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Abstract. The Compton effect, that describes the interaction via scat-
tering between photons and electrons, is modelled by a homogeneous quan-
tum kinetic equation. The electrons are assumed to be at nonrelativistic
equilibrium, and the scattering of photons by electrons is studied. The ker-
nel in the collision operator presents a strong singularity. The local existence
in time of an entropy solution to the Cauchy problem is proven for small
initial data.
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1 Introduction.

The Compton effect was discovered in 1922. It takes place when high X-
ray energy photons collide with electrons. This results in deflections of the
particles trajectories. The incident photon emerges with longer wavelength
due to some loss of energy during the interaction. These deflections, to-
gether with a change of wavelength, are known as the Compton effect. A.H.
Compton found that, due to the scattering of X-rays from free electrons, the
wavelength of the scattered rays is measurably longer than that of the inci-
dent light. His discovery was of special importance in 1922, when quantum
mechanics was debated.
From the physical point of view, G. Cooper ([?]) developed the Fokker-
Planck equation for the Compton scattering in a plasma without having
recourse to a nonrelativistic approximation. H. Dreicer ([?]) presented a
simple kinetic theory including the interactions between electrons and pho-
tons, and describing relaxation phenomena. A.S. Kompaneets ([?]) studied
the thermal equilibrium of quanta and electrons. Ya. B. Zel’Dovich and
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V. Levich ([?]) studied the process of equilibrium of radiation in a totally
ionized plasma.
From the mathematical point of view, R.E. Caflish and C.D. Levermore
([?]) studied the Fokker-Planck equation for the Compton scattering in a
homogeneous plasma. The entropy function was used to find the equilib-
rium distributions. More recently, M. Escobedo and S. Mischler ([?]) stated
existence results for a quantum kinetic equation with a simplified regular
and bounded kernel. They studied the asymptotic behaviour of the solu-
tions, and showed that the photon distribution function may condensate at
energy zero, asymptotically in time.
This paper is devoted to prove an existence result for a quantum kinetic
equation describing the Compton effect. Its kernel is kept singular as it is
derived when keeping the higher order term with respect to the speed of
light in the relativistic model. Like in [?] already, the boundedness of the
photons entropy is not sufficient to stay in an L1 frame. Measure solutions
for the photon distribution function are expected. Moreover, the singularity
in the collision kernel brings severe restrictions. Existence results to the
Cauchy problem are obtained for initial data small enough, and locally in
time. The entropy of the solution is controlled.

2 The model.

As considered in [?], the following quantum relativistic homogeneous equa-
tion describes the interaction via Compton scattering between a gas of low
energy electrons of mass m and weakly dense photons at low temperature,

∂f

∂t
(t, P ) = Q(f, g)(P ), t > 0, P ∈ IR4, (2.1)

with

Q(f, g)(P ) =
8c

p0

∫

IR4

∫

IR4

∫

IR4

sσ(s, θ) q(f, g) δ{P+P∗−P ′−P ′
∗=0}

χ2(P
0
∗ ) χ1(P

′0) χ2(P
′
∗
0
) dP ′ dP ′

∗ dP∗.
(2.2)

The nonnegative scalar function f(t, P ) (resp. g(t, P )) is the distribution
function of photons (resp. electrons). c denotes the speed of the light.
P and P ′ (resp. P∗ and P ′

∗) are the momentum of the photons (resp. elec-
trons) before and after a collision.
A particle is determined by the pair (X,P ) ∈ IR4×IR4 of position X = (t, x)
and momentum P = (P 0, p). Let

p0 = |p|, p′0 = |p′|, p0
∗ =

√

|p∗|2 +m2c2, p′∗
0

=
√

|p′∗|2 +m2c2.

Denote by s = (P + P∗)
2 := (P 0 + P 0

∗ )2 − |p+ p∗|2, and by θ the scattering
angle, given by

cos θ =
(P∗ − P ).(P ′

∗ − P ′)

(P∗ − P )2
.
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The differential cross section σ(s, θ) is a function of the energy and the
scattering angle, and is given by the Klein Nishina formula ([?]). It behaves
like

1

2
r20(1 + cos2 θ), (2.3)

as c→ ∞, with r0 =
e2

4πmc2
. Here, e is the charge of the electron.

The functions χ1(P
′0), χ2(P

0
∗ ) and χ2(P

′
∗
0) are defined by

χ1(P
′0) =

1

2p′0
δ{P ′0=p′0}, χ2(P

0
∗ ) =

1

2p0
∗

δ{P 0
∗ =p0

∗}
, χ2(P

′
∗
0
) =

1

2p′∗
0 δ{P ′

∗
0=p′∗

0},

and

q(f, g) = g(p′∗)f(p′)(1+~f(p))(1+τg(p∗))−f(p)g(p∗)(1+~f(p′))(1+τg(p′∗)),
(2.4)

with τ ∈ {−~, 0,~} and ~ the Planck constant.
Here and below, the following notations are used for any function f ,

f ′ = f(t, p′), f∗ = f(t, p∗), f ′∗ = f(t, p′∗).

In equation (??), emission and absorption of photons have not been taken
into account, so that the transitions are produced exclusively by the Comp-
ton scattering.
In order to simplify the formulas, m and ~ are taken equal to 1.
By integrating (??) with respect to P 0

∗ , P
′0 and P ′

∗
0, Q(f, g) becomes

Q(f, g)(p) = c

∫

IR3

∫

IR3

∫

IR3

s

p0p′0p0
∗p

′
∗
0 σ(s, θ) q(f, g) δΣ dp′dp′∗dp∗,

where Σ is the manifold of 4-uplets (p, p∗, p
′, p′∗) such that,

p+ p∗ = p′ + p′∗,

c|p| + |p∗|2
2

= c|p′| + |p′∗|2
2

.

