Géométrie Différentielle – Examen Partiel, mars 2014

Aucun doccument n'est autorisé.

Exercice 1 (4p) Questions proches du cours

- 1. (1p) Écrire les formules intégrales faites en cours pour la longueur d'une courbe paramétrée $\gamma:[a,b]\to\mathbb{R}^n$ et pour l'aire d'une surface paramétrée $f:U\to\mathbb{R}^3$.
- 2. (3p) Énoncer le théorème d'existence et unicité pour le repère mobile de Frenet d'une courbe birégulière $\gamma: I \to \mathbb{R}^3$. Démontrer l'existence.

Exercice 2 (4p) Soit $\gamma: I \to \mathbb{R}^2$ une courbe paramétrée plane régulière sur I et birégulière en $t_0 \in I$.

- 1. (1**p**) Montrer que $\kappa_{\gamma}(t_0) \neq 0$,
- 2. (3p) Rappeler la notion générale de centre osculateur et montrer que, si γ est et birégulière en t_0 , alors elle admet un unique cercle osculateur en t_0 dont le centre est donné par

$$q_{\gamma}(t_0) = \gamma(t_0) + \frac{1}{\kappa_{\gamma_0}(t_0)} f_2(t_0)$$

Indication: Supposer $\gamma(t_0) = 0$ pour simplifier les calculs, et déterminer $a, b \in \mathbb{R}$, $R \in \mathbb{R}_+^*$ tel que le cercle de centre $q = af_1(t_0) + bf_2(t_0)$ et rayon R ait un contact d'ordre au moins 3 avec γ en t_0 .

Exercice 3 9p On considère la courbe gauche $\gamma: \mathbb{R} \to \mathbb{R}^3$, définie par

$$\gamma(t) := \left(\begin{array}{c} \exp(t) \\ \exp(-t) \\ \sqrt{2}t \end{array} \right) .$$

- 1. **1p** Calculer $\gamma'(t)$. Montrer que la courbe γ est régulière.
- 2. **1p** Calculer $\gamma''(t)$. Montrer que la courbe γ est birégulière.
- 3. **1p** Calculer $\gamma'''(t)$. Montrer que la courbe γ est trirégulière.
- 4. **3p** Déterminer le repère mobile de Frenet $f = (f_1, f_2, f_3) : \mathbb{R} \to SO(3)$ de γ .
- 5. **2p** Déterminer la courbure κ_{γ} et la torsion τ_{γ} de γ .
- 6. **1p** Déterminer le rapport $\frac{\tau_{\gamma}(t)}{\kappa_{\gamma}(t)}$ et montrer que l'application $v : \mathbb{R} \to \mathbb{R}^3$ définie par $v(t) := \frac{\tau_{\gamma}(t)}{\kappa_{\gamma}(t)} f_1(t) + f_3(t)$ est constante.

Exercice 4 10p On considère le paraboloïde hyperbolique Π , d'équation $x_3 = x_1^2 - x_2^2$.

- 1. **1p** Dessiner la surface Π . Indication : Étudier les intersections de Π avec les plans $x_3 = c$, $x_1 = c$, $x_2 = c$ (où $c \in \mathbb{R}$ est une constante).
- 2. **1p** On pose $u_1 = x_1 x_2$, $u_2 = x_1 + x_2$. En utilisant u_1 , u_2 comme paramètres en déduire une paramétrisation $f: \mathbb{R}^2 \to \mathbb{R}^3$ de Π .
- 3. **1p** Vérifier que f est une immersion injective.
- 4. 1p Déterminer la première forme fondamentale de f et ses coefficients $g_{ij}(u)$.
- 5. **1p** Expliciter le vecteur normal unitaire $n: \mathbb{R}^2 \to \mathbb{R}^3$.
- 6. 1p Déterminer les coefficients $h_{ij}(u)$ de la seconde forme fondamentale de f.
- 7. **2p** Déterminer la matrice inverse $G(u)^{-1}$, la matrice de l'endomorphisme de Weingarten $l_u \in \operatorname{End}(T_u f)$ dans la base $(\partial_1 f(u), \partial_2 f(u))$ et les valeurs propres $\lambda_1(u), \lambda_2(u)$ de cet endomorphisme.
- 8. **2p** Déterminer la courbure de Gauss $K: \mathbb{R}^2 \to \mathbb{R}$ et la courbure moyenne $H: \mathbb{R}^2 \to \mathbb{R}$ de f.