+2 − F j+1)(t, ε) | dε ≤ c̃T ∗ sup

t∈[0,T ∗]

∫

| (F j+1 − F j)(t, ε) | dε.

It is sufficient to choose T ∗ < 1
2c̃

to end the contraction argument. And so,

there are (N,F ) solutions to (4.3-4) on [0, T ∗]. But adding equations (4.3)

and (4.4) implies that

N(T ∗) +

∫ √
εF (T ∗, ε)dε = N(0) +

∫ √
εF (0, ε)dε ≤ c1.

This means that the whole argument for defining (N,F ) solution to (4.3-4)

on [0, T ∗] also holds on [T ∗, 2T ∗], ...finally on the whole interval [0, T ].
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Consider the map T that maps (n, f) ∈ C0([0, T ])×C0([0, T ], L1(IR+)) such

that

nc(t) +

∫ √
εf(t, ε)dε ≤ c1, t ∈ IR+,

into (N,F ) solution to (4.3-4). It follows from the expressions of N(t) and

F (t, ε) written in exponential form that they stay nonnegative like their

initial data. Then,

N(t) +

∫ √
εF (t, ε)dε ≤ c1. (4.5)

For T̃ small enough, T is a contraction in C0([0, T̃ ])×C0([0, T̃ ], L1√
ε
). Indeed,

consider (n1, f1) and (n2, f2) such that (4.5) holds, and

(N1, F1) =T (n1, f1), (N2, F2) =T (n2, f2). Then,

∂

∂t

∫ √
ε | F1 − F2 | dε ≤ N1

∫

| Q̃j(f1, F1) − Q̃j(f2, F2) | dε

+ | N1 −N2 |
∫

| Q̃j(f2, F2) | dε

≤ c2N1

(

∫ √
ε | F1 − F2 | dε+

∫ √
ε | f1 − f2 | dε

)

+ c3 | N1 −N2 | .

Here, and in the following, ci, i ≥ 2, denote constants depending on c1 and

j. Moreover,

Ni(t) = nc(0)e
−

∫ t

0

∫

Q̃j(fi,Fi)dεds, 1 ≤ i ≤ 2,

so that

N1(t) ≤ nc(0)e
c2T̃ ,

| N1(t) −N2(t) |≤ c3e
c4T̃

∫ t

0

∫ √
ε | (F1 − F2)(s, ε) | dεds, t < T̃ .

17



And so,

∂

∂t

∫ √
ε | (F1 − F2)(s, ε) |≤ c5

∫ √
ε | (F1 − F2)(t, ε)dε

+c6e
c7T̃

∫ t

0

∫ √
ε | (F1 − F2)(s, ε) | dε+ c8

∫ √
ε | (f1 − f2)(t, ε) | dε, t < T̃ .

Hence, x(t) :=
∫ t

0

∫ √
ε | (F1 − F2)(s, ε)dεds satisfies a second-order linear

differential equation with a source term h(t) ≤ c8
∫ √

ε | (f1 − f2)(t, ε) | dε.

Hence,

x(t) =
1

c9 − c10

∫ t

0
h(s)(ec9(t−s) − ec10(t−s))ds.

Consequently,

∫ √
ε | (F1 − F2)(t, ε) | dε ≤

c8

| c9 − c10 |
(

c9(e
c9t − 1) + c10(e

c10t − 1)
)

× sup
s≤T̃

∫ √
ε | (f1 − f2)(s, ε) | dε, t ≤ T̃ .

Hence,

sup
t≤T̃

∫ √
ε | (F1 − F2)(t, ε) | dε ≤ c11(e

c12T̃ − 1) sup
t≤T̃

∫ √
ε | (f1 − f2)(t, ε) | dε,

sup
t≤T̃

| (N1 −N2)(t) |≤ c13T̃ e
c14T̃ (ec12T̃ − 1) sup

t≤T̃

∫ √
ε | (f1 − f2)(t, ε) | dε.

And so, a Banach fixed point argument can be applied to T in C0([0, T̃ ])×

C0([0, T̃ ], L1√
ε
) for T̃ small enough. It follows from (4.5), holding on [0, T ],

that the previous procedure can be applied on [T̃ , 2T̃ ], ..., up to T . By

(4.1-2), (nj , F j) belongs to C1([0, T ]) × C1([0, T ], L1√
ε
(IR+)).

End of the proof of Theorem 4.1
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It remains to pass to the limit in (4.1-2) when j tends to +∞. Let a

subsequence of (
√
εF j), still denoted by (

√
εF j), weakly-* converging to

some bounded measure
√
εF in M . Integrate (4.2) multiplied by ϕ on (0, t),

so that

∫ √
εF j(t, ε)ϕ(ε)dε −

∫ √
εFi(ε)ϕ(ε)dε

=

∫ t

0
nj

c(s)

∫ +∞

1

j

√
εF j(s, ε)

∫ ε

1

j

√
ε′F j(s, ε′)

√

ε′

ε

∫ 1

0
(ϕ′(ε+ λε′) − ϕ′(ε− λε′))dλdε′dεds

+

∫ t

0
nj

c(s)
(

2

∫ +∞

1

j

(

∫ min(ε,j)

1

j

ϕ(ε′)dε′)F (s, ε)dε −
∫ j

0
εF (s, ε)ϕ(ε)dε

)

ds,

where

nj
c(s) = nc(0)e

−
∫ s

0

∫

εF j(τ,ε)dεdτ .

In this weak formulation, it is possible to pass to the limit when j → +∞.

BY A DIAGONAL PROCESS???

The existence of a solution (n,F ) ∈ C1([0, T ]) × L∞(0, T,M(IR+)) to the

Cauchy problem (2.8-9) is therefore proven.

5 Conclusion.

In this paper, we have proven the existence of a global solution to an homo-

geneous quantum coupled system describing the evolution of a gas at very

low temperature, for an initial datum with finite mass and energy.
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