To simplify the model, only the highest-order terms with respect to c are

kept inQ(f, g)(p). The term
s

p0p′0p0
∗p

′
∗
0 is equivalent to

1

|p||p′| , when c→ ∞.

Together with (??), this implies that the collision operator can be approxi-
mated by

Q(f, g)(p) =
c r20
2

∫

IR3

∫

IR3

∫

IR3

(1 + cos2 θ)

|p||p′| q(f, g) δΣ dp′dp′∗dp∗.

The electrons are assumed to be at nonrelativistic equilibrium, i.e.

τ = 0 and g(p) = e−
|p|2

2c .

Then,
q(f, g) = g(p′∗)f(p′)(1 + f(p)) − f(p)g(p∗)(1 + f(p′)).
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The collision integral becomes

Q(f, g)(p) =
c r20
2

∫

IR3

(1 + cos2 θ)

|p||p′| e|p
′| q(f)

(

∫

IR3

∫

IR3

δΣ e
− |p∗|

2

2c dp∗ dp
′
∗

)

dp′,

with
q(f) = e−|p|f(p′)(1 + f(p)) − e−|p′|f(p)(1 + f(p′)).

It can be simplified in the following way.

Lemma 2.1

Denote by

S(p, p′) =

∫

IR3

∫

IR3

δΣ e−
|p∗|

2

2c dp∗ dp
′
∗, A = |p′|−|p|+ |p− p′|2

2c
, w = p′−p.

Then

S(p, p′) =
2πc2

|w| e
− A2c

2|w|2 .

Lemma ?? is proven in [?].
It is then assumed that the photon distribution function is radial. Denote
by k = |p|, k′ = |p′|, F (t, k) = k2f(t, k). The quantum kinetic homogeneous
equation describing the interaction between photons and electrons is then

∂F

∂t
(t, k) = Q(F )(t, k),

where

Q(F )(t, k) =

∫ ∞

0
b(k, k′)[F ′(k2 + F )e−k − F (k′2 + F ′)e−k′

] dk′,

b(k, k′) =
2c3r20π

2

k k′

∫ π

0
(1 + cos2 θ)

sin θ

|w| e
− A2c

2|w|2
+k′

dθ, (2.5)

A = k′ − k +
|w|2
2c

, |w|2 = k2 + k′2 − 2kk′ cos θ.

Sections 3 and 4 prove the existence of a solution F to the Cauchy problem,

∂F

∂t
(t, k) = Q(F )(t, k), t ∈ [0, T ], k ≥ 0, F (0, k) = F0(k), k ≥ 0, (2.6)

where the initial datum F0 is given. The following a priori estimates for
(??) hold.

Proposition 2.1

Let M(F )(t) =

∫ ∞

0
F (t, k) dk be the total number of photons at time t.

Then,
d

dt
M(F )(t) = 0.
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Proof.

Proposition ?? follows from an integration of (??) with respect to k and
the change of the variable k by k′.

Proposition 2.2

The entropy, defined by

H(F )(t) =

∫ ∞

0
[(k2+F (t, k)) ln(k2+F (t, k))−F (t, k) lnF (t, k)−k2 ln k2−kF (t, k)] dk,

is a non-decreasing function of time.

Proof.

Multiply equation (??) by ln
((k2 + F )e−k

F

)

,

so that

2
d

dt
H(F ) =

∫ ∞

0

∫ ∞

0
b(k, k′) j(F (k′2 + F ′)e−k′

, F ′(k2 + F )e−k) dk′ dk.

Here,
j(u, v) = (v − u)(ln v − lnu) if u > 0, v > 0,
j(u, v) = 0 if u = v = 0,
j(u, v) = +∞ elsewhere.

The nonnegativity of b and j implies the result. �

Proposition 2.3

There exists a constant C > 0 such that for any solution F to (??), the
following inequalities hold,

M(kF ) ≤ C(1 +M(F ) −H(F )), (2.7)

|H(F )| ≤M((1 + k)F ). (2.8)

A proof of Proposition ?? is given in [?].

3 Main results.

As recalled in the introduction, M. Escobedo and S. Mischler ([?]) proved
the existence and uniqueness of a measure solution of the problem (??) for
three different types of the cross section b.
(i) b ≥ 0 and bounded,
(ii) b(k, k′) = eηkeηk′

σ(k′−k), for some η ∈ (0, 1), with the function σ satisfying

σ∗e
−ν|z|γ ≤ σ(z) ≤ σ∗, z ∈ IR,

for some σ∗ > 0, ν > 0, γ ∈ [0, 1].
(iii) 0 ≤ b(k, k′)e−ηke−ηk′

, bounded for some η ∈ [0, 1].

5



In this paper, the cross-section b defined in (??) does not satisfy any of
these three conditions. b(k, k′) is singular at k = k′ = 0. Still, we have
remarked that measure solutions are expected for the Cauchy problem. We
need to give a sense to

∫ t

s

∫ ∞

0
φ(t, k) Q(F )(τ, k) dkdτ,

for any continuous and bounded test function φ. The a priori estimates of
Propositions ??-?? are not sufficient to obtain finite

∣

∣

∣

∫ t

s

∫ ∞

0
φ(t, k) Q(F )(τ, k) dkdτ

∣

∣

∣
,

for any test function φ. Denote by M1(IR+) the space of bounded measures

on IR+, and by m(k) :=
k2

ek − 1
. In order to deal with solutions F to (??)

in C([0, T ],M1(IR+)), the following bound on F is required.

Proposition 3.1

Let F ∈ C([0, T ],M1(IR+)) be such that F (τ, .) 6= m+ αδk=0, α ∈ IR+ for
all τ in [0, T ]. If for any continous and bounded function φ with second order
with respect to k in the neighborhood of 0 and for any interval J ⊂ [0, T ],

∣

∣

∣

∫

J

∫ ∞

0
φ(τ, k) Q(F )(τ, k) dk dτ

∣

∣

∣
< +∞,

then
∫ ∞

0

F

k
(τ, k) dk < +∞, a.a. τ ∈ [0, T ].

Remark 3.1

The condition “F (τ, .) 6= m + α δk=0, α ∈ IR+ for all τ in [0, T ]” is not
restrictive in the frame of the existence (and not for the uniqueness) of
a solution to the Cauchy problem. At a first possible time t∗ such that
F (t∗, .) = m+ αδk=0, we extend the solution obtained on [0, t∗] by

F (τ, .) = F (t∗, .), τ ∈ [t∗, T ].

Remark 3.2

This boundedness of
F

k
is important to establish the local existence result

developped in the following theorem.

Let c1, c2, c3 be the constants independant of F0 defined further on in
Lemmas ??, ??, ??.
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Theorem 3.1

Let T > 0 and the initial datum F0 satisfy

U :=
(

∫
c1
8π

0
(1 + k)

F0(k)

k
dk +

∫ ∞

c1
8π

F0(k)dk
)

exp(T max{c1,
32π3/2

c1
+ 8π

c3
c2
})

≤ c1
c2

c1
c1 + 8π

.

(3.1)
Then, there exists a nonnegative solution F ∈ C([0, T ],M1(0,+∞)) to the
problem (??), such that

F (t, k)

k
∈ L∞

+ (0, T ;M1(0,+∞))

and
∫ ∞

0
kF (t, k)dk < d, a.a. t > 0,

for some constant d > 0.
Moreover, if the initial datum F0 has a finite entropy, then F is an entropy
solution in the sense that

H(F )(t) ≥ α, a.a. t > 0, (3.2)

for some constant α.

Remark 3.3 The solution F to the problem (??) in theorem ?? is meant in
a weak sense, for continuous and bounded test functions, with second order
with respect to k in the neighborhood of 0.

Proof of Proposition ??.

Let

I(φ) =

∫

J

∫ ∞

0
φ(τ, k) Q(F )(τ, k) dkdτ.

It can be written as

I(φ) =

∫

J

∫ ∞

0

∫ ∞

0

φ(τ, k)

kk′
h(k, k′)[F ′(k2 + F )e−k − F (k′2 + F ′)e−k′

] dk′dkdτ

= I1(φ) + I2(φ) + I3(φ) + I4(φ),

with

h(k, k′) =

∫ π

0

(1 + cos2 θ) sin θ

|w| exp(− A2c

2|w|2 + k′) dθ,

A = k′ − k +
|w|2
2c

, |w|2 = k2 + k′2 − 2kk′ cos θ,
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and,

I1(φ) = −
∫

J

∫ ∞

0

∫ ∞

0

φ(τ, k)

k
h(k, k′) F k′e−k′

dk′ dk dτ,

I2(φ) =

∫

J

∫ ∞

0

∫ ∞

0

φ(τ, k)

kk′
h(k, k′)[FF ′(1 − e−k′

)] dk′ dk dτ,

I3(φ) =

∫

J

∫ ∞

0

∫ ∞

0

φ(τ, k)

kk′
(h(k, k′) − h(k, 0)) [F ′((k2 + F )e−k − F )] dk′ dk dτ,

I4(φ) =

∫

J

∫ ∞

0

φ(τ, k)

k
h(k, 0) [(k2 + F )e−k − F ]

(

∫ ∞

0

F ′

k′
dk′

)

dk dτ.

Lemma 3.1

Let F ∈ C([0, T ],M1(R+)) be such that the mass M(F )(t) is uniformly
bounded from above.
For any continuous and bounded function φ of second order with respect to
k in the neighborhood of 0,

|Ij(φ)| <∞, 1 ≤ j ≤ 3.

Proof of lemma ??.

|I1(φ)| and |I2(φ)| are finite because the second order with respect k of
φ in the neighborhood of 0 deals with the singularity of h(k, k′) at k = k′ = 0.

I3(φ) can be written as

I3(φ) =

∫

J

∫ ∞

0

∫ ∞

0

∫ 1

0
F ′[ke−k+F

e−k − 1

k
]φ(τ, k)

∂h

∂k′
(k, γk′) dγ dk dk′ dτ.

Here again, the second order with respect to k of φ in the neighborhood of

0 deals with the singularity of
∂h

∂k′
.

Thus, |I3(φ)| is finite.

So, proving proposition ?? comes back to prove the following lemma.

Lemma 3.2

For any continuous and bounded function φ vanishing in a neighborhood
of 0 with respect to k,

|I4(φ)| <∞ =⇒
∫ ∞

0

F

k
(τ, k) dk < +∞, a.a. τ ∈ [0, T ].

Proof.
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Consider

I4(φ) =

∫

J

∫ ∞

0
ψ(τ, k) (F (τ, k) −m(k))

(

∫ ∞

0

F ′

k′
dk′

)

dk dτ,

where

ψ(τ, k) =
8

3

φ(τ, k)

k2
exp(−1

2
(−1 +

1

2
k)2) (e−k − 1).

It is sufficient to prove that for all t ∈ [0, T ], there exists a neighborhood Vt

of t such that for almost all s ∈ Vt,
∫ ∞

0

F (s, k′)

k′
dk′

is finite. We prove it by contradiction. Let

S :=
{

t ∈ [0, T ];

∫ ∞

0

F (t, k′)

k′
dk′ = +∞

}

,

and
F (t, .) = L(t, .) +Hc(t, .) +Hd(t, .)

be the decomposition of the bounded measure F (t, .). L(t, .) is the contin-
uous absolute Lebesgue part of F (t, .). Hc(t, .) and Hd(t, .) are respectively
the continuous singular part and the discrete singular part of F (t, .). Hd(t, .)
can be written as

Hd(t, .) =
∑

j≥1

aj(t)δkj
,

with a decreasing sequence of positive coefficients aj(t). We assume that
there exists t ∈ [0, T ] such that for every neigborhood Vt of t, |Vt ∩ S| > 0.

The three following cases are considered. Either

∫ ∞

0
Hc(t, k) dk > 0, or

Hc(t, ·) = 0 and
∫

| L(t, k) −m(k) | dk > 0, or Hc(t, ·) = 0, L(t, ·) = m.

In the first case,

∫ ∞

α
Hc(t, k) dk > 0 for some α > 0. The support of Hc

restricted to ]α,+∞[ is included in a denumerable union of open intervals
with small arbitrarily measure. In particular, it is included in ∪In, with

∫

∪In

m dk <
1

2

∫ ∞

α
Hc(t, k) dk.

If for every integer n,
∫

In

Hc(t, k) dk <

∫

In

m(k) dk,

then
∫ ∞

α
Hc(t, k) dk <

∑

n

∫

In

Hc(t, k) dk

≤
∫

∪In

m dk <
1

2

∫ ∞

α
Hc(t, k) dk.
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Thus, there exists an interval I ⊂]α,+∞[ such that

∫

I
(Hc(t, k) + L−m) dk > 0.

By continuity in time of F , this is also true for a neighborhood Vt of t.
Restricting eventually Vt, there exists an integer n such that

∑

j>n

aj(s) <
1

4

∫

I
(Hc + L−m)(s, k) dk, s ∈ Vt.

We construct a continuous function ψ, which is equal to 1 on I, vanishes
quickly on the boundary of I and on some small neigborhoods of eventual
ki, 1 ≤ i ≤ n, being in I. For this function ψ, I4 = +∞.

In the second case where Hc(t, .) = 0 and

∫ ∞

0
|L(t, k) −m(k)| dk > 0,

the inequality

∫ +∞

α
| L(t, k) −m(k) | dk > 0 holds for some α > 0. By the

continuity in time of F , Vt can be restricted so that

∫ ∞

0
|L(s, k) −m(k)| dk > 0, a.a. s ∈ Vt.

For almost all s ∈ Vt, there exists a set Is of positive measure in [α,∞[, such
that

a(s, k) := L(s, k) −m(k) 6= 0, k ∈ Is.

Let n(t) be such that

∑

j>n(t)

aj(t) <
1

4

∫

| L(t, k) −m(k) | dk.

Let X be the function defined by

X (s, k) = sgn(a(s, k)), s ∈ Vt, k ∈ Is,

X (s, k) = 0 otherwise.

Let X̄ (s, k) be the characteristic function of the complementary of the sup-
port of Hc(t, .) +Hd(t, .). Let

Gn(s) = min
{

∫ ∞

0

F (s, k′)

k′
dk′, n

}

.

Then Gn = n on Vt. The function a belonging to L1((0, T )× IR+), let ε > 0
be such that

∫

Ω
|a| < 1

4

∫

Vt×IR+

|a|, |Ω| < ε.
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Take ψ continuous such that |ψ| ≤ 1, ψ = X̄X outside of a set Ω of measure
smaller that ε, and which vanishes at k1, ..., kn. For such a function ψ,

∣

∣

∣

∫

(0,T )×IR+

(ψ(F −m)Gn − X̄X (F −m)Gn) dτdk
∣

∣

∣

≤ (2n+ 1)

∫

Ω
|a| dτdk

≤ 2n+ 1

4

∫

Vt×IR+

|a| dτdk

≤ 2n+ 1

4n

∫

(0,T )×IR+

X̄X (F −m) Gn dτdk.

Thus,

∫

(0,T )×IR+

X̄X (F −m) Gn dτ dk ≤ 4n

2n − 1

∫

(0,T )×IR+

ψ (F −m) Gn dτ dk.

Passing to the limit in the previous inegality when n → +∞ leads to I4 =
+∞.

In the third case whereHc(t, .) = 0,

∫ ∞

0
|L(t, k)−m(k)| dk = 0 andHd(t, .) 6=

0, let n be such that
∑

j>n

aj <
1

4
a1.

Let I be a neighborhood of k1 such that k2, . . . , kn /∈ I, so that

∫

I
(Hd(t, .) − a1 δk1

) <
1

4
a1.

Restricting I if necessary, and by continuity in time of F (t, .), there exists
a neighborhood Wt of t such that

∫

I
(F (s, k) −m(k)) dk >

1

2
a1, s ∈Wt.

Choose a continuous function ψ which approaches the characteristic function
of I and is equal to 0 outside of I. Then,

∫

Wt

(

∫ ∞

0
ψ(s, k) (F (s, k) −m(k)) dk

) (

∫ ∞

0

F (s, k′)

k′
dk′

)

ds = +∞.

�

In this paper, solutions F ∈ C(0, T ;M1(IR+)) to (??), such that
F (t, k)

k
∈

L∞
+ (0, T ;M1(IR+)) are considered .
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4 Proof of Theorem ??.

Compared to the existence results in [?], the main problem here is to reach

the frame
F (t, k)

k
∈ L∞(0, T ;M1(IR+)). Hence, the function G(t, k) =

F (t, k)

k
is introduced. The problem to be solved is

∂G

∂t
= 2c3r20π

2

∫ ∞

0
h(k, k′)[G′(1 +

G

k
)e−k − G

k
(k′ +G′)e−k′

] dk′, t ∈ [0, T ], k > 0,

G(0, k) =
F0(k)

k
,

(4.1)
with G ∈ L∞(0, T ;M1(IR+)). Here,

h(k, k′) =

∫ π

0

(1 + cos2 θ) sin θ

|w| e
− A2c

2|w|2
+k′

dθ.

For the sake of simplicity, 2c3r20π
2 is taken equal to 1.

The proof of the theorem splits into three parts. The first part provides
bounds on h, that will be useful in dealing with its singularity. The second
part proves the existence of a nonnegative solution F ∈ C([0, T ],M1(0,∞))

to (??), such that
F (t, k)

k
∈ L∞(0, T ;M1(IR+)). The third part states the

entropy feature of F .

4.1 Technical bounds on the cross-section h.

Lemma 4.1

There exists a constant c1 > 0 such that,

4c1 <

∫ ∞

0
h(k, k′)k′e−k′

dk′, 0 < k < c1.

Proof.

Let l be the positive limit of

∫ ∞

0
h(k, k′)k′e−k′

dk′ when k → 0. Then,

∫ ∞

0
h(k, k′)k′e−k′

dk′ >
l

2
, k < η, for some η > 0.

Choose c1 = min{ l
8
, η}. �

Lemma 4.2

There exists a constant c2 > 0 such that

h(k, k′)(e−k − e−k′
) ≤ c2, 0 < k < c1.

12



Proof.

For 0 < k′ < 2c1,

h(k, k′)|e−k − e−k′ | ≤ d
|e−k − e−k′ |
|k′ − k| ≤ d, d > 0.

For k′ > 2c1,

h(k, k′)(e−k − e−k′
) ≤

∫ π

0

(1 + cos2 θ) sin θ

|w| e
− A2c

2|w|2
+k′−k

dθ

≤ d

|k′ − k| , d > 0,

since − A2c

2|w|2 + k′ − k ≤ 0. �

Lemma 4.3

There exists a constant c3 > 0 such that

h(k, k′)e−k ≤ c3, k′ ∈ (0,∞), k > c1.

Proof.

First, − A2c

2|w|2 + k′ − k ≤ 0, so that e
− A2c

2|w|2
+k′−k ≤ 1. Then,

h(k, k′)e−k ≤ 2π

|k − k′| , k > c1, k′ ≤ c1
2
.

Moreover,

h(k, k′)e−k ≤ 2π√
k
√
k′
, k > c1, k′ ≥ c1

2
.

Choose c3 =
4π

c1
. �

Truncated cross-section hn will be used in the existence proof in order
to avoid the singularity of h at k = k′ = 0 in the approximation procedure.
Let (hn)n∈IN∗ be defined such that

hn(k, k′) = h(k, k′) {k∈[ 1

n
,n]}.

Remark 4.1 The constants c1, c2 and c3 are linked to the function h(k, k′).

4.2 Existence of a solution to the problem.

Throughout the proof, fixed point arguments will be used in the convex set
K of nonnegative measures G, such that

∫ ∞

0
G(t, k)dk ≤ c1

c2
, a.a. t ∈ [0, T ].

13



First step : proof of the existence and unicity of the truncated equation (??).

Let g(t, k) : [0, T ]× [0,∞[→ IR+ such that

∫ ∞

0
g(t, k)dk ≤ c1

c2
and n ≥ 1 be

given. In this first step, the problem

∂Gn

∂t
= e−k

∫ ∞

0
hn(k, k′)G′

ndk
′ +

Gn

k

∫ ∞

0
hn(k, k′)(e−k − e−k′

)g′dk′

− Gn

k

∫ ∞

0
hn(k, k′)k′e−k′

dk′,

Gn(0, k) =
F0(k)

k
, k ≥ 0,

(4.2)
with unknown Gn will be solved in K.
For u ∈ L∞

+ (0, T ;L1(IR+)), define F(u) = U as the solution to

∂U

∂t
= e−k

∫ ∞

0
hn(k, k′)u(t, k′)dk′ +

U

k

∫ ∞

0
hn(k, k′)(e−k − e−k′

)g(t, k′)dk′

− U

k

∫ ∞

0
hn(k, k′)k′e−k′

dk′,

U(0, k) =
F0(k)

k
, k ≥ 0.

(4.3)
It follows from the exponential form of U , that U(t, k) ≥ 0 a.a. t ≥ 0, k ≥ 0.
Integrating (??) with respect to the variable k implies that

∂

∂t

∫ ∞

0
U(t, k)dk ≤ λn‖u‖L∞(0,T ;L1(R+)) + λ̃n c1

∫ ∞

0
U(t, k)dk.

The constants λn and λ̃n take into account the compact support [
1

n
, n] with

respect to k of hn. And so, using Gronwall’s argument, the function U be-
longs to L∞(0, T ;L1(IR+)).

Analogously, for any u, ũ ∈ L1
k(0,+∞), the corresponding solutions U , Ũ to

(??) satisfy

∂

∂t
|U − Ũ | ≤ c3

∫ ∞

0
|u− ũ| dk − 4π |U − Ũ |.

Hence,
∫ ∞

0
|U − Ũ |(t, k) dk ≤ c3

4π
(1 − e−4πt)

∫ ∞

0
|u− ũ|(t, k) dk, a.a. t ∈ [0, T̃ ].

This implies that for T̃ small enough only depending on n, the map F :
u→ U is a contraction from L∞(0, T̃ ;L1(IR+)) into itself. Then, F admits
a unique fixed point on L∞(0, T̃ ;L1(IR+)), denoted by U . The argument
can be iterated to obtain a unique solution U = Gn in L∞(0, T ;L1(IR+)) to
(??). �
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Furthermore, Gn belongs to the convex set K. Indeed, it follows from (??)

and Lemma ??, that, for 0 < k <
c1
8π

,

∂

∂t

∫

c1
8π

0
Gn(t, k)dk ≤

∫

c1
8π

0
e−k

∫ ∞

0
h(k, k′)G′

ndk
′dk

+

∫
c1
8π

0

Gn

k

∫ ∞

0
hn(e−k − e−k′

)g′dk′dk

− 2c1

∫

c1
8π

0

Gn

k
dk.

Then, by Lemma ??,

∂

∂t

∫
c1
8π

0
Gn(t, k)dk ≤

∫
c1
8π

0
e−k

∫ ∞

0
h(k, k′)G′

ndk
′dk − c1

∫
c1
8π

0

Gn

k
dk

+ c2

∫

c1
8π

0

Gn

k

(

∫ ∞

0
g′dk′ − c1

c2

)

dk

≤
∫

c1
8π

0
e−k

∫ ∞

0
h(k, k′)G′

ndk
′dk − c1

∫

c1
8π

0

Gn

k
dk,

since g ∈ K.
And so,

∂

∂t

∫

c1
8π

0
Gn(t, k)dk ≤ 4π

∫

c1
8π

0

1√
k
dk

∫ ∞

0

G′
n√
k′
dk′ − c1

∫

c1
8π

0

Gn

k
dk

≤
√

2c1π

∫ ∞

0

Gn√
k
dk − c1

∫

c1
8π

0

Gn

k
dk

≤
∫

c1
8π

0

Gn√
k
(
√

2c1π − c1√
k
)dk +

√
2c1π

∫ ∞

c1
8π

Gn√
k
dk

≤
√

2c1π

∫ ∞

c1
8π

Gn√
k
dk.

Hence,

∂

∂t

∫

c1
8π

0
Gn(t, k)dk ≤ 32π3/2

c1

∫ ∞

c1
8π

kGndk. (4.4)
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Using (??) and Lemmas ?? and ?? implies that

∂

∂t

∫ ∞

0
kGn(t, k)dk =

∫ ∞

0
Gn

∫ ∞

0
hn(k, k′)(e−k − e−k′

)g′dk′dk

=

∫

c1
8π

0
Gn

∫ ∞

0
hn(k, k′)(e−k − e−k′

)g′dk′dk

+

∫ ∞

c1
8π

Gn

∫ ∞

0
hn(k, k′)(e−k − e−k′

)g′dk′dk

≤ c2

∫

c1
8π

0
Gn

∫ ∞

0
g′dk′dk +

∫ ∞

c1
8π

Gn

∫ ∞

0
hn(k, k′)e−kg′dk′dk

≤ c1

∫

c1
8π

0
Gndk + c3

c1
c2

∫ ∞

c1
8π

Gndk.

Therefore,

∂

∂t

∫ ∞

0
kGn(t, k)dk ≤ c1

(

∫

c1
4π

0
Gndk +

8πc3
c1 c2

∫ ∞

c1
8π

kGndk
)

. (4.5)

It follows from (??) and (??) that

∂

∂t
(

∫
c1
8π

0
(1 + k)Gn dk +

∫ ∞

c1
8π

kGndk) ≤ c1

∫
c1
8π

0
Gndk + (

32π3/2

c1
+ 8π

c3
c2

)

∫ ∞

c1
8π

kGndk

≤ max{c1,
32π3/2

c1
+ 8π

c3
c2
}
(

∫

c1
8π

0
(1 + k)Gndk +

∫ ∞

c1
8π

kGndk
)

.

And so, by Gronwall’s argument,

∫

c1
8π

0
(1 + k)Gn(t, k)dk +

∫ ∞

c1
8π

kGndk

≤
(

∫
c1
8π

0
(1 + k)G(0, k)dk +

∫ ∞

c1
8π

kG(0, k)dk
)

exp(T max{c1,
32π3/2

c1
+ 8π

c3
c2
}).

Hence,

∫ ∞

0
Gn(t, k)dk ≤

∫

c1
8π

0
(1 + k)Gndk +

∫ ∞

c1
8π

Gndk

≤
∫

c1
8π

0
(1 + k)Gndk +

8π

c1

∫ ∞

c1
8π

kGndk.

Then,
∫ ∞

0
Gn(t, k) dk

≤ (1 +
8π

c1
)
(

∫

c1
8π

0
(1 + k) G(0, k) dk +

∫ ∞

c1
8π

k G(0, k) dk
)

e
T max{c1, 32π3/2

c1
+8π

c3
c2

}

:= (1 +
8π

c1
) U,
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which implies that Gn ∈ K by assumption (??) of Theorem ??. �

Second step : proof of the existence of a solution Gn to (??).

In this second step, a Schauder fixed point theorem is used to prove the
existence of a solution Gn ∈ K to

∂Gn

∂t
= e−k

∫ ∞

0
hn(k, k′)G′

ndk
′ +

Gn

k

∫ ∞

0
hn(k, k′)(e−k − e−k′

)G′
ndk

′

− Gn

k

∫ ∞

0
hn(k, k′)k′e−k′

dk′,

Gn(0, k) =
F0(k)

k
, k ≥ 0,

(4.6)

such that

∫ ∞

0
Gn(t, k)dk ≤ c1

c2
, a.a t ∈ (0, T ).

Let H be the map defined on K by H(g) = Gn where Gn ∈ K is the
solution of (??).
The map H, taking its values in the convex set K, is compact for the
weak * topology of L∞(0, T ;M1(IR+)). It is moreover continuous. In-
deed, let gj ⇀ g for the weak * topology of L∞(0, T ;M1(IR+)). Denote
by (Gj) = (H(gj))j∈IN . By the compactness of H, there is a subsequence
(Gjl) of (Gj) and a function G in K such that Gjl ⇀ G. Moreover G is
the unique solution to (??). Hence, the whole sequence (Gj) converges to G
for the weak * topology of L∞(0, T ;M1(IR+)). By the Schauder fixed point
theorem, H admits a fixed point, denoted by Gn, solution in K to (??).
The nonnegative function Fn = kGn is such that

∫ ∞

0
Fn(t, k)dk ≤

∫ ∞

0
F (0, k)dk,

∫ ∞

0

Fn

k
(t, k)dk ≤ c1

c2
, a.a. t ∈ (0, T ),

(4.7)
and is solution to

∂Fn

∂t
= ke−k

∫ ∞

0
hn(k, k′)

F ′
n

k′
dk′ +

Fn

k

∫ ∞

0
hn(k, k′)(e−k − e−k′

)
F ′

n

k′
dk′

− Fn

k

∫ ∞

0
hn(k, k′)k′e−k′

dk′,

Fn(0, k) = F0(k).
(4.8)

Third step : passage to the limit in (4.8) when n tends to infinity.

In this third step, the passage to the limit when n → +∞ in (??) is per-
formed, which leads to a solution F to the genuine problem (??).
By (??), there is a measure G ∈ L∞(0, T ;M1(IR+)) such that Fn ⇀ kG and
Fn

k
⇀ G in L∞(0, T ;M1(IR+)) for the weak ∗ topology.

Let (t, k) → φ(t, k) ∈ C1([0, T ] × [0,∞[) be a bounded test function with
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second order with respect to k in the neigborhood of 0.
Multiplying (??) by φ and integrating on [0, t] × R+ leads to

∫ ∞

0
F (t, k) φ(t, k) dk−

∫ ∞

0
F0(k) φ(0, k) dk−

∫ ∞

0

∫ t

0
F (s, k)

∂φ

∂s
(s, k) ds dk

= An +Bn +Cn,

with

An =

∫ t

0

∫ ∞

0

Fn

k
φ(s, k)

∫ ∞

0
hn(k, k′) (e−k − e−k′

)
F ′

n

k′
dk′ dk ds,

Bn =

∫ t

0

∫ ∞

0
k e−k φ(s, k)

∫ ∞

0
hn(k, k′)

F ′
n

k′
dk′ dk ds,

Cn = −
∫ T

0

∫ ∞

0

Fn

k
φ(s, k)

∫ ∞

0
hn(k, k′) k′ e−k′

dk′ dk ds.

Let U(k, k′) = h(k, k′)(e−k − e−k′
). For all K > 0, An can be written as

An = Xn,K + X̄n +An,K + Ān,K ,

where

Xn,K =

∫ t

0

∫ K

0

Fn

k
φ(s, k)

∫ K

0
U(k, k′)

F ′
n

k′
dk′ dk ds

X̄n = −
∫ t

0

∫ 1

n

0

Fn

k
φ(s, k)

∫ ∞

0
U(k, k′)

F ′
n

k′
dk′ dk ds

An,K =

∫ t

0

∫ K

0

Fn

k
φ(s, k)

∫ ∞

K
U(k, k′)

F ′
n

k′
dk′ dk ds

Ān,K =

∫ t

0

∫ n

K

Fn

k
φ(s, k)

∫ ∞

0
U(k, k′)

F ′
n

k′
dk′ dk ds.

First, X̄n −→
n→∞

0 thanks to the second order with respect to k of φ in the

neigborhood of 0.
Then An,K and Ān,K tend to 0 when K → ∞, uniformly with respect to n.
Finally, by the Stone-Weierstrass theorem, forK > 0 large enough and every
ε ∈ IR∗

+, there exist J ∈ IN∗ and continuous functions

β1, · · · , βJ , γ1, · · · , γJ : IR+ → IR,

such that

for all 0 < k < K, 0 < k′ < K,
∣

∣

∣
U(k, k′) −

J
∑

j=1

βj(k)γj(k
′)
∣

∣

∣
≤ ε.

Let

UJ(k, k′) =

J
∑

j=1

βj(k)γj(k
′).
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Then,

|Xn,K−X| ≤
∣

∣

∣

〈Fn

k
⊗F

′
n

k′
−F
k
⊗F

′

k′
, φ (U−UJ)

〉
∣

∣

∣
+

∣

∣

∣

〈Fn

k
⊗F

′
n

k′
−F
k
⊗F

′

k′
, φ UJ

〉
∣

∣

∣
.

The first term tends to 0 when J → ∞ uniformly with respect to n because

∣

∣

∣

〈Fn

k
⊗ F ′

n

k′
− F

k
⊗ F ′

k′
, φ (U − UJ)

〉
∣

∣

∣
≤ 2|φ|∞

(

∫

Fn

k
dk

)2
sup
k,k′

|(U − UJ)(k, k′)|.

The second term tends to 0 when n→ ∞ for all J .

Therefore,

∫ t

0

∫ ∞

0

Fn

k
φ(s, k)

∫ ∞

0
hn(k, k′) (e−k − e−k′

)
F ′

n

k′
dk′ dk ds

tends to

∫ t

0

∫ ∞

0

F

k
φ(s, k)

∫ ∞

0
h(k, k′) (e−k − e−k′

)
F ′

k′
dk′ dk ds,

when n tends to infinity.
The passage to the limit in Bn and Cn when n→ ∞ can be done analogously.
So, performing the passage to the limit when n→ +∞ in (??) implies that
F is a solution to

∂F

∂t
= ke−k

∫ ∞

0
h(k, k′)

F ′

k′
dk′ +

F

k

∫ ∞

0
h(k, k′)(e−k − e−k′

)
F ′

k′
dk′

− F

k

∫ ∞

0
h(k, k′)k′e−k′

dk′,

F (0, k) = F0(k),

which also means that F is a solution of the problem (??). The conti-
nuity of F with respect to time follows from the boundedness of Q(F ) in
L∞((0, T );M1(IR+)).

4.3 Study of the entropy.

In order to prove the entropy feature of F stated in Theorem ??, the fol-
lowing Lemma is established.

Lemma 4.4

If Fn(t, ·) ⇀ F (t, ·) = F̄ (t, ·)dk + µs, then

lim inf
n→∞

−H(Fn)(t) ≥ −H(F )(t)− < µs, k >, (4.9)

F̄ (t, ·) and µs being respectively the absolute Lebesgue part and the singular
part of F (t, ·).

19



Proof of lemma ??.

Recall that

H(F̄ )(t) =

∫ ∞

0
[(k2+F̄ (t, k)) ln(k2+F̄ (t, k))−F̄ (t, k) ln F̄ (t, k)−k2 ln k2−kF̄ (t, k)] dk.

Let
h(y, k) = −(k2 + y) ln(k2 + y) + y ln y + k2 ln k2 + ky.

It is a convex function with respect to the variable y.
Prove that

∫ δ

γ
h(k, F̄ (t, k))dk ≤ lim inf

n→∞

∫ δ

γ
h(k, Fn(t, k))dk, δ ≥ γ ≥ 0,

in the following way.
Let j ∈ IN∗ and O be an open neighborhood of support µs such that |O| <
(
δ − γ

j
)2.

O is the denumerable union of open intervals. Denote by O1 one of the
intervals where µs has its bigger mass, ..., Ol+1 one of the intervals where µs

has its bigger mass after Ol, l ≥ 1. µs being of finite mass, for any α > 0,
there is an integer lα such that

µs(
⋃

l≥lα

Ol) < α,

and for lα large enough,
∫

⋃

l≥lα

Ol

F (t, k)dk < α.

Hence,

lim
n→∞

∫

⋃

l≥lα

Ol

Fn(t, k)dk < 2α. (4.10)

Let α be such that α <<
δ − γ

j
and Ĩi = Ii \ (O ∩ Ii), with

Ii =]γ + i(
δ − γ

j
), γ + (i+ 1)(

δ − γ

j
)[.

Then,
∫

Ĩi

Fn(t, k)dk =

∫

Ii\
lα−1
⋃

l=1

Ol

Fndk−
∫

⋃

l≥lα

Ol

Fndk →n→∞

∫

Ii\
lα−1
⋃

l=1

Ol

(F̄ dk+dµS)−A′ := U,

where A′ < 2α by (??).
Thus,

U =

∫

Ĩi

F̄ dk +B,
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with

B :=

∫

⋃

l≥lα

Ol

F̄ dk +

∫

Ii\
lα−1
⋃

l=1

Ol

dµs −A′ < 4α.

Hence,

lim inf
n→∞

h(γ + i(
δ − γ

j
),

1

|Ĩi|

∫

Ĩi

Fndk) = h(γ + i(
δ − γ

j
),

1

|Ĩi|

∫

Ĩi

F̄ dk +
B

|Ĩi|
).

(4.11)
Let ε > 0 be given. First, it holds that for some λε > 0,

h(k, λ) < ε, λ > λε, k ∈ [γ, δ].

Then, by the uniform continuity of h(k, λ) on [γ, δ] × [0, λε], it holds that

∫ δ

γ
h(k, Fn)dk = lim

j→∞

j−1
∑

i=0

∫

Ĩi

h(γ + i(
δ − γ

j
), Fn)dk.

Thanks to Jensen’s inequality,

1

|Ĩi|

∫

Ĩi

h(γ + i(
δ − γ

j
), Fn(t, k))dk ≥ h(γ + i(

δ − γ

j
),

1

|Ĩi|

∫

Ĩi

Fn(t, k)dk).

It follows from the constant sign of h(k, Fn) − kFn that

lim inf
n→∞

∫ δ

γ
h(k, Fn)dk ≥ lim inf

n→∞
lim

j→∞

j−1
∑

i=0

|Ĩi| h(γ + i(
δ − γ

j
),

1

|Ĩi|

∫

Ĩi

Fndk)

= lim
j→∞

lim inf
n→∞

j−1
∑

i=0

|Ĩi| h(γ + i(
δ − γ

j
),

1

|Ĩi|

∫

Ĩi

Fndk).

And so, by (??),

lim inf
n→∞

∫ δ

γ
h(k, Fn)dk ≥ lim

j→∞

j−1
∑

i=0

|Ĩi| h(γ + i(
δ − γ

j
),

1

|Ĩi|

∫

Ĩi

F̄ dk +
B

|Ĩi|
).

Hence, for j → ∞ and α→ 0,

lim inf
n→∞

∫ δ

γ
h(k, Fn)dk ≥

∫ δ

γ
h(k, F̄ )dk.

For δ → ∞ and γ → 0,

lim inf
n→∞

∫ ∞

0
h(k, Fn)(t, k)dk ≥

∫ ∞

0
h(k, F̄ )(t, k)dk,

i.e lim inf
n→∞

−H(Fn)(t) ≥ −H(F̄ )(t), a.a. t > 0.

By definition ([?]), H(F ) = H(F̄ ) −M(kµs), so that,

lim inf
n→∞

−H(Fn)(t) ≥ −H(F )(t)− < µs, k >, a.a. t > 0.
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Proof of (??).

The proof of Proposition ?? implies that

d

dt
H(Fn) =

1

2

∫ ∞

0

∫ ∞

0
b(k, k′) j(Fn(k′2 + F ′

n)e−k′
, F ′

n(k2 + Fn)e−k) dk′ dk,

(4.12)
with j defined in the proof of Proposition ??. This implies that

H(Fn)(t) ≥ H(Fn(0)) = H(F0) a.a. t > 0, (4.13)

so that
H(F )(t) ≥ H(F0)− < µs, k > .

Moreover, < µs, k > is bounded from above. Indeed, by (??), (??) and (??),

∫ ∞

0
kFn(t, k)dk < c,

uniformly with respect to n. �

5 Conclusion.

In this paper, we have proven the existence of a solution to an homogeneous
quantum kinetic evolutionary problem describing the Compton effect. Due
to a strong singularity in the collision operator, the mathematical framework

is the set of photon distribution functions F such that F and
F (t, k)

k
are

bounded measures. A local in time existence theorem is proven for small
initial data. The mathematical entropy of the solutions is bounded from
below.
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